ebook img

Sensitivities to PDFs in parton shower MC generator reweighting and tuning PDF

1 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Sensitivities to PDFs in parton shower MC generator reweighting and tuning

MCnet-16-02 GLA-PPE-2016-01 Sensitivities to PDFs in parton shower MC generator reweighting and tuning Andy Buckley SchoolofPhysics&Astronomy,GlasgowUniversity,UK 6 1 0 March 8, 2016 2 r EvaluatingpartondensitysystematicuncertaintiesinMonteCarloeventgeneratorpredictions a M has long been achieved by reweighting between the original and systematic PDFs for the initial state configurations of the individual simulated events. This weighting is now pre- 6 emptivelyperformedinmanygenerators,providingconvenientweightfactorsforPDFand ] scale systematics – including for NLO calculations where counterterms make the weight h calculationcomplex.Thisnoteattemptsapedagogicaldiscussionandempiricalstudyofthe p - consequencesofneglectingtheeffectsofPDFvariationsonthebeyond-fixed-ordercomponents p ofMCmodels,andtheimplicationsforpartonshower&MPItuningstrategies.Weconfirm e h that the effects are usually small, for well-understood reasons, and discuss the connected [ issueofconsistenttreatmentofthestrongcouplingbetweenPDFsandpartonshowers,where 2 motivationsfromphysicalprinciplesandtheneedforgooddata-descriptionarenotalways v well-aligned. 9 2 2 4 0 . Introduction 1 0 6 PartonshowerMonteCarlo(MC)eventgeneratorsareakeytoolformodellingofcolliderevents 1 v: beyondfixedperturbativeorder,andinparticularforproducingsimulatedfullyexclusiveevents i X whichcloselyresemblethosefoundinreal-worldcolliderexperiments.TheleadingshowerMCs r includenon-perturbativeeffectsandcomplexphase-spaceeffectsnotavailableto,forexample, a analyticresummationcalculations. Thepriceofsuchrealismistheadditionoffreeparameterswhichmustbetunedtodata,an expensive process in both computational and manpower terms. A cottage industry between shower MC developers and collider experiments has grown up around this problem [1], and severalgenerationsoftunes,particularlyfor the PYTHIA showerMCfamily,haveevolvedfrom theLEPand Tevatron erasuptothepresentpointearlyintothe secondrunoftheLargeHadron Collider(LHC)[2,3]. The last ten years of developments in shower MC technology have led to fully exclusive eventgenerationinwhichthepartonshower(PS),andusuallyalsonon-perturbativemodelling March8,2016 aspectssuchashadronizationandmultiplepartonicinteractions(MPI),aresmoothlymatchedto matrixelement(ME)calculationssignificantlyimprovedovertheleading-orderBornlevel.These include both “multi-leg LO”, exemplified by the Alpgen [4], MadGraph [5], and Sherpa1 [6] codes, the “single-emission NLO” codes such as POWHEG [7] and (a)MC@NLO [8, 9], and thelatestgenerationinwhichbothmodesarecombinedintoshower-matchedmulti-legNLO: Sherpa2andMadGraph5-aMC@NLO[10]. Thiscomputationalfrontierdoesnotcomewithoutdownsides:theintegrationandefficient sampling of many-leg phase space is slow, as is the computation, integration and subtraction of the matrix element terms required for finite NLO calculations. The major benefit of NLO calculationsinparticularistheexpectedrobustnessoftotalcross-sectionsandmanydifferential quantities,tobeexplicitlyconfirmedbyconstructingenvelopesforvariationofrenormalization &factorization scales,andparton densityfunctions(PDFs) inthecalculations. Thehigh CPU cost of thestate-of-the-art calculations means thatexplicit consistent re-running of the shower- matched simulation for allPDF andscale variationsis unfeasible:instead, internalconstruction ofpre-showereventweightsforeachsystematicvariationhasbecomethestandardapproach1. Whilecomputationallynecessary,thisapproachneglectstheeffectofthesesystematicvaria- tionsonthetunedcomponentsofthesimulation;inparticularthepartonshower(whichna¨ıvely should be configured consistently with the PDF and scale choices of the matrix element) and the MPI model (which is not connected to the hard scattering by perturbative QCD, but does displaysignificantPDFdependence). The same issues apply to shower MC tuning, for LO as well as NLO simulations: strictly a differenttuneshouldbeconstructedandusedforeachmatrixelementPDFandscalevariation, butagain thisis computationallyimpractical anda singleshower MCtune tendsto beused for allmatrixelementvariations. Evaluatingtherationaleandempiricalsupportforthisfactorizedapproach,withparticular respect to PDF variations, is the topic of this brief note. This is neither novel ground nor particularlysurprising,butsinceareviewofavailableliteraturefindssurprisinglylittlematerial onthetopicitishopedthatthissurveymakesausefulcontribution. 1 PDF dependence of parton showers We willspendmostofthis studyconsideringtheeffectofPDF variationsoninitial-stateparton shower algorithms, producing initial-state radiation (ISR). The typical ISR algorithm evolves backwardsfromthehardprocess’incominglegstowardstheinitialstatehadrons,andproduces only a few splittings per event as contrasted with the hundreds of branchings in the typical 1ConstructionofPDFreweightingfactorsismorecomplicatedatNLO,duetotheneedforsubtractioncounter- termswithdifferentinitiatingpartonflavoursandkinematics.Theweightcomputationishencedoneinsidethe NLOmatchinggeneratorratherthanbyposthocconstructionofsinglePDFratiosasforLOevents. 2 final-stateradiation(FSR)simulation.Thesefew branchings,however,areusuallyhigh-energy compared to the FSR splittings which produce internal structure, and they are the dominant mechanism by which the collinear parton shower formalism can produce additional isolated jets – albeit at a rate usually less than in data and in dedicated higher-order matrix element calculations. AsthematrixelementcalculationincludesPDFfactorsinitspartonichardprocessamplitudes, QCDevolutionoftheinitiatingpartonlegsmustcorrectthosePDFfactorsforthechangesinini- tialpartonflavourandBjo¨rkenmomentumfractionproducedbythesequentialISRbranchings, aswellastheusualstrongcouplingandsplittingfunctiontermsofaFSRshowersplitting.The ISRSudakovformfactor(theprobabilityofnoQCDsplittinginevolutionofapartonbetween scales q and Q ishence (cid:40) (cid:41) ∆ISR(q2,Q2;x) exp ∑(cid:90) Q2dq˜2 (cid:90) 1−q20/q˜2dz αS(q˜2) x(cid:48)fb(x(cid:48),q˜2) P (z,q˜2) (1) b ∼ − q2 q˜2 q2/q˜2 2π xfa(x,q˜2) ba b 0 (cid:124) (cid:123)(cid:122) (cid:125) PDFterms forshowercutoffscale q 1 GeV,splittingfunction P going(backwards)frominitialparton 0 ba ∼ flavour a to b,andthePDF xf termsasindicatedfor x and x = x/z momentumfractionsonthe i (cid:48) originalandnewinitialsplittingsrespectively. The key feature of eq. (1) from our perspective is that the PDFs enter the (non-)splitting probabilityinaratiobetweenthesamePDFattwomomentumfractions x and x = x/z.Hence (cid:48) a change in hard process PDF which is unmatched by the same change to the ISR PDF will introducedeviations proportionalto thedoubleratioofthe twodifferent PDFsbetween thetwo xs. As we shall demonstrate empirically, this double ratio is a more stable quantity than the bare ratio of two PDFs and hence the effects are not as large as a pure change of PDFs in the hard process matrix element. Of course, the PDF effect on a single Sudakov is not the effect onthewholeevent,sincethesplittingisiterated,butthefactthatISRevolutiontypicallyonly introduces one or two initial-state splittings per incoming parton means that this effect is not large–andbyconstructionitislimitedtotheproductionratesandkinematicsofsubleadingjets notmodelledbythehardprocess. TheeffectofPDFsystematicsand α variationsonISRSudakovfactorswasstudiedadecade S ago[11],concludingthattheeffectsofPDFuncertaintiesaresmallcomparedtoothersourcesof uncertainty,exceptincertainisolatedhigh-andlow-x regionswherePDFsareunconstrained andtheiruncertaintiesinflate.Inthesectionsthatfollow,weshallreprisethespiritofthatstudy withnewPDFfits,andfocusonthePDF(double)ratiosenteringtheSudakovterms. 3 RatiosofPDFxvaluesusedinPythia8ISRevolution s) nit 104 u y ar arbitr 103 ( e at R 102 101 1 1 101 102 103 104 105 xmother/xdaughter Figure1:Distributionof x ratiosbetweenparentanddaughterpartonsinPythia8initial-state partonshowerevolution. 1.1 PDFs between shower splittings InFigure1weshowthedistributionof x ratiosbetweeninitialstateshowersplittingsinPythia8 dijetsimulation.Itcanbeseenthatthesetaketheformofapowerlaw,withmostsplittingsclose together.To achieve abalance between the close-togethersplittings at the low-scaleend of the spectrum and the larger gaps between hard emissions, and to avoid a proliferation of similar plots,inthissectionwewillusean x ratioof1/2(equivalentto2accordingtothedefinitionin Figure1). Ratioconstructionswith afactor of10produced verysimilarresults, whicharehence elidedintheinterestsofbrevity. First,welookatthedifferencesbetweenthelatestleadingorder(LO)andnext-to-leadingorder (NLO) PDFs from the three major global fit collaborations: CTEQ [12], MMHT [13] (the latest incarnationoftheMRST/MSTW group),andNNPDF[14,15].TheseareshowninFigures2 and3forgluonPDFs xf andthesumoflight(anti)quarkPDFs ∑ xf asfunctionsof x at g i light i ∈ severalscales fromthesemi-soft tothevery hard2.These plotsweremade usingtheLHAPDF6 partondensitylibrary[16]. We see that the overall scale of deviations between PDF fits are relatively small – on these logarithmicscalestheyareonlyreallyvisibleatverylowvaluesof x,wheretheMMHTPDFsin particulartendtohavehighersea contributions forbothquarksandgluons,andforthehigh-x 2AddinglightquarkPDFstogetherforpresentationasasinglelineisimplicitlyaprobabilisticinterpretation, andhencenotstrictlyvalidbeyondLO.However,itisusefulheresincenegativePDFvaluesonlyappearin restrictedregionsofphasespace,andbecauseaLOinterpretationispreciselyhowtheyareusedinparton showersplittingandMPImodels. 4         ,()xfxQ  CTEQ6L1Q=GeV ,()xfxQ  CT10nloQ=GeV − MNNMPHDTF1243loloQQ==GGeeVV − MNNMPHDTF1340nnloloQQ==GGeeVV −−−− CMNCMNTTNNMMEEPPHHQQDDTT66FF−11LL22441133lloollQQooQQ==QQ====××××××−GGeeGGGGVVeeeeVVVV x− − −  −−−− CMNCMNTTNNMM11PPHH00DDnnTT−FFll11oo334400QQnnnnll==oollooQQQQ××====××−××GGeeVVGGGGeeeeVVVV x− − −  ............................ ............................ Figure2:ComparinggluonPDFsfromCTEQ,MMHT,andNNPDFatLO(left)andNLO(right).       )Q  )Q  ,(xfx− CTEQ6L1Q=GeV ,(xfx− CT10nloQ=GeV MMHT14loQ=GeV MMHT14nloQ=GeV NNPDF23loQ=GeV NNPDF30nloQ=GeV − CMTMEHQT61L41loQQ==×GeGVeV − CMTM1H0nTl1o4Qnl=oQ×=GeVGeV NNPDF23loQ=×GeV NNPDF30nloQ=×GeV − CMTMEHQT61L41loQQ==××GeGVeV − CMTM1H0nTl1o4Qnl=oQ×=×GeVGeV NNPDF23loQ=×GeV NNPDF30nloQ=×GeV −− − ×− − − −  −− − −× − − −  x x ........................... ........................... Figure3:ComparingsummedlightquarkPDFsfromCTEQ,MMHT,andNNPDFatLO(left) andNLO(right). gluonwheretheCTEQPDFsinparticulartendtobeatoddswiththeothertwofamiliesatboth LOandNLO. WenowlookattheratiosofeachofthesePDFsbetweendifferentemissionscales,i.e.thePDF ratiotermwithdifferent x valuesonnumeratoranddenominatorwhichappearsineq.(1).We definethisratioforpartonflavour i inPDF p as (p) R (x,q˜,z) = x/z f (x/z,q˜)/xf (x,q˜). (2) i i i InFigure4weshowthisratioasafunctionofscale q˜ fortheCTEQandMMHTPDFswhich mostly defined the envelope of PDFs in Figures 2 and 3, for a fixed splitting fraction z = 1/2 – thisnominal z valueis takenfor illustration,since afull integration oversplitting phasespace 5 . . . ˜)q ˜)q. ,(xfxg. ,(xfxq / / ˜)q ˜)q. ˜,,/,()=(Rxqxfxgg... CCMMCCMMCTTTTTMMMMEEEEEHHHHQQQQQTTTTLNLNLLNLNOOOLLOOLLOOxxxOOxx===xx==xx====..×.×.×.×−−−− ˜,,/,()=(Rxqxfxqq.. CCMMCCMMCTTTTTMMMMEEEEEHHHHQQQQQTTTTLNLNLLNLNOOOLLOOLLOOxxxOOxx===xx==xx====..×.×.×.×−−−− . CTEQNLOx=. CTEQNLOx=. MMHTLOx=. MMHTLOx=. MMHTNLOx=. MMHTNLOx=. .   .   ˜q[GeV] ˜q[GeV] .......................... ........................ Figure4:Comparinggluon(left)andlightquark(right)PDFratiosbetweenCTEQ/MMHTand LO/NLO,withsplittingfraction z = 1/2. andsplittingfunctionsisbestdoneinanMCshowergeneratoritselfandweshalldojustthatin Section2. Theseratiosareclearlyquitelarge,rangingfrom 20%deviationfromunityatlowvalues ∼ of x and q˜,to75%and35%deviationsathigh x and q˜ forgluonsandlightquarksrespectively. The Sudakov dependence is stronger in x than in q˜, as expected from Figures 2 and 3: QCD scaleevolutionofPDFsislogarithmic,whilethe x dependenceofthePDFsisquitestrong,and becomesmoresoforthegluonPDFathigh-x.Thepotentiallylargesizeoftheseratiosisnota problembutratherthedriverofISRemissionphysics;inthenextsectionwelookatthedouble ratioswhichreflectthemagnitudeofneglectedshowereffectswhenreweightingorchanginga hardprocessPDFwithoutachangeofpartonshowerconfiguration. 1.2 PDF double ratios InFigures5and6wefinallyseetheratiosofSudakovformfactorPDFtermswhichcorrespond totheeffectofswitchingthepartonshowerPDFwithoutchangesinshowercutoff(or α ,which S canbemodifiedboth byuseofthe α evolutionforthatPDF,andbytuningfudgefactors[17] S and QCD-derived scalings [18]). These are again shown for our ad hoc fixed splitting fraction z = 1/2,andbetweentheCTEQandMMHTlatestLOandNLOfits. Figure5 showsthedouble ratiosobtained byreweighting/ switchingbetween theCTEQ and MMHTfamilies.Thesearetypicallyconstrainedtowithin5%ofunity,andbetterthanthatfor mostoftherange.AmildexceptionisseenforreweightingbetweentheNLOPDFsatlow x and q˜,wheresuchPDFsarelittleconstrained;andaverylargeanomalousdeviationofupto20% for high-x LOPDFs,particularlyatlowscales.Itisexpectedthatthesehigh-x effectswillbedealt withinthehardprocessratherthanthepartonshower,andalsowilluseNLOratherthanLO 6 . . . . CCCTTTEEEQQQ///MMMMMMHHHTTTLNLOOLOxx==x=.××−− CTEQ/MMHTNLOx=. CTEQ/MMHTLOx=. ) . ) CTEQ/MMHTNLOx=. / / . ()˜//,,)(Rxqg.. CCCCCTTTTTEEEEEQQQQQ/////MMMMMMMMMMHHHHHTTTTTLNLNLOOOLLOOxxx===xx==..×.×−− ()˜//,,)(Rxqq. ˜,q CTEQ/MMHTNLOx=. ˜,q (),(Rxg. (),(Rxq . . . . .       ˜q[GeV] ˜q[GeV] .................... ................... Figure5:Comparing gluon (left) and light quark (right) PDF double ratios between CTE- Q/MMHT,withsplittingfraction z = 1/2. . . . . . ) ) / . / . ()˜/,,)(Rxqg. ()˜/,,)(Rxqq.. CMCMTTMMEEHHQQTTxxxx====.×.×−− / / CTEQx=. ˜,q ˜,q MMHTx=. (),(Rxg. CMTMEHQTxx==××−− (),(Rxq.. . CTEQx=. MMHTx=. . CTEQx=. MMHTx=. . .       ˜q[GeV] ˜q[GeV] ................... ...................... Figure6:Comparinggluon(left)and lightquark(right)PDFdoubleratiosbetween LO/NLO, withsplittingfraction z = 1/2. 7 PDFswhenmatrixelementsareavailable,butthepotentialeffectisworthnoting. Typically shower algorithms, being based on leading order splitting functions, use leading order PDFs. However, in the case of matching showers to NLO matrix elements there is a school of opinion that the shower should match the matrix element in PDF choice to avoid discontinuitiesacrosstheME/PShand-over.AnargumenthasalsobeenmadeforusingNLO PDFs in leading-order multi-leg matrix elements on the basis that multi-leg MEs include ISR evolutioneffectswhichwouldbeabsorbedintothefittingofanLOPDF,andthishassimilarly been used to argue that LO matching would require use of NLO shower PDFs. We may ask whetheritis“allowed”toreweightbetweenLOandNLOPDFs,andthisisaddressedinFigure6: larger effects up to 10% are seen in LO/NLO gluon PDF reweighting of a z = 1/2 Sudakov ± thanin LOorNLO reweighting betweenPDFfamilies, butthelight quarksarestillwithin afew percentofunity. Inmosttypicaluse-casestheeffectofeitherneglectingshowerPDFeffectsinreweighting,or ofusingthesameshowertunewithdifferentPDFs,ishenceexpectedtobeontheorderof5–10%, comparabletothetypicalsystematicuncertaintyofshoweralgorithms(typicallyevaluatedby variationofpartonshowerstartingscalesand α evolution).Thisjustifiestheusualapproach S of neglecting explicitshower PDF effects, effectivelyabsorbing theminto shower systematics instead, since the effort required for an explicit evaluation would be disproportionate to the improvementinpredictivityoruncertaintycoverage. 2 PDF effects on parton showered observables In this section we study the real-world effect of PDF changes in the Pythia8 shower MC gen- erator[17],fortwoimportantprocesses:inclusivejetproduction,andW+jetproductioninthe Run2LHC pp configurationwith √s = 13TeV. Pythia8 allows separate PDFs to be used for the hard (matrix element) and soft (parton showers& MPI) components of the event simulation, soto comparethe effectsof PDFchanges inthesoftmodelling weusethedefaultMonash2013 pp tune[2]andfix the hardprocessPDF toNNPDF2.3LO[14],thenchangethesoftPDFtotheCTEQ6L1[19]andMMHT2014LO[13] leadingorderfits,aswellastheNNPDF3.0NLO[15],CT10NLO[12]andMMHT2014NLO[13] next-to-leading-ordercentralPDFs.WhileuseofNLOPDFsinsoftsimulationisdiscouragedby MCexperts[20],itisnotunknownandwebelievethatanempiricaldemonstrationoftheeffects isuseful. 2millioneventsweregeneratedforeachconfiguration,andwereanalysedusingtheRivet[21] MC JETSandMC WJETSvalidationanalyses,withjetsdefinedbyananti-k algorithmwithR = 0.4 T and p > 20GeV. The results are shown in Figures 7–9 for the inclusive jets process, and T Figures10and11fortheinclusiveW+jetprocess.TheLOandNLOsoftmodellingPDFchoices 8 are respectively rendered as solid lines with blue/green colouring, and as dashed lines with red/orangecolouringtoalloweasyidentificationofthenaturalPDFgroupings. These figures show several expected effects. First, the effects of switching between leading order shower and MPI PDFs are small, on the roughly expected scale of a few percent and less than 10% in all statistically well-populated regions of the plots. The use of NLO PDFs in shower &MPI modelling produceslarge differenceswith respect tothe LO baseline setup, with variationsofupto20%inmanyobservables,andrarelylessthan10%. Secondly, the kinematics of objects such as the leading two jets in inclusive jet production (whicharedominatedbythematrixelementpartons)areinfactfairlystableevenwhenNLO PDFsareusedforshowering,butextrajetsinbothprocesses(dominatedbyinitialstateshower emissions) are more strongly affected. The jet multiplicities are similarly strongly affected – particularlyfortheNLOshowerPDFsathighmultiplicities. FurthereffectsareseenwhenNLOPDFsareusedforsoftQCDsimulation,notablythestrong reductionofmulti-jetratesandthe20%differenceinjetmassesbelow 30GeV.Thesemotivate ∼ furtherdiscussionof α treatmentandmulti-partoninteractionsmodelling,andareconsidered S inthenextsection. Broadly,theseempiricaldatasupportseveralconventionalrulesofthumb: the effects of the particular leading-order parton shower PDF choice (without shower • retuning)arelimitedtoafewpercentwhenconsideringperturbativeQCDobjectsinthe bulkofphasespace; reversingthisobservation,providingspecificretunesofpartonshowersfordifferentLO • matrix element PDFs can only provide benefits of at most a few percent in some phase spaceregions; wecannotdirectlyconcludefromthisdataaboutshower-PDFsensitivityineventsimula- • tion with NLO matrix elements, but as it is well-known that LO Pythia8 configurations canperformwell in connectionwithNLOhardprocesseventsfrom POWHEG-BOX [22]or aMC@NLO [9], the potential performance gain is again expected to be onthe few-percent scale. 2.1 α (in)consistency S So far we have only considered the effect of changing parton density values, without regard for the strong coupling α , whose boundary conditions and evolution are linked to the PDF S evolution. 9 Pseudorapidityofleadingjet Pseudorapidityofsecondjet b] b] p p )1[ 103 )2[ et et (j (j η η d d σ/ σ/ 102 d d 102 NNPDF23LO130 NNPDF23LO130 CTEQ6L1 CTEQ6L1 MMHT2014LO MMHT2014LO NNPDF30NLO NNPDF30NLO CT10NLO 101 CT10NLO MMHT2014NLO MMHT2014NLO 101 1.4 1.4 1.2 1.2 o o ati 1 ati 1 R R 0.8 0.8 0.6 0.6 -4 -2 0 2 4 -4 -2 0 2 4 η(jet1) η(jet2) Pseudorapidityofthirdjet Pseudorapidityoffourthjet b] b] [p 102 [p )3 )4 et et 101 (j (j η η d d / / σ σ d d 101 NNPDF23LO130 NNPDF23LO130 CTEQ6L1 CTEQ6L1 MMHT2014LO 1 MMHT2014LO NNPDF30NLO NNPDF30NLO CT10NLO CT10NLO MMHT2014NLO MMHT2014NLO 1.4 1.4 1.2 1.2 o o ati 1 ati 1 R R 0.8 0.8 0.6 0.6 -4 -2 0 2 4 -4 -2 0 2 4 η(jet3) η(jet4) Figure7: PYTHIA 8jet η distributions. 10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.