ebook img

Sensors and Actuators B: Chemical - Infoscience: Scientific PDF

13 Pages·2011·3.62 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Sensors and Actuators B: Chemical - Infoscience: Scientific

SensorsandActuatorsB157 (2011) 72–84 ContentslistsavailableatScienceDirect Sensors and Actuators B: Chemical journal homepage: www.elsevier.com/locate/snb Enhancement of actuation ability of ionic-type conducting polymer actuators using metal ion implantation GurselAlicia,b,∗,AndresPunningc,HerbertR.Sheac aUniversityofWollongong,SchoolofMechanical,MaterialsandMechatronicEngineering,NSW,Australia bARCCentre o fExcellencefo rElect rom aterialsSci enceUnive rsity ofWollongo ng,Intelligen tPoly merResearchInstituteInnovationCampus,NSW,Australia cEcole Polyte ch niqueFédé rale deLausanne(EP FL),Mic rosystems for SpaceTechn ologiesLab oratory, Neuchâte l,Switzer land a r t i c l e i n f o a b s t r a c t Articlehistory: Inthisstudy,wepresenttheresultsandimplicationsofanexperimentalstudyintotheeffectofgold-ion Receiv ed14December2010 im plan tation on theactua tion perfor man ceofionic-ty pe co nductingpoly merac tuat ors, repres en tedhere AReccceepivteedd i1n3 r Mevaisrechd 2fo0r1m 1 12 February 2011 by cantilevere d t ri-l ayer polyp yrrole (PPy) a ct uators. We implant go ld ions be neath the outer surfac es of PPy-basedconductingpolymerlayersoftheactuatorsinordertoincreasetheconductivityoftheselayers, Available online 21 March 2011 andthereforeimprovetheoverallconductivityoftheactuators.AFilteredVacuumCathodeArc(FVCA) ionsourcewasusedtoimplantgoldparticlesintotheconductingpolymerlayers.Electroderesistance Keywords: andcapacitance,surfaceresistance,currentresponse,mechanicalworkoutputoftheactuatorsamples Electroactivepolymeractuators weremeasuredand/orcalculatedfortheactuatorsampleswithandwithoutgoldimplantationinorder Metalion-implantation AElcetcutart oodrep ceornfodrumctainvciteyenhancement etole dcetrmodonesstdrautrein thget hefefierc‘te olef ctthreo cghoeldm-iommpelcahnatantiicoanl’. Tachteu cautirornenwt pasasmsienags tuhrreodugtoh dtheete cromnidnuecttihneg cphoalyrgminegr timeconst antoft heact uators.Themechanicaldis placement outp utofthea ctu atorswasr eco rded.The resultsdemonstratethattheconductivityoftheactuatorsincreasesnoticeably,whichhasaflowoneffect onthecurrentresponse(i.e.,chargeinjectedintothepolymerlayers)andthemechanicalworkoutput. Whilethegoldimplantedactuatorshadahighermechanicalstiffnessthereforeasmallerdisplacement output,theirtimeconstantissmaller,indicatingahigherresponsespeed.Thegold-implantedactuators generateda15%highermechanicalworkoutputdespitetheadverseeffectsonthepolymerofthevacuum processingneededfortheionimplantation. © 2011 Elsevier B.V. All rights reserved. 1. Introduction moredetailinSection2.Fig.1isanexampleoftri-layerstructure consisting of polymer–electrolyte-containing substrate–polymer. Electroactivepolymersactuatorsarecommonlyreferredtoas Whenanelectricalpotentialisappliedbetweenthepolymerson artificialmuscles[1]inviewoftheirremarkablemuscle-likeprop- bothsidesoftheactuator,anelectrochemicalreactionoccurs;the erties:highflexibility,highstrainandhighenergydensity.Unlike polymer layers are electrochemically charged (doped) and dis- other ionic-type conducting polymer actuators which can only charged(undoped)throughtheexchangeofcharge-balancingions operateinaliquidelectrolyte,theionic-typeconductingpolymer betweenthepolymerlayersandtheelectrolytestoredinapassive actuators considered in this study can operate in air and liquids substrate,inourcasepolyvinylidenefluoride(PVDF).Thiselectro- using a very low electrical power (1V, 15–20mA) with a high chemicalreactioncausesavolumechangeinthepolymerlayers, speed (∼ 400H z,d ependingo ntheir siz e). Whent hey aremi ni atur- leadingto swellin gandc on traction .Thevo lu me changeis easily izedfurthertomicro-scale,becomingMEMSandbioMEMSdevices, controlled by the electrical potential. The rate and magnitude of theycanbesuitabletoapplicationsrangingfrombiotechnologyto the flow of charges in or out of the polymer layers depends on: micro-robots,especiallyinthefieldoflifesciences. theelectricalconductivityofelectroactivepolymerlayers,theionic Ionic-typeconductingpolymeractuatorsconsistofatleastone conductivityoftheelectrolyte,thediffusiontimeofionsinthepoly- conductivepolymerlayerandanelectrolytereservoir,discussedin merlayers,theporosityandgeometryofthepolymerlayers,and appliedpotentialdifference.Thefundamental(orcharging)time constantoftheseactuatorsdependsontheirtotalresistanceand capacitance(RC).Thelowerthetotalresistance,thefastertheactu- ∗ Corresponding author at: University of Wollongong, School of Mechanical, ation process. Further, it is known that there is a direct relation Materials and Mech atronic Eng ineering, NS W 2522, Austral ia. Tel.: + 61 242214145; betwe enthec hargingr at ea ndthe actua tions tra in orme chanical fax:+61242215474. displacementgenerated[7]. E-mail address: [email protected] (G. Alici). 0925-4005/$–seefrontmatter© 2011 Elsevier B.V. All rights reserved. doi:10.1016/j.snb.2011.03.028 G.Alicietal./SensorsandActuatorsB157 (2011) 72–84 73 asignificantresearchproblem.Previousattemptstodepositacon- ductingmetalliclayeronthesurfaceofconductingpolymersfilms (which were used as linear actuators in an aqueous electrolyte) werenotsuccessfulduetothepoorbinding(nointerpenetration betweenthegoldandthepolymerlayers)betweenthepolymer surfaceandthethinfilmcoatings[20–22]orexcessivestiffening. Inthisstudy,weemployalow-energy(5keV)metalionimplan- tationtechniquebasedonapulsedvacuumarcplasmasourceto increasetheconductivityofthepolymerelectrodes,andtherefore enhance the actuation of performance of this class of electroac- tivepolymeractuators.Thision-implantationtechniquehasbeen employedbeforetomakecompliantgoldelectrodesindielectric elastomeractuators[2,27]andstretchableelectrodes[25]bycre- atinga20nmthickgold–siliconnanocomposite[6,26].Forthefirst time,weemploythistechniquetoincreasetheconductivityofthe ionic-typeconductingpolymeractuators,hencetoenhancetheir actuationability,whichdependsonthepolymerconductivity.We comparetheexperimentalandnumericalresultsfrombareactua- torsamplesandfromgold-implantedsamplestodemonstratethe efficacyofthegoldimplantationinincreasingtheirperformance. Electroderesistance,electrodecapacitance,surfaceresistance,cur- Fig. 1. Structure and schematic representation of the operation principle of the rentrespo nse,timec onstant,e lectricalpow erenerg yconsump tion cantileveredpolymeractuators. andmechanicalworkoutputoftheactuatorsamplesweremea- suredand/orcalculated.Thecontributionofthisstudyistopresent With this in mind, it is the aim of this study to increase theresultsontheeffectofgoldimplantationontheactuationper- theelectricalconductivityoftheelectroactivepolymerlayersby formance.Tothebestoftheauthors’knowledge,thisisthefirst implantinggoldionsafewtensofnmbeneaththeoutersurface studyfocusingontheinfluenceofthemetalionsinjectedintothe of the polymer layers, which are electrically contacted by a pair conductingpolymerlayersoftri-layerconductingpolymeractua- ofmetalelectrodescoveringasmallfractionofthepolymer(see torsontheiractuationability. Fig.1).Aswidelyreportedintheliterature[3–15],iftheconductiv- ityofthecontactsandthepolymerisverygood,therewillbeasmall ohmicpotentialdropalongtheactuatorlength,andthecharging 2. Backgroundonsynthesisandoperationofelectroactive ratewillbehigh,whichgeneratehigherstrains.Thehigheristhe polymeractuators strain,thehigheristhetipdisplacementoftheactuators.Thefunc- tionoftheseadditionallayerofgoldistoincreasetheconductivity Polymers based on pyrrole, thiophene or aniline, which are ofthepolymerelectrodes,andthustoalsominimizetheohmic(IR) known as electroactive materials, have been extensively studied potentialdropalongtheactuatorlength. tousethemasactuatorswithnewfunctionalityandperformance As reported recently [16], the Cl and SF plasma treatment [13–15]. Electroactive polymer actuators are classified as inter- 2 6 of the ionic-polymer metallic composite (IPMC) actuators has nalandexternalactuators,dependingontheirelectrolytestorage improvedtheactuationperformanceofthisclassofactuatorinclud- method.Forinternalactuatorsthereisapassivelayer,whichstores ingoperationallife,bendingdisplacement,andblockingforce.This theelectrolyte.Forexternalactuatorstheelectrolyteisstoredin improvementisduetoanincreaseinthesurfaceconductivity.The anoutercellandthepolymeractuatormustbepartiallyorfully higheristheconductivityofthesurface,thehigheristhebending immersedintheelectrolyte.Theactuatorsconsideredinthisstudy displacement of the actuators. IPMC consist of an ionic polymer areinternal-typeconductingpolymeractuators. sandwiched between two compliant electrodes. The ionic poly- Polymeractuatorsusedinthisstudyhaveamulti-layerstruc- mer(cellseparator)Nafionisplasmacoatedinordertoincrease ture.Afullaccountoftheactuatorsynthesisprocedureispresented the penetration of the platinum particles in order to create an in[11–13].Themulti-layeractuatorstructureshowsasimplebend- electrodecoatingintotheNafionlayer.Withtheplatinumnanopar- ing motion like a bilayer cantilever beam, as depicted in Fig. 1. ticleswithathicknessof50–70nm,thesurfaceconductivityand Oftheselayers,thegold-coatedPVDFinthecentrewithathick- capac itance o ftheIPMC a ctuator sare inc reasedb y20timesa nd2 ne ssof1 10(cid:2)m isa non-conduct ivepo ro usm embra neus ed asan times,respectively,comparedtoanactuatorsamplewithoutany electrochemical cell separator, and it also stores the electrolyte plasma treatment. In another relevant study, Punning et al. [17] (LiTFSI+solvent), facilitating the operation of such conducting reportedontheirexperimentalstudyonthesurfaceresistanceof polymeractuatorsinair.ThegoldlayeroneachsideofthePVDF IPMCactuatorsandsensors.Theyconcludethat(i)thesurfaceresis- hasapproximately10nmthickness.Polypyrrole(PPy)layers,with tance changesw ith theradi usof curvature ofth e actu atorsan d(ii) ath icknessof30(cid:2) m, are electroact ivecompone ntsu sedas elec- thereisadiscernabledifferencebetweentheresistanceofthecom- trodes[14].Thetotalthicknessoftheactuatorsisapproximately pressi ng surfaceand expanding surface oft hecantilev er ed IPMC 170(cid:2)m . actuators.BecausetheIPMCactuatorshavetwometallicelectrodes WiththeelectrolytestoredinthePVDFlayer,themulti-layer through which they are electrically actuated, there is a wide lit- structureformsanelectrochemicalcell.Whenapotentialdiffer- eratureonimprovingtheelectricalcharacteristicsofthemetallic enceorcurrentispassedbetweenthePPylayersviatheelectrical electrodes and their implications for the actuation performance contacts,thewholestructureischargedlikeacapacitor.Tomain- [16–19]. B ut, t he ac tuators consi dere d in this stud y have non- tain char ge n eutral ity within th e PPy la yers , TFSI− anio ns move metallic,butinherentlyconductingpolymersaselectrodeswhose fromtheelectrolyteinthemiddlelayerintothepositivelycharged conductivityhasasignificanteffectontheiractuationperformance. polymer(PPy)electrodeandhencecauseavolumeexpansion.At Therefore,im pro v ingthecon ductiv ity ofth eseelectr odesthrough thesame time ,inthepo sitive electr ode/a no de,the anions(TFS I−) apermanentlayerofaconductorsuchasimplantedgoldparticlesis leave the negatively charged electrode as reduction of the PPy 74 G.Alicietal./SensorsandActuatorsB157 (2011) 72–84 Fig.2. (a)PhotographoftheplasmaexitingthemacroparticlefilteroftheFCVAandimpingingonthenegativelybiasedsubstrateholderand(b)theschematicrepresentation oftheionimplantationsystemused. From[26]. causesittobecomeunchargedandavolumecontractionoccurs. ators[2,25].Thesegold-implantedelectrodescanbestretchedto The overall result is that the cantilevered structure will bend strains of up to 175% while remaining conductive, and, crucially towardsthenegativeelectrode/cathode,asdepictedinFig.1.The for polymer actuation applications, the implanted electrodes are volume change primarily happens due to the movement of the muchlessstiffthanifthesameamountofmetalhadbeensputtered chargebalancinganionsinandoutofthepolymerlayers,andper- asacontinuousfilmonthepolymer.Thisisduetotheresulting hapssomesolventmoleculesmoveinsidethepolymerlayers,due microstructure,forming2–30nmdiametergoldnanoparticleupto toosmoticeffects,tobalancetheionicconcentration.Itistheout 100nmbelowthesurfaceofthepolymer,allowingconductionby ofscopeofthispapertoprovideadetailedperformancecharacter- ohmiccontactbetweennanoparticlesthatarefreetomovewith izationoftheactuators.Thereaderisreferredtoour[11–15]and respecttoeachother[26]. othergroup’s[3–7,23]previouswork. Theimplantationtechniqueusedhere,whichisknownasfil- teredcathodicvacuumarc(FCVA),isaplasmabasedimplantation technique.Thedetailsofthision-implantationtechniquearepre- 3. Lowenergyionimplantation sentedin[2,25–27].Itsschematicdiagramandaphotographduring onepulsearedepictedinFig.2[26].Itisimportanttonotethat Ion implantation is commonly used to inject dopants into intheFCVAimplantationtechnique,theenergyoftheionsvaries semiconductors such as silicon in order to modify their electri- withineachpulse,the firstionsseeingthe full potentialdropof calproperties.Theelectrical,mechanical,chemicalandstructural 2.5kV,whilethefinalionshaveenergyontheorderof50eV. propertiesofothersubstratessuchaspolymerscanbesignificantly changedbytheionsinsertedbeneaththeirsurface.Thepenetration depthofmetallicionsdependsontheionimplantationparame- 4. Experimentalsetup terssuchastheangleofincidence,typeofions,theenergyofthe ions,andthecompositionofthetarget.Thehigheristheincom- The experimental setup is to measure the electrochemical ingenergyofions,thehigheristhepenetrationdepthoftheions behaviouroftheactuatorsconsistingofapotentiostat/galvanostat intothetargetofapolymersuchasPDMS,asshownforseveral (EG&G Princeton Applied Research Model 273A), eDAQ e-Corder energiesin[26].Lowenergiesintherangeof50eVand5keVwere dataloggerunit,andawavegeneratorconnectedtothepotentio- usedtoimplantgoldionsinthefirst50nmofthePDMSlayerin statunit.Thesuppliedvoltageandassociatedcurrentarerecorded ordertomakecompliantelectrodesfordielectricelastomeractu- bytheeDAQunitinterfacewithapersonalcomputer.Theschematic Fig.3. Schematicdiagramoftheexperimentalsetupusedtostimulatetheactuatorsamples,andtorecordtheassociatedelectricalsignals. G.Alicietal./SensorsandActuatorsB157 (2011) 72–84 75 Fig.4. SEMSE(left)andBSE(right)imagesofagold-implantedactuatorsample.TheBSEimages(rightimages)showthedistributionofthegoldparticles(whiteareas)in thecross-sectionbetweenthePVDFandPPylayers,andontheupperandlowersurfacesoftheactuators. diagram of this experimental setup is shown in Fig. 3. Autolab circuitsfromonesidetotheotherthroughtheedgesofactuator. PGSTAT12Potentiostat/GalvanostatequippedwithaGeneralPur- The top view of an actuator sample (Sample 1) under an optical pose Electrochemical System (GPES) software was employed to microscopeisshowninFig.5,clearlyshowingthegoldimplanted formatwoelectrodecyclicvoltammetry(CV)inordertogenerate area. CVscans. Thesurfaceresistanceofactuatorsampleswithdifferentdimen- The electrode resistance and capacitance of the actuators in sions is given in Table 1. These resistance data indicate that the differentstates(normalstate,completelydryaftergoldimplanta- gold-ion implanted samples show factor of 2–3 smaller surface tion,andre-wettedwiththeelectrolyte)weremeasuredusingan resistance.Itisthisreducedsurfaceresistanceweproposetohar- LCRmeter(AgilentE4980APrecisionLCRMeter)connectedwith ness in order to improve the actuation ability of the conducting a tweezers like test fixture (Agilent 16334A). The actuator sam- polymeractuators.Theelectroderesistanceandcapacitanceofthe plesweresandwichedinthefixture.Theelectrodecapacitanceand sameactuatorsweremeasuredusingtheLCRmeterandarepro- resistanceweremeasuredusingaparallelequivalentcircuitmode vided in Table 2. These results indicate that while the electrode [24].Thesurfaceresistanceoftheactuatorsindifferentstateswas resistanceisdecreasing,theelectrodecapacitanceisincreasingfor measuredbyatwoprobemethod(theactuators’surfaceareawas thegoldimplantedsamples.Thesedataweremeasuredunderan toosmallforthefour-probemethod)usingadigitalmulti-meter AC voltage signal with amplitude of 1V and frequency of 20Hz (Keithley2000Multimeter). (theminimumthisLCRmetercanprovide).Withreferencetothe surfaceresistance,andelectroderesistanceandcapacitancemea- 5. Experimentalresultsanddiscussion surements,thegoldimplantationincreasestheconductivityand thecapacita nce ofth econducting polymera ctua tors. Anenvironmentalscanningelectronmicroscope(XL30,ESEM- Oneimplicationofincreasedcapacitanceistheincreasedblock- FEG, P hilips) was use d to gen erate the secondary electro n (SE) ingforc eormechan ica lworkout put,whicha re lim itedforthi sclass imag esandt heba cksca tte redelectr on( BSE)image softhec ross ofp olym er actuators.It was notpos sibleto m easuret he bloc king section soft heac tuators.TheSE andBSE image sofago ldi mpl anted fo rce,butto estimate th eme cha nicalwor ko utputfro mm easured actuator sa mp le(Sample 5) are sho wn inFig.4 .T h eim ageswere displa cem en tdataof sam plesloaded with 212mg atth eactuator takenaft erallex perimen tsw ere condu cte d. tips.Thegold- impla nt edsamp lesgene rated mor em ec hani calwork Wh enth e actuatorswer eimp lantedwithgoldions,a200(cid:2)m outp ut,a spresentedinS ection5. 4.Theelec trical powerconsu med wide stri p on every sid e wa s masked off to prev ent a n y sh ort- bythea ctu atorswith an dwitho utg old implantat ionare calculated 76 G.Alicietal./SensorsandActuatorsB157 (2011) 72–84 Table1 Surfaceresistancemeasurementsforvariousactuatorsamples.Atleast5measurementsweretakenforeachsideoftheactuators.Theaveragevaluesarepresentedhere. Pleasenotethattheelectrolyteevaporatesinthevacuumchamberoftheionimplantationsystem.Thatiswhythesamplesimmediatelyafterion-implantationaretermed ‘dry’,andthesesamplesarethensoakedintheelectrolytepriortotesting. Samples Surfaceresistance((cid:2)/square) Filledwith Dry-aftergold Soakedinthe Comments electrolyte(no. implantation electrolyte gold aftergold implantation) implantation Sample1 70.4 9.28 28.04 Thesamesamplewasusedfortheexperiments (15m m×3.2mm×0.17mm) Sample2 55.1 2.71 19.03 Thesamesamplewasusedfortheexperiments (18m m×3mm×0.17mm) Sample3 47.8 3.16 19.3 Thesamesamplewasusedfortheexperiments (12m m×4mm×0.17mm) Sample3New 40.3 5.1 16.04 Thesamesamplewasusedfortheexperiments (12mm ×3.8mm×0.17mm) Sample4 41 896.5 47.4 Nogoldimplantation.But,keptinthesame (11m m×3mm×0.17mm) vac uum chambertoge ther with th ene xtsample Sampl e4 41 381.35 32.6 Contact area(3m m×3mm )onl yis gold implanted (11m m×3mm×0.17mm) Sample5 78.37 85,000 248.6 Nogoldimplantation.But,keptinthesame (13m m×3mm×0.17mm) vac uum chambertoge ther with th ene xtsample Sample5 68.9 6.5 31.04 Wholesurfacewasgoldion-implanted (12m m×3mm×0.17mm) Table2 Electroderesistanceandcapacitancemeasurementsforvariousactuatorsamples. Samples Resistance((cid:2)),capacitance(nF) Filledwithelectrolyte Dry-aftergold Soakedinthe Comments (no.goldimplantation) implantation electrolyteaftergold implantation Sample1 1050(cid:2),110nF Nodata 40.51(cid:2),1050nF Thesamesamplewas (15m m×3.2mm×0.17mm) used forth e experiments Sample2 525(cid:2),90nF Nodata 45.8(cid:2),7000nF Thesamesamplewas (18m m×3mm×0.17mm) used forth e experiments Sample3 2100(cid:2),85nF Nodata 38.5(cid:2),18,615nF Thesamesamplewas (12m m×4mmx0.17mm) used forth e experiments Sample3new 520(cid:2),400nF Nodata 46(cid:2),10,270nF Thesamesamplewas (12mm ×3.8mm×0.17mm) used forth e experiments Sample4 85(cid:2),2680nF 3M(cid:2),267pF 150.6(cid:2),1600nF Nogoldimplantation. (11m m×3mm×0.17mm) But ,kep tinthesame vacuumchamber togetherwiththenext sample Sample4(11×3×0.17mm) 84(cid:2),2720nF 0.5M(cid:2),1430pF 41(cid:2),14,400nF Contactarea (3mm× 3mm)onlyis goldimplanted Sample5 95(cid:2),2600nF 8.0M(cid:2),90pF 191(cid:2),1050nF Nogoldimplantation. (13m m×3mm×0.17mm) But ,kep tinthesame vacuumchamber togetherwiththenext sample Sample5 78(cid:2),3830nF 5.5M(cid:2),102pF 36.9(cid:2),20,400nF Wholesurfacewas (13m m×3mm×0.17mm) goldio n-impla nted Table3 Electr ochemicaltimeconstantsoftwoactuatorsamplesexposedtothesamevacuumconditions(10−5mbar).TheaveragetimeconstantsofSamples4and5are[0.465s, 0.386s]and[0.36s,0.337s],respectively.TheaverageelectricalpowerconsumedbySamples4and5arealsocalculated. Inputvoltage Timeconstants(s)for Averagepower Timeconstants(s)for Averagepowerconsumedby Sample4[normal,with consumedbySample4 Sample5[normal,with Sample5(mW)[normal,withgold goldions] (mW) goldions] ions] 0.1V [0.4870,0.4160] [0.0087,0.0076] [0.3750,0.3590] [0.0139,0.0095] 0.2V [0.5610,0.4340] [0.0427,0.0391] [0.4330,0.3180] [0.0621,0.0548] 0.3V [0.5270,0.4200] [0.1013,0.0967] [0.4230,0.3470] [0.1513,0.1037] 0.4V [0.4640,0.3920] [0.2425,0.4581] [0.3390,0.2960] [0.2740,0.1972] 0.5V [0.4220,0.3960] [0.3958,0.2996] [0.3420,0.3390] [0.4611,0.3167] 0.6V [0.4010,0.3500] [0.5990,0.4536] [0.3350,0.3280] [0.6565,0.4923] 0.7V [0.4880,0.3470] [0.7676,0.6455] [0.3350,0.3700] [0.9999,0.6795] 0.8V [0.3730,0.3360] [1.1198,0.8823] [0.2940,0.3350] [1.3609,0.9601] G.Alicietal./SensorsandActuatorsB157 (2011) 72–84 77 Fig.5. Thetopviewofanactuatorsample(Sample1)underanopticalmicroscope.Thediagramontherightshowsthesurfaceareaimplantedwithgold.Eachgridunder theleftimageindicates1mm. andpresentedinTable3.Theseresultsshowthatthepowercon- As given in Table 3, the time constants vary with the input sumptionisreducedforthegoldimplantedsamplesduetotheir voltage,thoughnotsignificantly.Thisisexpectedastheoxidation improvedconductivity. levelorthechargeinjectionisinputvoltage-dependent.Thegold- implantedsampleshaveasmallertimeconstant,whichindicates ahigherresponsespeed. 5.1. Measurementofactuatortimeconstant Tofurtherdemonstratetheeffectofthegoldionimplantationon 5.2. Effectofionimplantationconditions(i.e.,vacuum)on theactuationabilityoftheactuators,theRCtimeconstantofthe currentresponse actuatorsamplesareidentifiedfromcurrentversustimecurves. Theformofthecurrent–timecurveissimilartothechargingcurve Samples1–3wereprepareddifferentlythansamples4and5. of a capacitor. The time constant to be identified from the cur- ForSample1,Sample2,Sample3,Sample3-New,eachsamplewas re nt curveindi cates how fasttheac tu ator ischarged unde rag iven test ed unde r a range o f input vo ltages (± 0.1–0.8 V w ith step s of pote ntiald ifference. The curr ent curveisd e scribedb y: ±0.1V anda pe riodo f8 0s),a ndwasth engold-io n impl anted in avacuumchamber.Thatistosay,theactuatorsampleswithout I=Imaxe−t/(cid:3) (1) g oldimpla ntationw ereno te xp osed toh ighvacu um,whic hcauses thesolventfromtheelectrolytetoevaporate.Aspresentedinthe where(cid:3)isthechargingtime(RC)constantoftheactuator.Itisthe nextparagraph,thevacuumintheionimplantaterleadstoa8–9% timecorrespondingto36.8%ofthepeakcurrent.Usingthisdefini- reductionoftheactuatorlength.Whentheactuatorsexposedto tionofthetimeconstantinFig.6,thetimeconstantoftheactuator thevacuumwerere-soakedintheelectrolyte,theyrecoveredtheir samplesunderarangeofstepinputvoltagesareestimatedfrom initialdimensions.Thesurfaceresistance,electroderesistance,and theexperimentalcurrentversustimecurves,andaredepictedin electrodecapacitanceofactuatorsexposedtovacuum(completely Table3.Typicalcurrentresponses,forexample,fromSample5with dry)weremeasuredtobeontheorderof2500(cid:2),4.0G(cid:2),and70fF, andwithoutgoldionimplantationareshowninFig.7.Thecurrent respectively. On the other hand, the actuator samples with gold flowduringtheelectrochemicalactuationisduetothechargetaken implantation,stilldry,havemorefavorableelectricalproperties, offorplacedintheprimarychainofthepolymertohavecharge asgiveninTables1and2. neutrality. To evaluate the effect of the vacuum on the time con- stant of the actuators, a new sample with the dimensions of 12mm × 3.8m m×0.17m m wa s tested before it w as kept in t he vac uum f ort hed u ratio n(∼ 20m inat10 −5mba r) used toim p lant gold in the actuator samples. Not only the time constant of the actuatorwasincreased,butalsothepeakcurrentwasdecreased, asshowninTable4,andinFig.8.Thisexperimentwasrepeated4 timestominimizemeasurementerrors. Table4 Electrochemicaltimeconstantsandpeakcurrentsofanactuatorsampleexposedto avacuum,andnotexposedtothevacuumunderstepinputswithaperiodof80s. Inputvoltage Timeconstants(s)[no Maximumcurrents vacuum,aftervacuum (mA)[novacuum,after (%)increase] vacuum,(%)decrease] 0.1V [0.5480,0.7090,29.38] [7.3371,6.1708,15.90] 0.3V [0.5430,0.6670,22.84] [14,19,23] 0.5V [0.5900,0.7150,21.19] [36.0031,31.7028, 11.94] 0.8V [0.6340,0.7410,16.88] [53.4027,47.3846, Fig.6. Definitionofelectrochemicaltimeconstantbasedonthecurrentresponse 11.27] oftheactuators. 78 G.Alicietal./SensorsandActuatorsB157 (2011) 72–84 Fig.7. Typicalcurrentresponses(topplots)forsample5withandwithoutgoldionimplantation–directlytakenfromthedataacquisitionsystem,underasquarewave inpu to f±0.6V (bottom plots)wit hap eriod of8 0s. 5.3. Effectofionimplantationonworkoutputofactuators From the top left image of Fig. 9, ı =2.8mm, and from i the top right image, ı =3.2mm. The mechanical stiffness of f Toquantifytheworkoutputoftheactuatorsamples,4cylindri- this sample (Sample 4) with a gold coating in the surface calpe rmanent mag nets withth ed ime nsionso f3mmin d iameter, area of 3m m×3mm (th e are a corres ponding to the area of 1mm in thickness, and a total mass of 212mg were attached to the electrical contacts) is 0.743N/m. The total work output th etip of eachactua tors a mple witho rw itho utg oldim plantatio n. is c alculated from Eq. (2) as Wo =25 .85(cid:2) J. From the bottom Theactuatorsmovementswererecordedwithadigitalcamerato left image, ı =5.636mm, and from the bottom right image i determinetheverticalmovementofthetipload.Theimagesfor ı =1mm.Usingthesedata,themechanicalstiffnessofthesample f theactuatorsamplesareprovidedinFig.9.Thetotalworkoutput with no gold implantation is 0.369N/m. The total work out- WoisthesumoftheelasticpotentialenergyVetobendtheloaded put for an actuator with no gold (Sample 4) is calculated as cantil ever eda ctu ato rfrom thestart position toth efina lpo sition, Wo =21 .93(cid:2) J, showi ng w ith a 15% decreas e in t he work o ut- andthegravitationalpotentialenergyVgtoliftthetiploadfromthe put. startpositiontothefinalpositionunderthegivenvoltageinput: For the work output of Sample 5 under 0.5V, from the top left image of Fig. 10, ı =2.67mm, and from the right image i 1 mg ı =2.89mm.ThemechanicalstiffnessofSample5withfullgold Wwhoe=re Vıe+is Vtghe=d2ekflıe2ct+io mngoıf, thek a=ctuıaitorunderthetiploadwh(e2n) aWcofnoad t=i fn2rg2o .m 5is1 t(cid:2)0h.Je 7. F0rr8iog5 mh Nt t/ihmme. abgToehtteıo m t=o t−leafl2 t. 8wim2oamr gkme oo.ufU tFpsiigun.t g1 i0st,h ıceias=le c5u .d6laa4tt7ae ,dm tmhaes, i f theactuatorsareinactivated.Themechanicalstiffnessconstantof mechanical stiffness of Sample 5 with no gold implantation is the actuators is ca lculated fro(cid:2)(cid:2)m (cid:2)(cid:2) Ho oke’s law—t he tip loa d is simp ly 0.335 N/m. T he total w or k output is calcu late d as W o= 8.22 (cid:2)J wi th dividedbythetipdeflection ı underthetiploadoffourmagnets. a63.5%decreaseintheworkoutput.Thisisasignificantworkout- i Fig.8. Theeffectoftheion-implantationconditionsonthecurrentresponseoftheactuators. G.Alicietal./SensorsandActuatorsB157 (2011) 72–84 79 Fig.9. Theactuator(Sample4)configurationunderatiploadat0V(left)and0.8V(right).Thetop2imagesareforthegoldimplantedsample,thebottomimagesare non-implanted. putdifferencebetweenagoldimplantedandnogoldimplanted ThedisplacementresponsesofSample5withandwithoutgold samples. implantationweregeneratedunder0.5Vtoevaluatethetimecon- ThisanalysisoftheexperimentaldataforSamples4and5shows stantofthiselectrochemomechanicalresponse.Theyareshownin thatthesamplesimplantedwithgoldionsgeneratemoremechan- Fig.12thatthegoldimplantedsampleshowedafasterresponse icalworkoutputthanthesamesampleswithoutgoldimplantation with a time constant of 1.58s, compared to the time constant under the same potential difference. Further, with reference to (2.20s)ofthebareSample5withoutgoldimplantation.Thisalso theelectricalpowerconsumedbythegoldimplantedsamplesin supports the conclusion that the gold implanted samples have a Table 3, this mechanical work output is generated with a lower higher response speed compared to the actuators without gold electricalpower.Thisfollowsthatthegoldionimplantationcon- implantation. tributestotheefficiencyoftheseactuators,whichiswellbelow As stated above, the gold implantation increases the stiffness 1%. of the actuators. This can be quantified by calculating the flexu- Tofurtherevaluatetheeffectofionimplantationconditionson ral rigidity of the actuators, which is a function of the modulus theworkoutputoftheactuators,theworkoutputoftheactuator ofelasticityandtheareamomentofinertia.Theareamomentof samplewiththecurrentresponsedatapresentedinTable4iscal- inertiaiscalculatedusingtheequivalentwidthapproach,inwhich culatedunder0.8V.FromthetopleftimageofFig.11,ı =7mm, thewidthsofthelayerswiththehighermodulusofelasticityare i andfromthetoprightimageı =3mm.Themechanicalstiffness expanded to bring the whole structure into a single material of f ofthisuntreated(notexposedtothegoldimplantationcondition) thelowermodulusofelasticity[28].Tomaintainthesameflexural actuatorsampleiscalculatedas0.297N/m.Thetotalworkoutputis rigidity,thewidthofthelayerwiththehighermodulusofelastic- calculate dfromE q .(2)asWo= 3 5.65(cid:2) J.Fro mth ebot tomle ftimag e ityisinc rea sedby n= E2/ E1,E2 >E1. Ith asbeen reported [2 9]that ofFig.11,ı =6.76mm,andfromtherightimageı =1.96mm.Using themoduliofelasticityofPPyandPVDFlayersforthebareactuator i f thesedata,themechanicalstiffnessofthesamesampleexposedto usedinthisstudyareapproximately190MPaand117MPa,respec- thegoldimplantationconditionsis0.3075N/m.Thetotalworkout- tively.Thisfollowsthatn=E /E =1.624,andthewidthofthe PPy PVDF put isca lculatedasWo =29.83(cid:2)J ,w hichis 16.3% less than thew ork PPylay ers, forexam ple, in S ample5,isi ncreas edby ‘n’ to4.87 2m m outputoftheuntreatedactuatorsample.Thisfollowsthatwhile (the original width is 3mm) for an actuator without any gold theionimplantationenhancestheworkoutputoftheactuators,it implantation.Thenewcross-sectionconsistingofasinglemate- stiffensthedevices,limitingactuationrangeforagivenvoltage. rialPVDFispresentedinFig.13.Similarly,fortheactuator(Sample 80 G.Alicietal./SensorsandActuatorsB157 (2011) 72–84 Fig.10. Theactuator(Sample5)configurationunderatiploadat0V(left)and0.5V(right).Thetop2imagesareforthegoldimplantedsample,thebottomimagesare non-implanted. 5) with the gold implantation, n¯ =E /E =675.214, where 5.4. Electrochemicalcharacterizationofgoldimplantedsamples Au PVDF E =79GPa.ThewidthoftheimplantedAulayersisincreasedby‘n¯’ Au to2025.6mm(theoriginalwidthis3mm)forthegoldimplanted Autolab PGSTAT12 Potentiostat/Galvanostat equipped with A actuators. The new cross section consisting of a single material, General Purpose Electrochemical System (GPES) software was whichisthePVDF,ispresentedintherightmostcross-sectionin employedtoformatwoelectrodecyclicvoltammetry,whichisa Fig.13. commonlyusedmeasurementtocharacterizetheelectrochemical For the bare actuator (Sample 5) with the dimensions of behaviour of the actuators. It is normally measured in a three- t =30 (cid:2)m, and t =110(cid:2)m and b¯ = b×n= 3× 1.624mm, the electrode set up. H owever, i n t hi s study, it is generat ed in a two 1 2 1 area m ome ntof iner tiai sca lculatedas I =9 0 4.0 2×10 −6m m4. electrode setup to look at th e ele ctroch em ic al behavio ur of the bare For the actuator with the gold implantation, the other dimen- actuators—thecounterandreferenceelectrodesareshort-circuited sion s a re the same exc ept t =29.9(cid:2)m a nd t = 100nm andconnected toonee lect rodeofthe actuators ,the workingelec- 1 gold (assumed value). The area moment of inertia is calculated as trodetotheotherelectrodeoftheactuators,likeshowninFig.3. I =382 7.6×10 −6mm 4.I >I ,w hi chexpla in sthestiffen ing TheC Vs cans ofsom eofthea ct uato rsamples inTa ble1ar es how n egfofledct ofthe go ldimplanta tgiooldn. Tbhairsei ncreas edaream om entiner- inFi g.1 4.The s cansw er ege nerated under−0 .8 Vto+ 0 .8V witha tiawillcreatesmallerbendingstress,whichfurtherdemonstrates rangeofscanrates(10,20,40,60,100mV/s). thestiffeningeffectofthegoldimplantation,asexpressedbythe WhentheshapeofaCVscanisclosetoarectangle,itindicatesa bendingstress(cid:4)calculatedfrom: capacitive behaviour. A rectangular-shaped CV is a typical char- acteristic of an ideal double-layer capacitor, which our actuator Mc structureandoperationprincipleresemble.AsshowninFig.14,the (cid:4)= (3) I ion-implantedactuatorsbehavelikeacapacitoroveralargevolt- agerange,especiallywhenthescanratesarelow.Thisindicates where the area moment of inertia I is for the new cross section, thattheactuatorscapacitivelystoremostoftheelectricalenergy. ‘c’isthehalfofthetotalthickness,andMistheinternalbending When the scan rates are higher >60mV/s, they show a resistive momentgeneratedduetotheelectrochemicalprocess.Becausethe behaviour—mostoftheelectricalenergyisdissipatedduetothe activelayersofbothactuatorsarethesame,theyareexpectedto electrolyteresistance,andthemovementofionsinandoutofthe generatethesameinternalbendingmomentunderthesameinput polymerlayers.Eachscanwasrepeatedatleast10times.Thegold voltage. implantedactuatorshaveshownrepeatablescans,almostnodevi- G.Alicietal./SensorsandActuatorsB157 (2011) 72–84 81 Fig.11. Configurationsofanactuatorsample(Sample4)withthedimensionsof12mm×3.8mm×0.17mmtoevaluatetheeffectofion-implantationconditionsonthe mechanicalworkoutput.Thetoptwoimagesareforthesamesamplewithnoexpositiontotheion-implantationconditions.Thebottomtwoareforthesamesample exposedtotheion-implantationconditionandthenre-wettedwiththeelectrolytebeforetesting.Whiletheleftimagesareinitialconfigurations,therightimagesarefor theactivatedconfigurations. Fig.12. DisplacementresponseofSample5with(leftplot)andwithout(rightplot)goldimplantationunder0.5V. Fig.13. Compositestructureofapolymeractuatoranditsequivalentcrosssectionusingequivalentwidthtechnique.Themechanicalpropertiesoftheequivalentsection withasinglematerialareequivalenttothatoftheoriginalmulti-materialstructure.

Description:
of actuation ability of ionic-type conducting polymer actuators using metal ion implantation chemical reaction causes a volume change in the polymer layers,
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.