ebook img

Sentiment Analysis for Social Media PDF

154 Pages·2020·6.61 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Sentiment Analysis for Social Media

S e n t im e n t A n a ly s is f o r S o c ia l M e d ia • C a r lo s A . Ig le s ia s a n d A n t o n io M o r e n o Sentiment Analysis for Social Media Edited by Carlos A. Iglesias and Antonio Moreno Printed Edition of the Special Issue Published in Applied Sciences www.mdpi.com/journal/applsci Sentiment Analysis for Social Media Sentiment Analysis for Social Media SpecialIssueEditors CarlosA.Iglesias AntonioMoreno MDPI•Basel•Beijing•Wuhan•Barcelona•Belgrade•Manchester•Tokyo•Cluj•Tianjin SpecialIssueEditors CarlosA.Iglesias AntonioMoreno DepartamentodeIngenier´ıade Departamentd’Enginyeria SistemasTelema´ticos, Informa`ticaiMatema`tiques, ETSITelecomunicacio´n EscolaTe`cnicaSuperior Spain d’Enginyeria,UniversitatRovira iVirgili(URV) Spain EditorialOffice MDPI St.Alban-Anlage66 4052Basel,Switzerland This is a reprint of articles from the Special Issue published online in the open access journal AppliedSciences (ISSN 2076-3417) (available at: https://www.mdpi.com/journal/applsci/special issues/SentimentSocialMedia). Forcitationpurposes,citeeacharticleindependentlyasindicatedonthearticlepageonlineandas indicatedbelow: LastName,A.A.; LastName,B.B.; LastName,C.C.ArticleTitle. JournalNameYear,ArticleNumber, PageRange. ISBN978-3-03928-572-3(Pbk) ISBN978-3-03928-573-0(PDF) (cid:2)c 2020bytheauthors. ArticlesinthisbookareOpenAccessanddistributedundertheCreative Commons Attribution (CC BY) license, which allows users to download, copy and build upon publishedarticles,aslongastheauthorandpublisherareproperlycredited,whichensuresmaximum disseminationandawiderimpactofourpublications. ThebookasawholeisdistributedbyMDPIunderthetermsandconditionsoftheCreativeCommons licenseCCBY-NC-ND. Contents AbouttheSpecialIssueEditors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii CarlosA.IglesiasandAntonioMoreno SentimentAnalysisforSocialMedia Reprintedfrom:Appl.Sci.2019,9,5037,doi:10.3390/app9235037. . . . . . . . . . . . . . . . . . . 1 HyojiHa,HyunwooHan,SeongminMun,SungyunBae,JihyeLeeandKyungwonLee An Improved Study of Multilevel Semantic Network Visualization for Analyzing Sentiment WordofMovieReviewData Reprintedfrom:Appl.Sci.2019,9,2419,doi:10.3390/app9122419. . . . . . . . . . . . . . . . . . . 5 HannahKimandYoung-SeobJeong SentimentClassificationUsingConvolutionalNeuralNetworks Reprintedfrom:Appl.Sci.2019,9,2347,doi:10.3390/app9112347. . . . . . . . . . . . . . . . . . . 31 XingliangMao,ShuaiChang,JinjingShi,FangfangLiandRonghuaShi Sentiment-AwareWordEmbeddingforEmotionClassification Reprintedfrom:Appl.Sci.2019,9,1334,doi:10.3390/app9071334. . . . . . . . . . . . . . . . . . . 45 MohammedJabreelandAntonioMoreno ADeepLearning-BasedApproachforMulti-LabelEmotionClassificationinTweets Reprintedfrom:Appl.Sci.2019,9,1123,doi:10.3390/app9061123. . . . . . . . . . . . . . . . . . . 59 ElineM.vandenBroek-AltenburgandAdamJ.Atherly UsingSocialMediatoIdentifyConsumers’SentimentstowardsAttributesofHealthInsurance duringEnrollmentSeason Reprintedfrom:Appl.Sci.2019,9,2035,doi:10.3390/app9102035. . . . . . . . . . . . . . . . . . . 75 SungheeParkandJiyoungWoo GenderClassificationUsingSentimentAnalysisandDeepLearninginaHealthWebForum Reprintedfrom:Appl.Sci.2019,9,1249,doi:10.3390/app9061249. . . . . . . . . . . . . . . . . . . 85 HuiLiu,YinghuiHuang,ZichaoWang,KaiLiu,XiangenHuandWeijunWang PersonalityorValue:AComparativeStudyofPsychographicSegmentationBasedonanOnline ReviewEnhancedRecommenderSystem Reprintedfrom:Appl.Sci.2019,9,1992,doi:10.3390/app9101992. . . . . . . . . . . . . . . . . . . 97 GuadalupeObduliaGutie´rrez-Esparza,MaiteVallejo-AllendeandJose´Herna´ndez-Torruco ClassificationofCyber-AggressionCasesApplyingMachineLearning Reprintedfrom:Appl.Sci.2019,9,1828,doi:10.3390/app9091828. . . . . . . . . . . . . . . . . . . 125 v About the Special Issue Editors Carlos A. Iglesias (Professor). Prof. Carlos Iglesias Associate Professor at the Universidad Polite´cnica de Madrid. He holds a Ph.D. in Telecommunication Engineering. He was previously DeputyDirectoratGrupoGesforandInnovationDirectoratGerminusXXI.Hehasbeenactively involved in research projects funded by private companies as well as national and European programs. His research interests are focused on intelligent systems (knowledge engineering, multi-agentsystems,machinelearning,andnaturallanguageprocessing). Antonio Moreno (Professor). Dr. Moreno is a Full Professor of Artificial Intelligence at University Rovira i Virgili (URV) in Tarragona, Spain. He was the founder and director of the ITAKA(IntelligentTechnologiesforAdvancedKnowledgeAcquisition)researchgroupuntil2019. Since2018, hehasbeentheDeputyDirectorofURVEngineeringSchool. Hehasbeentheauthor ofmorethan60journalpapersandover125conferencepapers. Hehassupervised8Ph.D.theses on different topics, including ontology learning, agents applied in health care, intelligent data analysisappliedonhealthcaredata,recommendersystems,andmulti-criteriadecisionmaking. His currentresearchinterestsarefocusedonsentimentanalysis,recommendersystems,andmulti-criteria decisionsupportsystems. vii applied sciences Editorial Sentiment Analysis for Social Media CarlosA.Iglesias1,*,†andAntonioMoreno2,† 1 IntelligentSystemsGroup,ETSITelecomunicación,Avda.Complutense30,28040Madrid,Spain 2 IntelligentTechnologiesforAdvanceKnowledgeAcquisition(ITAKA)Group, EscolaTècnicaSuperiord’Enginyeria,Departamentd’EnginyeriaInformàticaiMatemàtiques, UniversitatRoviraiVirgili,43007Tarragona,Spain;[email protected] * Correspondence:[email protected];Tel.:+34-910671900 † Theseauthorscontributedequallytothiswork. (cid:2)(cid:3)(cid:4)(cid:2)(cid:5)(cid:6)(cid:7)(cid:8)(cid:9) Received:31October2019;Accepted:19November2019;Published:22November2019 (cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8) Abstract: Sentimentanalysishasbecomeakeytechnologytogaininsightfromsocialnetworks. Thefieldhasreachedalevelofmaturitythatpavesthewayforitsexploitationinmanydifferent fieldssuchasmarketing,health,bankingorpolitics.Thelatesttechnologicaladvancements,suchas deeplearningtechniques,havesolvedsomeofthetraditionalchallengesintheareacausedbythe scarcityoflexicalresources.InthisSpecialIssue,differentapproachesthatadvancethisdiscipline arepresented. Thecontributedarticlesbelongtotwobroadgroups: technologicalcontributions andapplications. Keywords:sentimentanalysis;emotionanalysis;socialmedia;affectcomputing 1.Introduction Sentimentanalysistechnologiesenabletheautomaticanalysisoftheinformationdistributed throughsocialmediatoidentifythepolarityofpostedopinions[1]. Thesetechnologieshavebeen extendedinthelastyearstoanalyzeotheraspects,suchasthestanceofausertowardsatopic[2] ortheusers’emotions[3],evencombiningtextanalyticswithotherinputs,includingmultimedia analysis[4]orsocialnetworkanalysis[5]. ThisSpecialIssue“SentimentAnalysisforSocialMedia"aimstoreflectrecentdevelopmentsin sentimentanalysisandtopresentnewadvancesinsentimentanalysisthatenablethedevelopment offuturesentimentanalysisandsocialmediamonitoringmethods.Thefollowingsectionsdetailthe selectedworksinthedevelopmentofnewtechniquesaswellasnewapplications. 2.NewPathsinSentimentAnalysisonSocialMedia Traditionally,sentimentanalysishasfocusedontextanalysisusingNaturalLanguageProcessing andfeature-basedMachineLearningtechniques.TheadvancesindisciplinessuchasBigDataand DeepLearningtechnologieshaveimpactedandbenefitedtheevolutionofthefield.ThisSpecialIssue includesfourworksthatproposenoveltechniques. Inthefirstwork,titled“AnImprovedStudyofMultilevelSemanticNetworkVisualizationforAnalyzing SentimentWordofMovieReviewData”[6],Haetal.proposeamethodforsentimentvisualizationin massivesocialmedia. Forthispurpose,theydesignamulti-levelsentimentnetworkvisualization mechanismbasedonemotionalwordsinthemoviereviewdomain.Theyproposethreevisualization methods:aheatmapvisualizationofthesemanticwordsofeverynode,atwo-dimensionalscaling mapofsemanticworddata,andaconstellationvisualizationusingasterismimagesforeachcluster ofthenetwork.Theproposedvisualizationshavebeenusedasarecommendersystemthatsuggest movieswithsimilaremotionstothepreviouslywatchedones. Thisnovelideaofrecommending contentsbasedonsimilaremotionalpatternscanbeappliedtoothersocialnetworks. Appl.Sci.2019,9,5037;doi:10.3390/app9235037 1 www.mdpi.com/journal/applsci

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.