ScienceoftheTotalEnvironment624(2018)1250–1262 ContentslistsavailableatScienceDirect Science of the Total Environment journal homepage: www.elsevier.com/locate/scitotenv Sensitivity analysis of temporal parameters in a dynamic LCA framework ⁎ AllanHayatoShimako,LigiaTiruta-Barna ,AnaBarbaraBisinelladeFaria, ArasAhmadi,MathieuSpérandio LISBP,UniversitédeToulouse,CNRS,INRA,INSA,135AvenuedeRangueil,F-31077Toulouse,France H I G H L I G H T S G R A P H I C A L A B S T R A C T • DynamicLCAframeworkinterconnects temporalinventoryanddynamicim- pactmodels. • Dynamicclimatechangeisnotsensitive toLCItimestepslowerthan1year. • Dynamic (eco)toxicity indicators are verysensitivetoLCItemporaldefinition. • Apredefinedtimehorizonhasnointer- est and relevance for dynamic LCA models. a r t i c l e i n f o a b s t r a c t Articlehistory: IncludingthetemporaldimensionintheLifeCycleAssessment(LCA)methodisaveryrecentresearchsubject.A Received26September2017 completeframeworkincludingdynamicLifeCycleInventory(LCI)anddynamicLifeCycleImpactAssessment Receivedinrevisedform19December2017 (LCIA)wasproposedwiththepossibilitytocalculatetemporaldeploymentofclimatechangeandecotoxicity/ Accepted19December2017 toxicityindicators.However,theinfluenceofdifferenttemporalparametersinvolvedinthenewdynamicmeth- Availableonline27December2017 odwasnotstillevaluated.Inthenewframework,LCIandLCIAresultsareobtainedasdiscretevaluesinfunction oftime(vectorsandmatrices).Theobjectiveofthisstudyistoevaluatetheinfluenceofthetemporalprofileof Editor:SimonPollard thedynamicLCIandcalculationtimespan(ortimehorizoninconventionalLCA)onthefinalLCAresults.Addi- Keywords: tionally,theinfluenceofthetimestepusedfortheimpactdynamicmodelresolutionwasanalysed.Therangeof Dynamiclifecycleassessment variationofthedifferenttimestepswasfrom0.5dayto1year.ThegraphicalrepresentationofthedynamicLCA Sensitivityanalysis resultsshownimportantfeaturessuchastheperiodintimeandtheintensityoftheworstorrelevantimpact Toxicity values.TheuseofafixedtimehorizonasinconventionalLCAdoesnotallowtheproperconsiderationofessential Climatechange informationespeciallyfortimeperiodsencompassingthelifetimeofthestudiedsystem.Regardingthedifferent timestepsizesusedforthedynamicLCIdefinition,theydidnothaveimportantinfluenceonthedynamicclimate changeresults.Atthecontrary,thedynamicecotoxicityandhumantoxicityimpactswerestronglyaffectedby thisparameter.Similarly,thetimestepforimpactdynamicmodelresolutionhadnoinfluenceonclimatechange calculation(stepsizeupto1yearwassupported),whilethetoxicitymodelresolutionrequiresadaptivetime stepdefinitionwithmaximumsizeof0.5day. ©2017ElsevierB.V.Allrightsreserved. 1.Introduction ⁎ Corresponding author at: INSA Toulouse, LISBP, 135 Av de Rangueil, F-31077 LifeCycleAssessment(LCA)isawidelyusedmethodologyforeval- Toulouse,France. E-mailaddress:[email protected](L.Tiruta-Barna). uating products and processes. LCA methodology consists of four https://doi.org/10.1016/j.scitotenv.2017.12.220 0048-9697/©2017ElsevierB.V.Allrightsreserved. A.H.Shimakoetal./ScienceoftheTotalEnvironment624(2018)1250–1262 1251 operationalsteps:thedefinitionofthegoalandscope,theconstruction thisquestion,asensitivityanalysiswasconductedonacasestudy:a oftheLifeCycleInventory(LCI)basedonmassandenergybalancesover wastewatertreatmentplantlifecycle.Thechoiceofthecasewasguid- thewholelifecycleofthesystem,theLifeCycleImpactAssessment edbythehightemporalvariabilityofthephysicalparametersinvolved (LCIA)basedonvariousimpactcalculationmodels,andtheinterpreta- intheprocess,leadingtoacomplexLCItemporalprofile. tionstep(ISO,2006a;ISO,2006b).Oneoftherecognizedlimitationsof theLCAmethodisthelackofatimedimensioninthedefinitionofboth 2.Methods theLCIandLCIAsteps(Finnvedenetal.,2009).Suchatimedimension hasonlyrecentlybeenintegratedintoLCAandlittleresearchiscurrent- 2.1.DynamicLCAframework lyinprogress. Beloin-Saint-Pierreetal.(2014)havedevelopedanapproachcalled 2.1.1.Globalframework EnhancedStructurePathAnalysisforconsideringtimeintheLCIstep. TheglobalframeworkfordynamicLCAispresentedinFig.1. Cherubinietal.(2011)haveperformedacalculationconsideringdy- First,SimaPro®LCAsoftwarewasusedforthetraditionalLCIresolu- namiccarbonremovalbythebiomass,whichisastepleadingupto tion.ThissoftwaredeliverstheLCIresultsinmatrixform:atechnological thecalculationoftheclimatechangeimpact,whileLevasseuretal. matrixandanenvironmentalinterventionmatrix(interventionsbycom- (2010)andKendall(2012)havestudiedthetimedependencyofcli- partmentsandprocesses).ThedynamicinventorymodelandtheDyPLCA matechangeimpactbycalculatingtemporalcharacterizationfactors software(webapplicationhttp://dyplca.univ-lehavre.fr/)startfromthe (CF) for substances and applying them to dynamic emissions. conventionalinventorymatrixtocreatetheprocessflownetworkasa Huijbregts et al. (2000a, 2000b, 2001), Hellweg et al. (2003) and graphstructureandthenaddstemporalparametersrelatedtoprocesses Lebaillyetal.(2014)havealsoproposedadjustmentsofconventional andsupplychains.Aftercomputationoftheinventorymodelonthe methodstoincludetemporalcharacteristicsinthetoxicitycategory.In graphstructureasafunctionoftime,thistooldeliversatimevector arecentstudy,Beloin-Saint-Pierreetal.(2017)proposedacomplete (days)andtheassociatedenvironmentalinterventionvector(specific frameworkforthecalculationofadynamicLCA.Tiruta-Barnaetal. units∙day−1,e.g.kg∙day−1).Besidesthetemporalparametersspecificto (2016)providedadynamicmethodforLCIinwhichtheytookthecom- theprocessesandsupplychains,thecomputationofadynamicinventory plexsupplychainandprocessespresentintheLCAsystemintoaccount. requiresspecificparametersforthenumericalmethods(Fig.1):timestep TheirmethodcanbelinkedtoaconventionalLCAdatabase,whichfacil- sizeofgraphresolutionandconsequentlythetimestepsizewithwhich itatesitsusebyLCApractitioners.Shimakoetal.(2016,2017)applied theLCIiscalculated(e.g.valuesofinventoryateach0.5day),backward thisdynamicLCImethodintwodifferentcasestudies,combiningit timelimit(thealgorithmwillstopwhenreachingaspecificvalueof withadynamicclimatechangemodelandadynamictoxicitymodel. Numerousparameterscaninfluencethetemporalprofileofadynamic time backwards), numerical precision of the results and threshold (lowerlimitofthemassflowvaluethatthealgorithmwillconsider). LCAresult.AtLCIlevel,thesearephysicalparametersdescribingthepro- Theresultofthedynamicinventory,i.e.environmentalinterven- cessandsupplychaindynamics,thetimescaleanditsgranulometry,and alsospecificparametersofthenumericalmethodsusedformodelresolu- tionsdistributedintime,isusedforthecalculationofdynamicclimate changeandtoxicityimpactcategories.HomemadePythonprograms tion.DynamicLCIAresultsaredeterminedbythechoiceoftheimpact weredevelopedwiththisaim.Forthecalculationofdynamicimpacts, models/submodels(i.e.staticordynamic)andtheirphysicalparameters, dataandphenomenologicaldynamicmodelswereimplemented:(i) alongwithnumericalmethodparameters. fromIPCC(IPCC,2013)forclimatechange,and(ii)fromtheUSEtox® Theprocessesandphenomenainvolvedinallthesemodelsarechar- 2model(Hauschildetal.,2008;Rosenbaumetal.,2008)fortoxicity acterizedbyverydifferentdynamicsandthusprioritizationofthemost influentparametersisanecessityinthedevelopmentofadynamicLCA categories. Theparametersrequiredforbothclimatechangeandtoxicity,inad- method. DyckhoffandKasah(2014)analysedtheinfluenceofatimehorizon ditiontospecificphenomenologicalparameters,arethetimespanfor theimpactscalculationandthetimestepsizeforthenumericalcalcula- inthecalculationofthedynamicglobalwarmingpotentialindicator.A tionandforresultsretrieval.Themaximumstepfortheordinarydiffer- comparisonbetweenthecumulativeandinstantaneousindicatorsdem- entialequations(ODE)solverusedtofindthemassbalanceinthe onstratedthatcontradictoryconclusionscouldbedrawnwhendifferent toxicitydynamicmodelmustalsobespecified. timehorizonswereusedincalculations.Thechoiceofatimehorizon Theprinciplesofthedynamicmodelsforclimatechangeandtoxicity dependsonthedecisionmakerandisbasedmoreonpolicythanonsci- entificconsiderations.Tothebestofourknowledge,otherimportant impactsarebrieflydescribedbelow. temporalparametershavenotbeenanalysedyet. Sensitivityanalysisisavaluabletooltoevaluatethecontributionof 2.1.2.Dynamicclimatechangemodel thetemporalinputstothedynamicresults.Thereisgeneralagreement Thedynamicclimatechangeimpactcategorywasevaluatedthrough thattheinputparametersofamodelaresensitiveintwodistinctman- twoindicators:radiativeforcingandglobalmeantemperaturechange. ners:(1)theuncertaintyassociatedwithaninputparameterwhichis Theatmosphericburden,B,isanimportantparameterinthemodelling propagatedinthemodelandcontributestotheuncertaintyoffinalre- s ofclimatechangepotential.Itcanbecalculatedastheconvolutionprod- sults,or(2)thestrongcorrelationbetweentheinputsandoutputs, uctbetweenthedynamicemissionofthesubstances,g (kg∙day−1) s suchthatasmallchangeintheinputleadstolargechangesintheout- andtheimpulseresponsefunctionofthatsubstance,IRF (Oliviéand s put(Hamby,1994).Itisthesecondaspectthat,atthisstageofdevelop- Peters,2013): mentofthedynamicapproachesinLCA,allowstheimportanceofthe temporalparameters'influenceontheLCAresultstobeidentified,and Z willfinallyhelpfurtherdevelopments. t Theobjectiveofthisworkistostudytheinfluenceoftemporalpa- BsðtÞ¼ gsðt0ÞIRFsðt−t0Þdt0 ð1Þ 0 rametersinvolvedinthedynamicLCAmethodologywearecurrently developing. The global dynamic LCA framework was developed by usingthedynamicinventorymethodproposedbyTiruta-Barnaetal. wheretandt′aretimescales.Radiativeforcingisdescribedastheprod- (2016)andthedynamicimpactassessmentproposedbyShimakoet uctbetweentheradiativeefficiency,A,andtheatmosphericburden,B. s s al.(2016)andShimakoetal.(2017).Oneoftheprimaryquestionsis For sufficiently small emissions and approximately constant back- howthedynamicLCIprofileandthedetailsoftheinventorytemporal groundconditions,theradiativeefficiencyA (W∙m−2∙kg−1)canbeap- s definitionwillinfluencethefinalLCAresults.Intheaimofanswering proximatedastime-invariant(Joosetal.,2013).Foremissionsstarting 1252 A.H.Shimakoetal./ScienceoftheTotalEnvironment624(2018)1250–1262 Fig.1.–ParametersneededforthedynamiclifecyclemodelinLCIandLCIAsteps. attimet wehave: allthesubstancesconcerned: 0 Z X nradiativeforcing;sðtÞ¼ tAsðtÞgsðt0ÞIRFsðt−t0Þdt0 ð2Þ ntemperatureðtÞ¼ s ntemperature;sðtÞ ð6Þ t0 Thedynamicglobalwarmingpotential(n (t)inW∙m−2) radiativeforcing 2.1.3.Dynamictoxicitymodel forallgasestakentogetheristhen: ThedynamictoxicityapproachwasdevelopedinShimakoetal. X nradiativeforcingðtÞ¼ nradiativeforcing;sðtÞ ð3Þ (to2x0i1c7it)yainmdpoacntlyisacbalrcieuflabtaecdkagsrotuhnedprisodpurecsteonfttehdebseulboswta.nTcreadmitaiosnsaalnlyd, s itscharacterizationfactor(CF).CFistheresultofcombinedmodelsfor substancefateinenvironment(fatefactor),exposureoforganismsto Then,theglobalwarmingpotentialforallgases(n in radiativeforcing W∙m−2∙day)overagiventimespanTHis: thehazardoussubstance(exposurefactor)andthenegativeeffectsof thesubstance(effectfactor).Thedynamicapproachreplacesthefate ZTH factorbyadynamicmodelofsubstancefatewhilekeepingtheexposure n ¼ n ðtÞdt ð4Þ andeffectfactorsfromtheconventionalapproach.Thefatemodelofa radiativeforcing radiativeforcing substanceintheenvironmentconsidersdistinctmechanisms,suchas t¼t0 thetransportbetweencompartments,reactionprocesses(e.g.degrada- tion),andremoval(immobilizationindifferentmedia).Themassbal- Thesecondindicator,i.e.globaltemperaturepotential,isdefinedas anceofasubstanceintheenvironmentisdescribedbyasystemof theconvolutionproductbetweentheradiativeforcingandthetemper- ODE(Mackay,2002): atureimpulseresponsefunction(OliviéandPeters,2013): ntemperature;sðtÞ¼Z t(cid:2)Z tAsðtÞgsðt0ÞIRFsðt−t0Þdt0(cid:3)IRFTðt−t0Þdt0 ð5Þ ddmts¼Ksmsþgs ð7Þ t0 t0 whereKisthesquarematrixofrateconstants(relatedtoremoval,deg- wheren istheglobaltemperaturepotentialforasubstance radationandtransportprocesses)ineachcompartmenti(day−1),mis temperature,s(t) sattimetandIRF isthetemperatureimpulseresponsefunction,which themassvectorofsubstancesintherespectiveenvironmentalcom- T isindependentofthetypeofGHG.Themeantemperaturechangeata partments(kg),gisthevectorofemissionflowsineachcompartment giventimet,n (t)(K),isobtainedbyaggregatingvaluesfor (kg∙day−1),andtistime. temperature A.H.Shimakoetal./ScienceoftheTotalEnvironment624(2018)1250–1262 1253 ThegenericdynamicfatemodelwasadaptedwiththeUSEtoxtoxic- interventionsintime.Thecasestudyallowedadetailedanalysisofthe itymodel(specificparameterspersubstanceandphenomenon,13en- influenceoftemporalparametersonthedynamicimpactresults. vironmentalcompartments;Jollietetal.,2006;Ligthartetal.,2004; McKoneetal.,2006).Bytheendofthecalculation,amassvector(13 2.2.1.Goalandscopedefinition valuescorrespondingtoeachcompartment)hadbeenobtainedfor AconventionalandadynamicLCAwereperformedandtheresults eachdiscretetimevalue.Forthetoxicityresults,followingthematrix were compared for the target impact categories: climate change, approachproposedbyRosenbaumetal.(2007),eachmassvectoris humantoxicityandecotoxicity.DeterminingthesensitivityoftheLCA multipliedbytheexposurematrix(XF)andeffectmatrix(EF): resultstotemporalparameterswasthemainobjectiveofthiswork. nhuman;sðtÞ¼msðtÞ(cid:2)XFhuman;s(cid:2)EFhuman;s ð8Þ reguTlhaetournyirtefjuenctcitoionnlimwaitss1fomrt3hoefowutalsetteewfflauteenrttr(ewaatetedrrdeisspcaercdtiendginthtoe theenvironment)andtheplantlifetimewastakenas30years. n (t)isthevectorthatrepresentshumantoxicity(cancerandnon- human,s cancer,cases∙day−1)foracertainsubstancesindifferentcompart- ments,atagiventimet. 2.2.2.LCI Fig.2showstheflowsheetoftheWWTPstudied.Itcomprisedapri- neco;sðtÞ¼msðtÞ(cid:2)XFeco;s(cid:2)EFhuman;s ð9Þ maryclarificationunit,2anoxictanksand3aerobictanks.Apostdeni- trificationzonewasalsoaddedtoachieveacceptableeffluentquality. neco,s(t)representstheecotoxicityexpressedin(PAF∙m3∙day)∙day−1, Nitratewasrecycledfromtheaerobictotheanoxiczone.Thesludge duetoanemissionintoaspecificcompartmentforacertainsubstance wasseparatedinasecondaryclarifier,whichwasalsopartlyawastage satagiventimet. flowredirectedtoathickener,andpartlyrecycledintheanoxiczone. Theresultfortheaggregationofallsubstancessandcompartments Theresultingsludgewassenttoincinerationandtheeffluentdiscarded i,foragiventimet,isobtainedby: intotheenvironment. XX WWTP unit processes involve a large number of biological and nhumanðtÞ¼ nhuman;s;iðtÞ ð10Þ chemicalreactionswithvariousdynamics.Modellingalltheprocesses s i wouldbeextensiveandtimeconsuming.Forthisreason,thedynamic XX simulationoftheWWTP(theforegroundprocessinLCA)wasper- necoðtÞ¼ neco;s;iðtÞ ð11Þ formedinSumo®software,awastewatertreatmentprocesssimulator s i thatincludesbiological,chemical,andphysicalprocesses.Thedatabase ecoinvent3.2wasusedforthebackgroundprocessessuchasthepro- Thecumulatedvalues,nhuman,cumul(cases)andneco,cumul(PAF∙m3∙day) ductionofrawmaterials,energyandinfrastructure. forhumantoxicityandecotoxicitycanthenbecalculated: Externalcarbon(methanol)wasrequiredtocompletethedenitrifi- cation,andironchloride(FeCl )wasaddedtochemicallyprecipitate ZTH 3 phosphorusinthesludge.Bothadditionswerealsonecessaryinorder nhuman;cumulðTHÞ¼ nhumanðtÞ ð12Þ tosatisfylegaldischargerequirementsfortheeffluent.Theuseofmeth- t¼t0 anolreleasescarbondioxide(CO2),apercentageofwhichoriginates fromafossilsourceandshouldbetakenintoaccountintheinventory. ZTH EmissionsofN OfromWWTPsareconsideredtobe0.5%ofnitrifiedam- 2 neco;cumulðTHÞ¼ necoðtÞ ð13Þ moniaflowsindynamicconditions(Czepieletal.,1995).Thevolume t¼t0 andcompositionofoff-gaswerecalculated(inSumo®software)using gas/liquidtransfermodels.Calculationswerebasedontransfercoeffi- wheret representsthetimeofthefirstemissionintotheenvironment cientsandconcentrationgradientswiththeatmosphere. 0 andTHisthetimespanforwhichthecumulatedimpactiscalculated. HeavymetalconcentrationsarenottakenintoaccountbySumo®as Itisworthnotingthatbothdynamicapproaches,climatechangeand thesemetalsareconsideredtobeinertforbiologicalprocesses.Their toxicity,provideimpactresultsatanypointintimeandareindepen- input concentrations in WWTPs were therefore taken from Doka dentofthenotionoftimehorizon–akeyandcontroversialconcept (2009)andHenzeandLedin(2001)andallocatedtoeffluentandsludge inconventionalLCA. inspecificquantities,usingthespecifictransfercoefficientsproposedby thesameauthors. 2.2.Casestudy Theelectricityconsumptionwascalculatedbytakingthesumofall requirements:aerationofaerobicandnitrificationtanksandthickener, Inthiswork,aconventionalwastewatertreatmentplant,WWTP, mechanicalmixingofanoxictanks,pumpingofmainlines(influent wasusedforacasestudy.Thereasonforthischoicewasthehighvari- input,dosingofchemicals,sludgeoutput,recirculationlines,andefflu- ability of treatment conditions, leading to variable environmental entoutput),scrapinganddewateringunit.Incinerationofthesludge Fig.2.SchemaoftheWWTPconsideredinthecasestudy. 1254 A.H.Shimakoetal./ScienceoftheTotalEnvironment624(2018)1250–1262 tookaccountofgas-emissionsintheformofCO ,andmetals(copper, 2.2.4.LCIA 2 leadandzinc). Theimpactcategorieschoseninthisstudyarethoseforwhichady- WWTPbasicinfrastructurewasincludedusingaclass2capacity namicapproachexists,aspresentedinSection2.1.TheIPCCclimate datasetfromecoinvent(whichincludesdismantling)andanannual changeandUSEtoxtoxicitymodelsarethebasisofthedynamicimpact sewagevolumeofapproximately1.4E7m3wasconsidered. modelsandwerealsousedinconventionalLCAappliedtothecase AllinventoryresultsarepresentedinSI,alongwiththeecoinvent understudy. referenceforeachflow. Acalculationtimespanof100yearswaschosenforbothdynamic impacts.InconventionalLCA,atimehorizonof100yearsiscommonly 2.2.3.DynamicLCI usedforclimatechangewhile,fortoxicitycategoriessteadystatecondi- TheflowrateandcompositionoftheinfluenttoaWWTPiscom- tionequivalenttoanindefinitetimehorizonisconsidered. monlysubjecttotimevariations,i.e.lowrateduringthenightand highrateduringtheday,weekendeffect,influenceofholidays,andsea- 2.3.Sensitivityanalysis sonaleffects(Gernaeyetal.,2011)(flowvariationspresentedinSI).In ordertoincludethesevariationsintheplantdynamicmodel,theinflu- Dynamicinventoryresultsrepresenttheemissionvariationsdueto entgeneratorofGernaeyetal.(2011)wasused.Thus,itwasconsidered thebehaviourofthesupplychainandprocesses.Moreover,dynamic thattheoperationoftheplantandtheinfluentitreceivedhadvariable impactassessmentisbasedonenvironmentalmodelsthatcanbesensi- andcyclicbehaviourwithaperiodof1year.Consequently,theinvento- tivetodifferenttimescales(days,months,years,decades,etc.).Oneof riesoftheforegroundprocesses(directemissionsofCO ,CH andN O themajorquestionssubsequenttoatimedependentapproachofLCA 2 4 2 by the plant; CO , N O, heavy metals and organic substances from concernstheextenttowhichthetemporalparametersinfluencethe 2 2 sludgetreatment)andofthesupplychain(ironchloride,methanol LCAresultsand,inparticular,howthetimegranulometryusedinthe andelectricityconsumption)werealsovariable.Thevariationsofemis- definitionofthedynamicflowswillaffectthetemporalprofileofthe sionsintheWWTPwerecalculatedwithSumo®fortheintervalofone calculatedimpacts. yearandtheresultswerereplicatedforeveryyearofitslifespan. Toinvestigatethis,theinfluenceofeachofthefollowingparameters Rawmaterials(methanol,ironchloride)wereconsideredtobesup- wasanalysed:i)thedetailofthetemporaldefinitionoftheinventory(a pliedevery2months(delayof60daysandproductionperiodof1day). processandsupplychaincharacteristic),ii)thecalculationtimespan Electricitywasconsideredtobesuppliedcontinuouslyduringthelife (timehorizoninconventionalLCA)forthedynamicimpactmethods, timeoftheWWTP.Thetimeconsideredfortheinfrastructureconstruc- iii)thetimestepsizeresolutionofthedynamicimpactmodels(includ- tion of the WWTP was 3 years for the processes of building and ingtheODEspecifications). 6months'delayfortheplantstartup.Thetemporalparametersused Forthisstudy,severalemissionsfromthesystem'slifecyclewerese- forthebackgroundprocessesareshowninSI.Thetemporalbehaviour lectedbasedonasignificantvariationintheirtemporalprofile,andalso ofthebackgroundenvironmentalinterventionswascalculatedwith basedontheirimportantcontributiontotheLCAresultsaspointedout theweb-toolDyPLCA(Tiruta-Barnaetal.,2016). bypreviousstudies(BisinelladeFariaetal.,2015;BisinelladeFariaet TheinventoryresultsobtainedwithSumoandDyPLCAareintheform al.,2016).Inthissense,CO ,CH andN Owereconsideredastheyare 2 4 2 ofdiscretevaluesintimeforapredefinedtimestepof0.5days.Thistime directemissionsfromtheWWTP,fromsludgeincinerationandfrom stepcorrespondstothesmallestdurationforasignificantvariationof theinfrastructureprocesses.Metalsemittedbysludgeincineration physicalparametersinvolvedintheWWTPoperation(variationofthein- (copper,zinc,lead,chromium,mercury)andinfrastructureprocesses fluentflowrateforinstance).Coarsertimegranulometriescanalsobe (mercury)wereanalysed,allofthembeingincludedintheUSEtoxda- used,forcapturingdaily,monthlyorseasonalvariations.Consequently, tabase. Phenomenological parameters inherent to the LCIA models additionaltimestepsizeswereanalysed:1day,1week,1month,1sea- hadalreadybeeninvestigatedforclimatechangeandtoxicityinother sonand1year.Thediscretevaluesoftheinitialdynamic inventory studies(IPCC,2013;Hendersonetal.,2011;Rosenbaumetal.,2011) werethusrecalculatedforeachtimegranulometry: andwerenotanalysedinthiswork. Severalapproachesexistforsensitivityanalysis,suchasvariancede- gsðtÞΔthigher ¼Δth1igher∑tn0þ¼mn−1gsðt0ÞΔtlowerΔtlower ð14Þ cseonmspitoivsiittyiomnse,tphaordtiawladseurisveadt,ivi.ees.tohreeeleffmecetnstoafryonelfyfeocntse.pAaorname-eatte-ar-wtimeree investigatedatatime.Thesensitivityindicatoristherelativedifference (cid:4) (cid:5) Δt betweentheimpactresultsofagivenscenario(withamodifiedparam- forn¼ t0;t0þm;t0þ2m;…;tfinal andm¼Δthigher eter)andthereferencescenario(referencevaluesforthetemporalpa- lower rameters),calculatedby: wheretisthediscretetimevalueforthenewtimescalegranulometry;t′ isthediscretetimevalueintheinitialLCItimescale(stepsizeof0.5days); relativedifferenceðtÞ¼nðtÞstep−nðtÞrsetefp ð16Þ sisthesubstancebeinganalysed,tfinalisthediscretetimeatwhichthelast nðtÞrsetefp emissionofthedynamicinventoryisreleased(day);g(t′)isthemass s flowvalueforaspecificsubstanceandforaspecifictimet′,whichisthe resultofthedynamicLCI(kg∙day−1),Δt isthetimestepusedfor wheren(t)stepistheimpactvalueattimetforthecalculationscenario lower withavariabletemporalparameter‘step’(e.g.LCItimestepsize),‘ref’ thecalculationofthedynamicLCI(i.e.0.5days),Δt isthenewtime higher indicatesthereferencecalculationscenariowithpredefinedvaluesfor steprequiredandt istheinitialtimeinthedynamicLCI. 0 thetemporalparameters(e.g.LCItimestepof1year). Inthisway,thesametotalquantityofasubstancecanbedifferently distributedintime(withdifferentgranulometries),leadingtodifferent 3.Resultsanddiscussion profilesofthedynamicLCI,g(t). s ConventionalLCIvalues,g (kg),canberetrievedbythetimein- s,total 3.1.InfluenceofthedynamicLCIprofileandthetimespanoftheimpact tegrationofthedynamicLCI: calculation Z gs;total¼ tfinalgsðtÞdt ð15Þ LCIresultsfordifferenttimestepsareavailableforallthesubstances t¼t0 selectedinthiswork.Themassbalancewasverifiedbycalculatingthe cumulatedinventoryg persubstance.Table1showsthatthevalues s,total A.H.Shimakoetal./ScienceoftheTotalEnvironment624(2018)1250–1262 1255 Table1 Fig.3.A,BandCshowtheimportantinfluenceofthevariationofemis- CumulatedLCIresultsforWWTPcasestudycalculatedwithdifferenttimestepsizes sionsduetothedifferenttemporalcharacteristicsoftheprocess.Onthe (0.5day,1day,1week,1month,1seasonand1year). otherhand,theprofileofemissionsrepresentedinthegraphics3.D,E Carbon Methane Dinitrogen Copper Lead Zinc Copper andFtendtoaconstantvaluearound3.3E-3kg∙day−1,representingal- dioxide monoxide moststeadystateconditions.Forthisreason,thecalculationscenario 0.5day 9.5E-02 2.1E-04 2.9E-06 2.0E-06 1.9E-06 1.1E-05 2.1E-08 withthetimestepof1yearwaschosenasthereferencecalculationsce- 1day 9.5E-02 2.1E-04 2.9E-06 2.0E-06 1.9E-06 1.1E-05 2.1E-08 nario(refinFormula16).Themaximumtimestepforwhichtheinvento- 1week 9.5E-02 2.1E-04 2.9E-06 2.0E-06 1.9E-06 1.1E-05 2.1E-08 ryvariationscanbeclearlydistinguishedisaweekforthiscasestudy.The 1month 9.5E-02 2.1E-04 2.9E-06 2.0E-06 1.9E-06 1.1E-05 2.1E-08 amplitudeoftheemissionsalsochange:thevaluesfortheemissionsin 1season 9.5E-02 2.1E-04 2.9E-06 2.0E-06 1.9E-06 1.1E-05 2.1E-08 1year 9.5E-02 2.1E-04 2.9E-06 2.0E-06 1.9E-06 1.1E-05 2.0E-08 Fig.3.Arangebetween0and0.06kg∙day−1whiletheyrangeonlybe- tween0.001and0.01kg∙day−1inFig.3.C. Lead Zinc Methylene Chloroform Chromium Mercury Fig.4showsthecomparisonbetweentheresultsfordynamicmean chloride III temperaturechangeandcumulatedradiativeforcing,calculatedwith 0.5day 2.0E-08 1.2E-07 7.9E-08 1.7E-07 3.3E-09 2.9E-11 differentinventorystepsizes(0.5day,1day,1week,1month,1season 1day 2.0E-08 1.2E-07 7.9E-08 1.7E-07 3.3E-09 2.9E-11 and1year)foratimespanof100years.Carbondioxide,methaneand 1week 2.0E-08 1.2E-07 7.9E-08 1.7E-07 3.3E-09 2.9E-11 dinitrogenmonoxidewereconsidered.Thestepsizeusedforthecalcu- 1month 2.0E-08 1.1E-07 7.9E-08 1.7E-07 3.3E-09 2.9E-11 1season 2.0E-08 1.2E-07 7.9E-08 1.7E-07 3.3E-09 2.9E-11 lationofthedynamicclimatechangeimpactwas0.5days. 1year 2.0E-08 1.1E-07 7.8E-08 1.7E-07 3.3E-09 2.9E-11 Nonoteworthydifferencecouldbeseenbetweenthecurvescorre- spondingtothedynamicmethod,highlightingthelowresponseofthe climatechangemodel(bothindicators)tothetemporalvariationsof donotpresentanygreatvariationwhenthestepsizeischanged.The emissionsatdailytomonthlylevels. calculationoftherelativedifferencebetweenthecumulatedvaluesfor Table2detailstherelativedifferencebetweenthevaluescalculated differentstepsizesandthereference(timestepsizeof1year)didnot withthedynamicmodelfordifferentLCItimestepsizesandthecase exceed 1%. These results are in accordance with the mass balance, whenstepsizewas1year.Thecaseofstepsizeof1yearisconsidered whichdoesnotchangewiththecalculationtimestep. asthereferencesincetheplantbehavesassteadystatesystemwith constantemissions.Thevaluesofdynamicimpactforbothclimate 3.1.1.Climatechangeresults changeindicatorswerecalculatedatyear100.Atthistimepoint,they Fig.3showsthedynamicLCIresultsfortheemissionofcarbondiox- didshowamarkeddifferencewhentheLCIstepsizewasmodified. ideinkg.day−1duringthelifecycleoftheWWTPstudied.Thedifferent Asexpected,thelowerthetimestepsize,thehighertherelativedif- graphicsofFig.3wereobtainedforLCItimestepsizesof0.5day,1day, ference (with respect to the steady state emission) in the climate 1week,1month,1seasonand1year. changeresults.However,theseresultsshowthatthedynamicmodel Fig.3.CO2emissionbythelifecyclesystemofaWWTP.Dynamicinventoryfordifferenttimestepsizes(A-0.5day,B-1day,C-1week,D-1month,E-1seasonandF-1year).Zoomon theyearbetween0and0.5forA,BandC. 1256 A.H.Shimakoetal./ScienceoftheTotalEnvironment624(2018)1250–1262 Fig.4.–MeantemperaturechangeandcumulatedradiativeforcingforthecasestudyoftheWWTP,calculatedforatimespanof100years.DynamicLCIinventorystepsizesanalysed: 0.5day,1day,1week,1month,1seasonand1year.Resultsforconventionalmethods:cLCAcurve. Table2 morepracticalandeasiertoobtain,andrequireslesscomputational Relativedifferenceofmeantemperaturechangeandcumulatedradiativeforcingfora workandtime. timespanof100years.ThereferenceisthecaseofLCItimestepsizeof1year.LCItimestep RegardingtheconventionalmeantemperaturechangeinFig.4(left sizesof0.5day,1day,1week,1monthand1seasonwereanalysed. side),thismethodconsidersthatalltheemissionoccursattimezero. Substance RelativedifferenceofΔTresultsatyear100(K) Themaximumvalueformeantemperaturechangeishigherforthecon- 0.5day 1day 1week 1month 1season ventional method than for the dynamic method. The conventional Carbondioxide −1.2% −1.2% −1.2% −1.1% −0.8% methodgivesamaximumvalueof7.8E-17Kanditisreachedbyyear Methane −0.6% −0.6% −0.5% −0.4% −0.3% 16.Forthedynamicmethod,themaximumvalueis7.4E-17Kbyyear Dinitrogenmonoxide −1.1% −1.1% −1.1% −1.0% −0.8% 37.Theresultobtainedatyear100issimilarforbothmethods,present- Allsubstances −1.2% −1.2% −1.2% −1.1% −0.8% ingavalueofaround5.5E-17K.Thecumulatedradiativeforcingisthe impactindicatorintheconventionalclimatechangeimpactmethod. Substance Relativedifferenceofcumulatedradiativeforcingresults at100years(W∙m−2∙day) In Fig. 4 (right), the values attained at year 100 are around 8.5E- 15W∙m−2∙dayforthedynamicmethodand9.6E-15W∙m−2∙dayfor 0.5day 1day 1week 1month 1season theconventionalmethod.Thedifferencebetweendynamicandconven- Carbondioxide −1.6% −1.6% −1.5% −1.4% −1.1% tionalresultsisalmostconstantduringthewholecalculationperiod, Methane −1.2% −1.2% −1.1% −1.0% −0.8% showingthattheconventionalcalculationoverestimatestheimpact Dinitrogenmonoxide −1.5% −1.6% −1.5% −1.5% −1.1% Allsubstances −1.3% −1.3% −1.3% −1.3% −0.9% fromthebeginning. Table3showsthemeantemperaturechangeandcumulatedradia- tive forcing values for the WWTP case study at a time span of isnotsignificantlysensitivetothetimestepsizeofLCI(atleastforthe 100years.Italsoshowstherelativedifferencebetweendynamicand presentcasestudyandsimilarsystems)atanytime.Thisallowsahigher conventionalvaluesinparentheses.Consideringthemeantemperature timestepsizetobeusedinthedynamicinventorycalculation,whichis change for a time span (or time horizon) of 100 years, methane Table3 Dynamicandconventionalclimatechange(cLCA)values(meantemperaturechangeandcumulatedradiativeforcing)foratimespanof100years.Inparenthesesaretherelativediffer- encesbetweenconventionalanddynamicvalues. Substance MeanΔTvalueatyear100(K) Dynamicinventorystepsize cLCA 0.5day 1day 1week 1month 1season 1year Carbondioxide 5.3E-17 5.3E-17 5.3E-17 5.4E-17 5.4E-17 5.4E-17 5.2E-17 (2.3%) (2.3%) (2.4%) (2.5%) (2.8%) (3.6%) Methane 5.7E-19 5.7E-19 5.7E-19 5.7E-19 5.7E-19 5.8E-19 4.8E-19 (19.3%) (19.3%) (19.4%) (19.6%) (19.6%) (20.0%) Dinitrogenmonoxide 4.1E-19 4.1E-19 4.1E-19 4.1E-19 4.1E-19 4.1E-19 3.7E-19 (9.3%) (9.3%) (9.3%) (9.4%) (9.7%) (10.5%) Allsubstances 5.4E-17 5.4E-17 5.4E-17 5.4E-17 5.5E-17 5.5E-17 5.3E-17 (2.5%) (2.5%) (2.6%) (2.7%) (3.0%) (3.8%) Cumulatedradiativeforcingat100years(W∙m−2∙day) 0.5day 1day 1week 1month 1season 1year cLCA Carbondioxide 7.7E-15 7.7E-15 7.7E-15 7.7E-15 7.7E-15 7.8E-15 8.8E-15 (−12.0%) (−12.0%) (−12.0%) (−11.9%) (−11.6%) (−10.6%) Methane 5.3E-16 5.3E-16 5.3E-16 5.3E-16 5.3E-16 5.4E-16 5.4E-16 (−0.6%) (−0.6%) (−0.5%) (−0.4%) (−0.2%) (−0.6%) Dinitrogenmonoxide 6.3E-17 6.3E-17 6.3E-17 6.4E-17 6.4E-17 6.4E-17 7.1E-17 (−10.8%) (−10.9%) (−10.8%) (−10.7%) (−10.5%) (−9.4%) Allsubstances 8.5E-15 8.5E-15 8.5E-15 8.5E-15 8.5E-15 8.6E-15 9.4E-15 (−9.3%) (−9.3%) (−9.3%) (−9.3%) (−8.9%) (−8.1%) A.H.Shimakoetal./ScienceoftheTotalEnvironment624(2018)1250–1262 1257 Fig.5.–Meantemperaturechangeandcumulatedradiativeforcingformethanecalculatedforatimespanof100years.DynamicLCIinventorystepsizesanalysed:0.5day,1day,1week, 1month,1seasonand1year.Resultsforconventionalmethod:cLCAcurve. presentedalargedifference,ofabout20%,betweentheconventional explainedbythefactthatCO isthemajorGHGinthiscasestudy.Obvi- 2 anddynamicresults.Ontheotherhand,therelativedifferencebetween ouslythisbehaviourcannotbegeneralized. theconventionalanddynamicmeantemperaturechangevaluesforcar- Inordertofleshouttheresultsobservedabove,Fig.5showsthere- bondioxidewasquitesmall,about3%. sultsobtainedformethanewiththesamecalculationconditionsasfor Consideringthecomparisonbetweenthedynamicandconventional Fig.4.Heretoo,noimportantdifferencecanbeseenbetweenthecurves cumulativeradiativeforcing,thereisalmostnodifferenceforthemeth- obtainedforvariousinventorytimestepsizes.Themaximumvaluefor aneresults.Ontheotherhand,dinitrogenmonoxideandcarbondioxide meantemperaturechangeishigherfortheconventionalmethodthan presentlargedifferences.The globalcumulatedradiativeforcingis forthedynamicmethod.Ithasavalueof1.2E-17K,whichisreached higherinconventionalLCAthaninthedynamicapproach,whichsig- byyear10.Forthedynamicmethod,themaximumvalueis9.5E-18K nifiesthat,foratimehorizonof100years,conventionalLCAoveresti- byyear30.Bothcurvestendtowardsalowlimitasmethanehasalim- matestheclimatechangeimpact. itedlifetimeintheatmosphereandistransformedintoCO . 2 Table3alsopointsoutthatthevaluesobtainedforallsubstances Figs.4and5clearlyshowthattheeffectsintermsofmeantemper- takentogetherareveryclosetothevaluesobtainedforCO ,whichis aturechangeandcumulatedradiativeforcinghaveamplitudesand 2 Fig.6.–ChloroformemissionbythelifecyclesystemofaWWTP.Thedynamicinventorywascalculatedfordifferenttimestepsizes(A-0.5day,B-1day,C-1week,D-1month,E-1 seasonandF-1year)andzoomsarepresentedforthetimebetween0and0.5yearsinA,BandC. 1258 A.H.Shimakoetal./ScienceoftheTotalEnvironment624(2018)1250–1262 positionsonthetimescalethatdependontheGHGemissionduration maximum amplitude of the emissions is observed for the smallest andtimeposition,andonthelifetimeofeachGHG.Inconventional time step (0.5 days) in Fig. 6.A. It ranges between 4E-9 and 1.8E- LCA,allinformationrelatedtothetimeoccurrenceofthe(worst)ef- 8kg.day−1. fects,atthehumantimescaleofabout100years,islostbythezero Figs.7and8showtheresultsforthecurrentecotoxicity,n (t),and eco timepointemissionononehand,andbyanarbitrarilychosentimeho- humantoxicity,n (t),calculatedover100yearswiththedynamic human rizonontheother.Forindustrialprocesseswithlifetimesofabout20– approach. 30years,atimehorizonof100years(oranyotherfixedvalue)isnot InFig.7currenthumantoxicityandecotoxicitywerecalculatedsep- suitable.Instead,dynamicmethodsofferthepossibilityofmonitoring aratelyfororganic(nonpersistent)compoundsandinorganic(persis- theclimatechangeindicatorsovertime. tent)substances.Theoriginofthedifferentbehavioursobservedfor thesetwogroupsofsubstanceswaspreviouslydiscussed(Shimakoet 3.1.2.Toxicityresults al.,2017).Fig.7wasobtainedbysimulationsusingatimestepsizeof Fig.6showsthedynamicLCIresultsfortheemissionofchloroform 1dayforthetemporalLCIdefinition.Aschloroformisthemajorcontrib- inkg∙day−1duringthelifecycleoftheWWTPstudied.Thedifferent utor,theresultsingraphicsAaredominatedbychloroform'sbehaviour. graphics of Fig. 6 were obtained for step sizes of 0.5 day, 1 day, Thetoxicitytemporalprofilefollowstheemissionprofile(Fig.6–B: 1week,1month,1seasonand1year. timestep1day)intermsofperiodicityandregularityofamplitudes. Chloroformemissionwasdirectlylinkedtotheeffluentflow,which Overall,inorganicsubstances(Fig.7–B)seemedtodominatethere- presentsseasonaleffectsduringtheyear.Amongtheorganiccompound sults,thetoxicityvaluesbeingofseveralordersofmagnitudehigher released, chloroform had the major influence on the toxicity. The thanthoseoforganics. Fig.7.Currenttoxicity(cancer:graphicsII,non-cancer:graphicsIII)andecotoxicity(graphicsI).Calculationforallorganicsubstances:graphicsA(leftsideofthefigure),andforall inorganicsubstances:graphicsB(rightsideofthefigure). A.H.Shimakoetal./ScienceoftheTotalEnvironment624(2018)1250–1262 1259 Amoredetailedanalysiswasperformedontheglobalresultsobtain- edforallsubstancesselectedforthecasestudy.InFig.8differenttime stepsizes(0.5day,1day,1week,1month,1seasonand1year)were usedinthecalculationofthedynamicinventory,whichwastheinput tothedynamictoxicitymodel.Thetimestepsizeusedtoretrievetoxic- ityresults(fromthetoxicitymodelcalculation)wasthelowestonein- vestigated,i.e.0.5day. Ecotoxicityresultspresentslightdifferencesbetweentheampli- tudesandtemporalprofileoftheimpactscalculatedwithdifferent stepsizes.Thedifferenceofamplitudesismuchgreaterforbothcancer andnon-cancerhumantoxicityresults.Theobserveddifferencesofam- plitudesandtemporalprofilesinthedynamictoxicityresultsarethedi- rectreflectionofthesubstanceemissionbehaviourofthelifecycle systemandthusofthedynamicLCI.Thisaspecthasalreadybeenpoint- edoutbyShimakoetal.(2017). Fig.9showstherelativedifferencebetweentheresultsfordynamic toxicity(allsubstances)calculatedwithdifferentstepsizescompared Fig.9.Relativedifferenceforcurrentecotoxicity(A),humancancertoxicity(B)and humannon-cancertoxicity(C),calculatedwiththedynamicapproachforatimespanof 100years.Referencestepsize=1year.Stepsizesanalysed:0.5day,1day,1week, 1monthand1season. withthereferenceresult(stepsizeof1year).Themostspectaculardif- ferencesareobservedforhumantoxicity.Theprofilescalculatedfor0.5 and1daypresentsignificantlyhigheramplitudesthanthoseobtained withothertimestepsizes.Therelativedifferenceforecotoxicityis muchsmaller.Twodistincthighamplitudeswereobtained,oneby year0andtheotherbyyear30butthisis,infact,anartefactattributable tothenumericalintegrationmethod(Eq.14). Table 4 shows the results of dynamic cumulated toxicity at 100years,andtherelativedifferencewithrespecttotheconventional LCAresults.Inapreviousstudy(Shimakoetal.,2017),itwasdemon- stratedthattoxicityimpactsduetonon-persistent(organic)andpersis- tent(mostlyinorganic)substanceshadverydifferenttemporalprofiles. Forthatreason,inthepresentwork,calculationswereperformedcon- sideringallsubstances,oronlyorganicsubstances,oronlyinorganic substances. DifferencesbetweenthedynamicapproachandconventionalLCA areverysignificantfor“allsubstances”and“inorganicsubstances”, Fig.8.-Ecotoxicity(A),humancancertoxicity(B)andhumannon-cancertoxicity(C)for thecasestudy(allsubstances)calculatedover100years,fordifferenttimestepsizesinthe reaching85%inthehumancancertoxicitycategory.Incontrast,relative LCI. differencesareinsignificantfor“organicsubstances”atthechosentime