November, 2007 OCU-PHYS 280 Separability of Dirac equation in higher dimensional Kerr-NUT-de Sitter spacetime 8 0 Takeshi Ootaa1 and Yukinori Yasuib2 0 2 n a aOsaka City University Advanced Mathematical Institute (OCAMI) J 3-3-138 Sugimoto, Sumiyoshi, Osaka 558-8585, JAPAN 6 1 bDepartment of Mathematics and Physics, Graduate School of Science, ] Osaka City University h t 3-3-138 Sugimoto, Sumiyoshi, Osaka 558-8585, JAPAN - p e h [ 2 v Abstract 8 7 It is shown that the Dirac equations in general higher dimensional Kerr-NUT-de Sitter space- 0 times are separated into ordinary differential equations. 0 . 1 1 7 0 : v i X r a 1 [email protected] 2 [email protected] 1 Recently, the separability of Klein-Gordon equations in higher dimensional Kerr-NUT-de Sitter spacetimes [1] was shown by Frolov, Krtouˇs and Kubiznˇa´k [2]. This separation is deeply related to that of geodesic Hamilton-Jacobi equations. Indeed, a geometrical object called conformal Killing- Yano tensor plays an important role in the separability theory [3, 4, 5, 2, 6, 7, 8, 9]. However, at present, a similar separation of the variables of Dirac equations is lacking, although the separability in the four dimensional Kerr geometry was given by Chandrasekhar [10]. In this paper we shall show that Dirac equations can also be separated in general Kerr-NUT-de Sitter spacetimes. The D-dimensional Kerr-NUT-de Sitter metrics are written as follows [1]: (a) D = 2n n dx2 n n−1 2 g(2n) = µ + Q (x) A(k)dψ , (1) µ=1Qµ(x) µ=1 µ k=0 µ k! X X X (b) D = 2n+1 n dx2 n n−1 2 c n 2 g(2n+1) = µ + Q (x) A(k)dψ + A(k)dψ . (2) µ=1 Qµ(x) µ=1 µ k=0 µ k! A(n) k=0 k! X X X X The functions Q (µ = 1,2, ,n) are given by µ ··· n X Q (x) = µ, U = (x2 x2), (3) µ U µ µ− ν µ νY=1 (ν6=µ) where X is a function depending only on the coordinate x , and A(k) and A(k) are the elementary µ µ µ symmetric functions of x2 and x2 respectively: ν ν ν6=µ { } { } n (t x2)= A(0)tn A(1)tn−1+ +( 1)nA(n), (4) ν − − ··· − ν=1 Y n (t x2) = A(0)tn−1 A(1)tn−2+ +( 1)n−1A(n−1). (5) ν µ µ µ − − ··· − νY=1 (ν6=µ) The metrics are Einstein if X takes the form [1, 11] µ (a) D = 2n n X = c x2k +b x , (6) µ 2k µ µ µ k=0 X (b) D = 2n+1 n ( 1)nc X = c x2k +b + − , (7) µ 2k µ µ x2 k=0 µ X where c,c and b are free parameters. 2k µ 1. D=2n For the metric (1) we introduce the following orthonormal basis ea = eµ, en+µ (µ = 1,2, ,n): { } { } ··· n−1 dx eµ = µ , en+µ = Q A(k)dψ . (8) Q µ µ k µ q kX=0 The dual vector fields are given by p ∂ n−1( 1)kx2(n−1−k) ∂ µ e = Q , e = − . (9) µ µ n+µ ∂x Q U ∂ψ µ µ µ k q kX=0 p 2 The spin connection is calculated as [11] x √Q x Q ω = ν ν eµ µ µ eν, (µ = ν) µν −x2 x2 − x2 x2 6 µ ν µp ν − − x Q ω = (∂ Q ) en+µ µ ρ en+ρ, (no sum over µ), (10) µ,n+µ − µ µ − x2 x2 q ρX6=µ ρp− µ x √Q x Q ω = µ ν en+µ µ µ en+ν, (µ = ν) µ,n+ν x2 x2 − x2 x2 6 µ ν µp ν − − x √Q x Q ω = µ ν eµ ν µ eν, (µ = ν). n+µ,n+ν −x2 x2 − x2 x2 6 µ ν µp ν − − Then, the Dirac equation is written in the form (γaD +m)Ψ = 0, (11) a where D is a covariant differentiation, a 1 D = e + ω (e )γbγc. (12) a a bc a 4 From (9),(10) and (12), we obtain the explicit expression for the Dirac equation n ∂ 1X′ 1 n x γµ Q + µ + µ Ψ (13) µX=1 q µ ∂xµ 2Xµ 2 νX=1 x2µ−x2ν! (ν6=µ) n n−1 ( 1)kx2(n−1−k) ∂ 1 n x + γn+µ Q − µ + ν (γνγn+ν) Ψ+mΨ = 0. µX=1 q µ kX=0 Xµ ∂ψk 2 νX=1 x2µ−x2ν ! (ν6=µ) Let us use the following representation of γ-matrices: γa,γb = 2δab, { } γµ = σ σ σ σ I I, (14) 3 3 3 1 ⊗ ⊗···⊗ ⊗ ⊗ ⊗···⊗ µ−1 γn+µ = |σ3 σ3 {z σ3} σ2 I I, ⊗ ⊗···⊗ ⊗ ⊗ ⊗···⊗ µ−1 | {z } where I is the 2 2 identity matrix and σ are the Pauli matrices. In this representation, we write i × the 2n components of the spinor field as Ψ (ǫ = 1), and it follows that ǫ1ǫ2···ǫn µ ± µ−1 (γµΨ) = ǫ Ψ , (15) ǫ1ǫ2···ǫn ν ǫ1···ǫµ−1(−ǫµ)ǫµ+1···ǫn ν=1 Y µ−1 (γn+µΨ) = iǫ ǫ Ψ . ǫ1ǫ2···ǫn − µ ν ǫ1···ǫµ−1(−ǫµ)ǫµ+1···ǫn ν=1 Y By the isometry the spinor field takes the form n−1 Ψ (x,ψ) = Ψˆ (x)exp i N ψ (16) ǫ1ǫ2···ǫn ǫ1ǫ2···ǫn k k ! k=0 X 3 with arbitrary constants N . Substituting (15) into (13), we obtain k n µ−1 ∂ 1X′ 1ǫ Y 1 n 1 Q ǫ + µ + µ µ + Ψˆ µX=1 p µ ρY=1 ρ! ∂xµ 2Xµ 2 Xµ 2 νX=1 xµ−ǫµǫνxν! ǫ1···ǫµ−1(−ǫµ)ǫµ+1···ǫn (ν6=µ) + mΨˆ = 0, (17) ǫ1ǫ2···ǫn where we have introduced the function n−1 Y = ( 1)kx2(n−1−k)N , (18) µ µ k − k=0 X which depends only on x . µ Consider now the region x x > 0 for µ < ν and x +x > 0. Let us define µ ν µ ν − 1 Φ (x)= . (19) ǫ1ǫ2···ǫn √xµ+ǫµǫνxν 1≤µ<ν≤n Y Then, one can obtain an equality Φǫ1···ǫµ−1(−ǫµ)ǫµ+1···ǫn(x) =( ǫ )µ−1 µ−1ǫ (−1)µ−1Uµ . (20) Φǫ1ǫ2···ǫn(x) − µ ρY=1 ρ! nq(xµ ǫµǫνxν) − νY=1 (ν6=µ) Now we show that the Dirac equation allows a separation of variables by setting n Ψˆ (x) = Φ (x) χ(µ)(x ). (21) ǫ1ǫ2···ǫn ǫ1ǫ2···ǫn ǫµ µ µ=1 Y It should be noticed that n ∂ d 1 1 logΨˆ = logχ(µ) . (22) ∂x ǫ1···ǫµ−1(−ǫµ)ǫµ+1···ǫn dx −ǫµ − 2 x ǫ ǫ x µ µ µ µ ν ν νX=1 − (ν6=µ) By using (20) and (22), the substitution of (21) into (17) leads to n (µ) P (x ) ǫµ µ +m = 0, (23) n µX=1 (ǫµxµ ǫνxν) − νY=1 (ν6=µ) (µ) where P is a function of the coordinate x only, ǫµ µ ′ 1 d 1X ǫ Y P(µ) = ( 1)µ−1(ǫ )n−µ ( 1)µ−1X + µ + µ µ χ(µ) . (24) ǫµ − µ q − µχǫ(µµ) dxµ 2Xµ Xµ ! −ǫµ Putting n−2 Q(y) = myn−1+ q yj (25) j − j=0 X 4 with arbitrary constants q , we find j P(µ)(x ) =Q(ǫ x ). (26) ǫµ µ µ µ (µ) Thus, the functions χ satisfy the ordinary differential equations ǫµ ′ d 1X ǫ Y ( 1)µ−1(ǫ )n−µQ(ǫ x ) + µ + µ µ χ(µ) − µ µ µ χ(µ) = 0. (27) dxµ 2Xµ Xµ ! −ǫµ − ( 1)µ−1X ǫµ µ − 2. D=2n+1 q For the metric (2) we introduce the orthonormal basis eˆa = eˆµ, eˆn+µ, eˆ2n+1 (µ = 1,2, ,n): { } { } ··· n eˆµ = eµ, eˆn+µ = en+µ, eˆ2n+1 = √S A(k)dψ (28) k k=0 X with S = c/A(n). The 1-forms eµ and en+µ are defined by (8). The dual vector fields are given by ( 1)n ∂ 1 ∂ eˆ = e , eˆ = e + − , eˆ = (29) µ µ n+µ n+µ x2µ QµUµ∂ψn 2n+1 √SA(n)∂ψn with (9). The spin connection is calculated asp[11] √S ωˆ = ω , ωˆ = ω +δ eˆ2n+1, ωˆ = ω , µν µν µ,n+ν µ,n+ν µν n+µ,n+ν n+µ,n+ν x µ √S Q √S ωˆ = eˆn+µ µeˆ2n+1, ωˆ = eˆµ. (30) µ,2n+1 n+µ,2n+1 x − x − x µ pµ µ A similar calculation to the even dimensional case yields the following Dirac equation, n ∂ 1X′ 1 1 n x γµ Q + µ + + µ Ψ µ µX=1 q ∂xµ 2Xµ 2xµ 2 νX=1 x2µ−x2ν! (ν6=µ) n n−1( 1)kx2(n−1−k) ∂ ( 1)n ∂ 1 n x + γn+µ Q − µ + − + ν (γνγn+ν) Ψ µX=1 q µ kX=0 Xµ ∂ψk x2µXµ ∂ψn 2 νX=1 x2µ−x2ν ! (ν6=µ) n 1 1 ∂ + γ2n+1√S (γµγn+µ)+ Ψ+mΨ= 0. (31) − 2x c∂ψ µ=1 µ n X We use the representation of γ-matrices given by (14) together with γ2n+1 = σ σ σ . (32) 3 3 3 ⊗ ⊗···⊗ Thus, the spinor field Ψˆ defined by ǫ1ǫ2···ǫn n Ψ (x,ψ) = Ψˆ (x)exp i N ψ (33) ǫ1ǫ2···ǫn ǫ1ǫ2···ǫn k k ! k=0 X satisfies the equation n µ−1 ∂ 1X′ 1ǫ Yˆ µ µ µ Q ǫ + + µ ρ µ=1 ρ=1 ! ∂xµ 2Xµ 2 Xµ X p Y n 1 1 1 + + Ψˆ 2xµ 2 xµ ǫµǫνxν! ǫ1···ǫµ−1(−ǫµ)ǫµ+1···ǫn νX=1 − (ν6=µ) n n ǫ N + i√S ǫ µ + n +m Ψˆ = 0, (34) ρ=1 ρ!−µ=1 2xµ c ǫ1ǫ2···ǫn Y X 5 where n Yˆ = ( 1)kx2(n−1−k)N . (35) µ µ k − k=0 X We find that the Dirac equation above allows a separation of variables n (µ) χ (x ) Ψˆ (x) = Φ (x) ǫµ µ (36) ǫ1ǫ2···ǫn ǫ1ǫ2···ǫn µ=1 √xµ ! Y with Φ defined by (19). Indeed, (34) becomes ǫ1ǫ2···ǫn n (µ) n P (x ) i√c ǫ N ǫµ µ + µ + n +m = 0 (37) n n − 2x c µX=1 (ǫµxµ ǫνxν) (ǫρxρ) µX=1 µ − νY=1 ρY=1 (ν6=µ) with the help of (24). Let us introduce the function n−1 Qˆ(y) = q yj (38) j j=−2 X where i i q = m, q = ( 1)n−1√c, q = ( 1)nN . (39) n−1 −1 −2 n − 2 − √c − Using the identities n 1 ( 1)n−1 n 1 = − (40) µX=1yµ2 (yµ−yν) n yµ νX=1 yν ν (νY6=µ) µY=1 n 1 ( 1)n−1 = − (41) n y (y y ) µX=1 µ µ− ν yµ ν (νY6=µ) µY=1 (µ) we can confirm that the functions χ satisfy the ordinary differential equations (27) by the replace- ǫµ ments Y Yˆ and Q(ǫ x ) Qˆ(ǫ x ). µ µ µ µ µ µ → → We have shown the separation of variables of Dirac equations in general Kerr-NUT-de Sitter spacetimes. An interesting problem is to investigate the origin of separability. In the case of geodesic Hamilton-Jacobi equations andKlein-Gordonequations weknowthattheexistence ofseparablecoor- dinates comes from that of a rank-2 closed conformal Killing-Yano tensor. We can also construct the first order differential operators from the closed conformal Killing-Yano tensor which commute with Dirac operators [12, 13, 14]. However, we have no clear answer of the separability of Dirac equations. As another problem we can study eigenvalues of Dirac operators on Sasaki-Einstein manifolds. In- deed, as shown in [1, 15, 16, 17], the BPS limit of odd-dimensional Kerr-NUT-de Sitter metrics leads to Sasaki-Einstein metrics. Especially, the five-dimensional metrics are important from the point of view of AdS/CFT correspondence. Acknowledgements We thank G.W. Gibbons for attracting our attention to the references [12, 13, 14]. This work is supported by the 21 COE program “Construction of wide-angle mathematical basis focused on 6 knots”. The work of Y.Y. is supported by the Grant-in Aid for Scientific Research (No. 19540304 andNo. 19540098) fromJapanMinistryofEducation. Theworkof T.O.issupportedbytheGrant-in Aid for Scientific Research (No. 18540285 and No. 19540304) from Japan Ministry of Education. References [1] W. Chen, H. Lu¨ and C.N. Pope, “General Kerr-NUT-AdS metrics in all dimensions,” Class. Quant. Grav. 23 (2006) 5323-5340, arXiv:hep-th/0604125. [2] V.P. Frolov, P. Krtouˇs and D. Kubiznˇa´k, “Separability of Hamilton-Jacobi and Klein- Gordon Equations in General Kerr-NUT-AdS Spacetimes,” JHEP 0702 (2007) 005, arXiv:hep-th/0611245. [3] V.P. Frolov and D. Kubiznˇa´k, “‘Hidden’ Symmetries of Higher Dimensional Rotating Black Holes,” Phys. Rev. Lett. 98 (2007) 11101, arXiv:gr-qc/0605058. [4] D. Kubiznˇa´k and V.P. Frolov, “Hidden Symmetry of Higher Dimensional Kerr-NUT-AdS Space- times,” Class. Quant. Grav. 24 (2007) F1-F6, arXiv:gr-qc/0610144. [5] D.N. Page, D. Kubiznˇa´k, M. Vasudevan and P. Krtouˇs, “Complete Integrability of Geodesic Motion in General Kerr-NUT-AdS Spacetimes,” Phys. Rev. Lett. 98 (2007) 061102, arXiv:hep-th/0611083. [6] P. Krtouˇs, D. Kubiznˇa´k, D.N. Page and V.P. Frolov, “Killing-Yano Tensors, Rank-2 Killing Tensors, and Conserved Quantities in Higher Dimensions,” JHEP 0702 (2007) 004, arXiv:hep-th/0612029. [7] P.Krtouˇs,D.Kubiznˇa´k,D.N.PageandM.Vasudevan,“ConstantsofGeodesicMotioninHigher- Dimensional Black-Hole Spacetime,” arXiv:hep-th/0707.0001. [8] T. Houri, T. Oota and Y. Yasui, “Closed conformal Killing-Yano tensor and geodesic integrabil- ity,” arXiv:hep-th/0707.4039. [9] T. Houri, T. Oota and Y. Yasui, “Closed conformal Killing-Yano tensor and Kerr-NUT-de Sitter spacetime uniqueness,” Phys. Lett. B656 (2007) 214-216, arXiv:hep-th/0708.1368. [10] S. Chandrasekhar, “The solution of Dirac’s equation in Kerr geometry,” Proc. R. Soc. London A349 (1976) 571-575. [11] N. Hamamoto, T. Houri, T. Oota and Y. Yasui, “Kerr-NUT-de Sitter curvature in all dimen- sions,” J. Phys. A40 (2007) F177-F184, arXiv:hep-th/0611285. [12] G.W.Gibbons,R.H.Rietdijk andJ.W.van Holten, “SUSYinthesky,”Nucl.Phys.B404(1993) 42-64, arXiv:hep-th/9303112. [13] M. Tanimoto, “The Role of Killing-Yano tensors in supersymmetric mechanics on a curved manifold,” Nucl. Phys. B442 (1995) 549-562, arXiv:gr-qc/9501006. [14] M. Cariglia, “Quantum Mechanics of Yano tensors: Dirac equation in curved spacetime,” Class. Quant. Grav. 21 (2004) 1051-1078, arXiv:hep-th/0305153. [15] Y. Hashimoto, M. Sakaguchi and Y. Yasui, “Sasaki-Einstein Twist of Kerr-AdS Black Holes,” Phys. Lett. B 600 (2004) 270-274, arXiv:hep-th/0407114. 7 [16] M. Cvetiˇc, H. Lu¨, D.N. Page and C.N. Pope, “New Einstein-Sasaki spaces in five and higher dimensions,” Phys. Rev. Lett. 95 (2005) 071101, arXiv:hep-th/0504225. [17] M. Cvetiˇc, H. Lu¨, D.N. Page and C.N. Pope, “New Einstein-Sasaki and Einstein spaces from Kerr-de Sitter,” arXiv:hep-th/0505223. 8