Sensitivities andcorrelations ofnuclear structure observables emerging from chiral interactions Angelo Calci TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia, V6T 2A3, Canada∗ Robert Roth Institut fu¨rKernphysik, Technische Universita¨t Darmstadt, 64289 Darmstadt, Germany† (Dated:August8,2016) Startingfromasetofdifferenttwo-andthree-nucleoninteractionsfromchiraleffectivefieldtheory,weuse theimportance-truncatedno-coreshellmodelforabinitiocalculationsofexcitationenergiesaswellaselectric quadrupole (E2)and magnetic dipole (M1) moments and transitionstrengths for selectedp-shell nuclei. We 6 explorethesensitivityoftheexcitationenergiestothechiralinteractionsasafirststeptowardsandsystematic 1 uncertaintypropagationfromchiralinputstonuclearstructureobservables.Theuncertaintybandspannedbythe 0 differentchiralinteractionsistypicallyinagreementwithexperimentalexcitationenergies,butwealsoidentify 2 observableswithnotablediscrepanciesbeyondthetheoreticaluncertaintythatrevealinsufficienciesinthechiral g interactions. Forelectromagnetic observables weidentifycorrelations among pairsof E2or M1 observables u basedontheabinitiocalculationsforthedifferentinteractions. WefindextremelyrobustcorrelationsforE2 A observablesandillustratehowthesecorrelationscanbeusedtopredictoneobservablebasedonanexperimental datumforthesecondobservable. Inthiswaywecircumventconvergenceissuesandarriveatfarmoreaccurate 5 resultsthananydirectabinitiocalculation.Aprimeexampleforthisapproachisthequadrupolemomentofthe first2+statein12C,whichispredictedwithandrasticallyimprovedaccuracy. ] h PACSnumbers:21.60.De,21.30.-x,21.10.Ky,23.20.-g,21.10.-k,27.20.+n t - l c u I. INTRODUCTION of freedom to accelerate the convergenceof the chiral order n expansion[18]. [ Overthepastdecadetherehasbeensubstantialprogressin These developments on chiral interactions enable numer- 2 the construction of nuclear forces from chiral effective field ous applications in nuclear structure physics. To probe v theory (EFT), both, on the formal level and on practical as- the predictive power of chiral interactions without introduc- 9 pects[1–3]. Recentlyseveraldifferentregularizationschemes ing uncontrolled approximations, ab initio many-body ap- 0 havebeenimplementedandarebeingexploredinmany-body proaches are the methods of choice. In addition to the tra- 2 calculations. An example are coordinate-space regulators ditional ab initio many-body methods such as the no-core 7 0 leading to fully local two-nucleon (NN) and three-nucleon shellmodel(NCSM)[19–21]andtheGreen’sfunctionMonte . (3N) interactions up to N2LO that can be used in quantum Carlo (GFMC) method [22–24] there are also recent devel- 1 Monte Carlo calculations[4]. Using a mixedlocal and non- opmentslike the coupled-cluster(CC) methods[25–31], the 0 6 localregularizationschemeEpelbaumetal. havepresenteda self-consistentGreen’sfunctionmethods[32–34],andthein- 1 newfamilyofimprovedchiralNNinteractionsrangingfrom mediumsimilarityrenormalizationgroup(IM-SRG)[35–37] : leading-order(LO)to next-to-next-to-next-to-next-toleading that extend the range of ab initio nuclear structure calcula- v order (N4LO) with five different cutoff values [5, 6]. This tions to medium-massand heavy nucleiregime up to the tin i X familyofinteractionsallowsforasystematicstudyoforder- isotopes. The importancetruncatedno-coreshell model(IT- r by-orderconvergenceandcutoffdependenceofnuclearstruc- NCSM) [38, 39] bridgesthe gapbetween the traditionaland a ture observables, a critical aspect that was often ignored in novelmany-bodymethods, it can include the 3N interaction previousnuclearstructureapplications. TheLENPICcollab- explicitlyandcanprobeground-stateandexcitationenergies oration[7] is exploringthese interactionsin few- and many- aswellasspectroscopicobservablesinp-andlowersd-shell body calculations [8] and is developingthe consistent chiral nuclei. Theseobservablesconstituteacomprehensivetestbed 3N interactions. In a complementary development, new fit- forthetheoreticalpredictionsofchiralEFT. tingstrategiesforchiralNN+3NinteractionsatN2LOareex- Typically, these ab initio approaches attempt to estimate ploited to quantify the statistical uncertainties related to the uncertaintiesresulting from truncationsand incomplete con- parameterfits[9]. Moreover,novelfitproceduresareutilized vergencewith respect to the many-bodyspace. However, in thatimprovethedescriptionofbound-statepropertiesfornu- manyapplicationsof nuclearstructure theory,such as the p- clei beyond the few-body domain [10, 11] compared to the shellspectroscopy,theuncertaintiesenteringthroughthechi- previousgenerationofchiralinteractions[12–17]. Thereare ral inputs have not been explored, so far. The combination also efforts to include the ∆ resonance as an explicit degree ofreliablemany-bodyapproachesandnewchiralinteractions will allow for a systematic propagation of theory uncertain- ties to the nuclear structure observables. As a preparatory ∗[email protected] step, we study sensitivity and correlations of different spec- †[email protected] troscopicobservablesforasetofchiralNN+3Ninteractions. 2 We explore the excitation spectra of 6Li, 10B, and 12C and lators, physical observablesshow generally a small sensitiv- quantify the sensitivity of excitation energies on the choice ity to variations in the cutoff [4, 5, 44]. Thus, novelstudies oftheunderlyingchiralinteractions. Thevariationoftheun- with a semi-localregularizationmust includeinformationof derlying interactions also provides an opportunity to detect thechiralorderconvergencetoextracttheuncertaintiesofthe andmap-outcorrelationsamongpairsofnuclearstructureob- currentlyavailableNNforces[8]. servables, particularly electromagnetic moments and transi- TheaboveNNforcesareaugmentedby3NforcesatN2LO. tionstrengths. TheEMandN2LO NNforcesarecombinedwiththelocal opt This paper is structured as follows. In Sec. II we intro- 3N force usinga cutoff of 500MeV/c [13]. The LECs c 1,3,4 ducethedifferentchiralinteractionsandthetechnicalaspects of the two-pion exchangeterm are adoptedfrom the NN in- of the many-body treatment. The sensitivity analysis of the teraction.Theparameterc isfittedtothetritonβ-decayhalf- D excitation spectra for selected p-shell nuclei is presented in life[45]andc isfixedbytheA=3and4Hebindingenergy, E Sec. III. In Sec. IV correlations in electromagnetic observ- for the EM and N2LO NN interaction, respectively. This opt ablesarestudiedandweconcludeinSec.V. yields (c ,c ) = (−0.2,−0.205) for the EM interaction and D E (−0.39,−0.398) for the N2LO interaction. Although, the opt N2LO interactionsis originallya NN force for brevity we opt II. FROMCHIRALHAMILTONIANSTOOBSERVABLES usethisexpressionalsotorefertothecorrespondingNN+3N interaction introducedin this work. The EGM NN forces at A. NN+3NinteractionsfromchiralEFT N2LOaretypicallycombinedwithaconsistentnon-local3N forceatN2LO.WhilethisNN+3Nforceisusedinseveralap- plicationstoneutronmatter[46–48],nuclearstructurephysics In this work we investigate interactions from three differ- beyondthelightestnucleiisfairlyunknown.TheLECsofthe entchiralschemesthatareobtainedatN2LOorN3LOusing 3N force are fitted to the triton ground-state energy and the different regularization and fit procedures. The first NN in- neutron-deuterondoubletscatteringlength[16]. Thepartial- teractionweintroduceisdevelopedbyEntemandMachleidt wave decomposed 3N matrix elements at N2LO can be de- (EM) [12] at N3LO. The nonlocal regulator function uses a rived explicitly [13, 16, 49] or via a numerical partial-wave fixed cutoff of 500MeV/c. This potentialprovidesan accu- decomposition[50, 51]. The latter approachis also applica- ratedescriptionof NN phaseshiftswitha comparablepreci- bletocomputethecomplicated3NcontributionsatN3LOfor sionasmorephenomenologicalhigh-precisionpotentialslike futureinvestigations. Argonne V18 [40] and CD-Bonn [41]. The EM potential is widelyusedinnuclearstructurephysicsandhasbeenastan- dardchoiceintheabinitiofield. B. SRGevolutionandbasistransformations The N2LO interaction by Ekstro¨m et al. [10] is a re- opt cently developed chiral interaction at N2LO. The fits of Although non-local chiral NN interactions are rather soft the low-energy constants (LECs) have been performed with duetothemomentumcutoffintheregularization,itisstilldif- the practical optimization using no derivatives (for squares) ficultto convergeNCSM-type calculationsbeyondthe light- (POUNDerS) algorithm [42]. This potentialalso uses a cut- estnuclei.Alsotheinclusionoftherelevant3Ncontributions off of Λ = 500MeV/c and an additional spectral function χ regularization(SFR)withacutoffofΛ˜ =700MeV/c. can be problematic for ab initio methods when a bare chi- χ ral interaction is used. The similarity renormalizationgroup The NN interaction by Epelbaum, Glo¨ckle, Meißner (EGM) [14] at N2LO uses the same non-local regular- (SRG)[52–54]isaunitarytransformationthatsoftensthenu- clear interaction and can be applied consistently in the two- ization with an additional SFR cutoff. This potential and three-body space. Therefore, this approach is used in a is constructed for a sequence of five cutoff combinations (Λ /Λ˜ ) = {(450/500),(600/500),(550/600),(450/700), variety of nuclear structure applications to soften the chiral χ χ NN+3Ninteractions[29,34,36,55–57]. (600/700)}MeV/candprovidesaslightlylesspreciserepro- TheSRGflowequationfortheHamiltonianH isgivenby duction of the NN data than the other two NN interactions. Thepion-nucleonLECsciarefittedindependentlyofthereg- d ularizationtothepion-nucleonscatteringdata[43]anddiffer Hα =[ηα,Hα], (1) dα from the values used for the EM and N2LO interactions. opt With the sequence of cutoff parameters it offers the unique with the continuous flow-parameter α, which is related to a opportunitytostudytheeffectoftheregularizationonnuclear momentumscaleλSRG =α−1/4andthedynamicgenerator structureobservablesand,thus,todrawconclusionsaboutthe η =(2µ)2 [T ,H ], (2) α int α theoreticaluncertaintiesoriginatingfromthechiralinputs. For chiral interactions with non-local regulators the cut- where µ is the reduced nucleon mass and T is the intrin- int offvariationprovidesalegitimatediagnostictooltoestimate sic kinetic-energy operator. It is important to note that the the uncertainties at an individualchiral order. Nevertheless, SRG evolution induces irreducible many-body contributions a variation of the chiral order is crucial to study the conver- beyond the particle rank of the initial interaction. With the gence of the interactions and future works will combine a canonical generator (2) it has been found [55–57], that it chiral order and cutoff variation for a more elaborate uncer- is indispensable to include the induced three-body contribu- tainty analysis. Note, for chiralinteractionswith localregu- tions. Therefore,forallresultspresentedinthispaperweuse 3 an initial NN and NN+3N interactionand includeall contri- Westartwiththesimplenucleus6Li.Figure1showstheex- butions up to the three-body level, which correspond to the citationenergiesofthefirstfourpositiveparitystatesobtained NN+3N-inducedand NN+3N-fullnomenclatureof previous withthedifferentchiralNNandNN+3Ninteractions.Toindi- works[55,56,58]. catetheuncertaintyduetotheconvergencewithrespecttothe We aim at many-body calculations performed in the modelspacewecomparetheresultsatN =8(dashedbars) max harmonic-oscillator (HO) representation. Thus the NN and and N = 10 (solid bars). The calculationsare carriedout max 3N interactions that are obtained in a partial-wave momen- at~Ω = 16MeVandthe SRG evolutionup to α = 0.08fm4 tum representation need to be transformed to the HO space. isperformedatthethree-bodylevel.Asillustratedforthe12C Therearetechniquestoperformtheevolutionequationofthe spectrum in Ref. [65] once the SRG evolution is performed SRG in the three-bodymomentumrepresentation[59], how- consistentlyatthethree-bodylevel,excitationenergiesshow ever,forapplicationsinlocalizedsystems,suchasnuclei,the a negligible flow-parameter dependence. This remains true discrete HO Jacobibasis isthe mostefficientscheme forthe even for heavier systems, where the absolute energies show SRGevolution. Therefore,weimmediatelytransformthe3N a sizable flow-parameterdependence[31, 55, 58]. Since the momentummatrixelementstotheHOJacobirepresentation, SRG induced beyond-3N contributionspredominantly cause performingtheSRGtransformationsubsequently. an overall shift of all energies, their impact cancels out for The HO machinery, comprehensively described in [58], theexcitationenergies. Inadditiontothespectrafortheindi- is utilized to perform the Moshinsky transformation to the vidualinteractionsincludingtheinitialNNandNN+3Npart, particle-basisrepresentation. Eventually,thematrixelements respectively,Fig.1alsoshowsacombinedspectrumforallthe arestoredintheso-calledJT-coupledscheme[55,58],which EGMinteractions,wherethebandsindicatethespreadofthe isthestartingpointforanumberofabinitiomany-bodymeth- excitationenergiesobtainedwiththedifferentcutoffs.Weob- ods[30,33,34,36,37,55,60–63]. servethattheexcitationenergiesobtainedwiththeEMandthe N2LO Hamiltonianstypically fall into the bandsextracted opt fortheEGMinteractions. III. EXCITATIONSPECTRA A firstinspectionofthespectra revealsthatthe sensitivity ofthe differentexcitedstatestotheHamiltonianisquitedif- Inafirststepwe studytheexcitationspectraofvariousp- ferent. Whereas the excitation energy of the first 0+ state is shellnucleiusingthedifferentchiralHamiltoniansintroduced largely unaffected by the different choices of chiral interac- inSec.IIA. Thefocuswillbeonthesensitivityofthediffer- tionsortheinclusionofthechiral3Nforce,theexcitationen- entexcitedstatesonthechiralinputs,givingrisetosystematic ergiesofthe3+andthe1+statesshowasizablevariation.The theoryuncertaintiesthatresultfromthevariouschoicesmade inclusionofthechiral3Ninteractioncausesashiftoftheen- during the construction of the chiral interactions. This in- ergiesinthesamedirectionforallHamiltonians,leadingtoa cludes,forinstance,thedifferentregularizationschemes,chi- higher2+andalower3+excitationenergyforthefullNN+3N ralordersaswellasthefitproceduresusedfortheLECs. An interactions. In the case of the EGM interactions, the band additional source of uncertainty are the statistical uncertain- constructed from the cutoff dependence of the 3+ excitation tiesoftheLECsresultingfromthefits. Thelatteruncertain- energynicelyoverlapswiththeexperimentalenergy. Forthe tieshavebeenexploitedrecentlyforfew-bodyscatteringand 2+excitationenergythereisacleardiscrepancyandthechiral ground-stateobservables[9],butremaintobeinvestigatedfor 3N interaction shifts the state further away from the experi- p-shellspectroscopy. mentalenergyin all cases. However,the first 2+ state in the experimentalspectrumisabroadresonanceandthereisanar- WeemploytheIT-NCSMwiththeSRGevolvedHamiltoni- ansbasedonthechiralNNorNN+3Ninteractionsdiscussed rowsecond2+stateabout1MeVabove.Thustheinclusionof continuumdegreesoffreedom,e.g.,throughtheNCSMwith in Sec. IIB. For all Hamiltonians the IT-NCSM calculation continuum[60, 66, 67], will be importantto understandand includesexplicit3NtermsoftheSRG-evolvedHamiltonians. We perform a full NCSM calculations up to N = 6 for disentanglethese2+ states. Theslowconvergenceofthecal- 6Liand N = 4for12Cand10B. We efficientlmyapxroceedto culated2+statemightserveasafirstindicationforthesecon- max tinuum effects. For the 0+ excitation energy, the EGM band largerN withanimportancetruncationincludingathresh- max is closer to experimentalthoughit does not overlapeither— old extrapolationtowards the full NCSM space. The details experimentallythisstateisanarrowresonance. oftheIT-NCSMandthethresholdextrapolationarediscussed in [38, 39]. On should note that the threshold extrapolation Figure2showsasimilaranalysisoftheexcitationspectrum itself induces a theoretical uncertainty at the level of the fi- of 12C. The excitation energiesof the lowest positive-parity nal observables, which is quantified systematically through statesobtainedinIT-NCSMcalculationsareshownforallin- the extrapolation protocol [38]. For excitation energies this teractions. Obviously,thestructureofexcitationspectrumof uncertainty is of the order of 50keV for the largest spaces. 12Cisricherthanfor6Li. Previousinvestigationshaveshown The IT extrapolationis very robust for the discussed excita- thatsomeoftheexcitationenergies,e.g.,forthefirst1+and4+ tion spectra in this work. The only exception is the first ex- states, are verysensitive to the 3N interaction. Furthermore, cited0+ state in12CforasingleEGMinteraction,wherethe in comparisonto experimentthere are clear discrepanciesof degeneracywiththefirst4+statecausesinaccurateITextrap- the1+excitationenergyobtainedfortheEMinteractionwhen olations, resultingin an unreliableassessment ofthe angular includingthe 3N interaction [55, 65]. The behaviorof these momentumofthisstate. statesfordifferentchiralinteractionsis, therefore,highlyin- 4 EGM EGM EM N2LO (450/500) (600/500) (550/600) (450/700) (600/700) Bands opt 5 2+0 4 0+1 ] V e 3 M [ 3+0 x 2 E 1 1+0 0 . NN +3N NN +3N NN +3N NN +3N NN +3N NN +3N NN +3N NN +3N exp FIG. 1. (color online) Excitation spectrum of 6Li for the EM, the N2LO and all five cutoff combinations of theEGM NN and NN+3N opt interactions. TheparametersoftheIT-NCSMcalculations are N = 10, ~Ω = 16MeV, andα = 0.08fm4. Thedashedbarscorrespond max toN = 8calculations. BandsinthelastbutonecolumnontherightindicatethecutoffdependenceoftheEGMpotential. Experimental max excitationenergiesaretakenfrom[64]. EGM EGM EM N2LO (450/500) (600/500) (550/600) (450/700) (600/700) Bands opt 16 12++10 14 4+0 1+0 12 V]10 0+0 e M 8 [ 0+0 x 6 E 4 2+0 2 0 0+0 . NN +3N NN +3N NN +3N NN +3N NN +3N NN +3N NN +3N NN +3N exp FIG. 2. (color online) Excitation spectrum of 12C. IT-NCSM calculations are performed for N = 8 (solid bars) and 6 (dashed bars), max remainingparametersasinFig.1.Experimentalexcitationenergiesaretakenfrom[64]. teresting. Note, the excited 0+ states are expected to have a large sensitivity. For all these states the sensitivity, as sum- distinct cluster structure that cannot be described accurately marizedby thebandsforthe EGMinteractions, reducessig- in tractable HO modelspaces[68]. Therefore,itis notclear nificantlywiththeinclusionofthechiral3Ninteraction.This whether the 0+ state obtained in the IT-NCSM corresponds might be interpreted as indication that the theoretical uncer- thefirstexcited0+ state (Hoylestate) orthesecondone(see tainties are reduced when going from an incomplete chiral Ref. [65] fora moredetailed discussion). For these reasons, NN interaction to a complete and consistent chiral NN+3N wewillnotincludethis0+ stateintothefollowingdiscussion HamiltonianatN2LO.Forallinteractions,thechiral3Ncom- onthesensitivitytotheHamiltonian. ponent shifts the 1+ states to lower excitation energies. As a result, all interactions underestimate the 1+ excitation en- Comparing the spectra for the different interactions con- ergybymorethan2MeV—evenconsideringthe uncertainty firmsthesensitivityofthe1+and4+excitationenergiestothe band,thereis acleardiscrepancywith experiment. Sinceall underlyinginteraction,alsothehigher-lying2+ stateshowsa 5 EGM EGM EM N2LO (450/500) (600/500) (550/600) (450/700) (600/700) Bands opt 5 4 2+0 3 ] V e 2 1+0 M 0+1 [ x 1 E 1+0 0 3+0 -1 . NN +3N NN +3N NN +3N NN +3N NN +3N NN +3N NN +3N NN +3N exp FIG. 3. (color online) Excitation spectrum of 10B. IT-NCSM calculations are performed for N = 8 (solid bars) and 6 (dashed bars), max remainingparametersasinFig.1.Experimentalexcitationenergiesaretakenfrom[64]. Hamiltoniansemployedhereuselocalornon-local3Ninter- 16Oground-stateenergy. actions at N2LO, it will be very interesting the see whether As the final case, we discuss the excitation spectrum of next-generation chiral 3N interactions at N3LO can resolve 10B as shown in Fig. 3. The typical excitation energies for this discrepancy. In contrast to the 1+ and 4+ states, the en- thisodd-oddnucleusaremuchsmallerthanin12C,therefore, ergy of the first excited 2+ state shows very little sensitivity shiftsoftheexcitationenergiesofindividualstatesby1MeV to the starting interaction and to the chiral 3N contribution. can change the spectrum drastically. Furthermore, full con- ThebandsextractedfromtheEGMinteractionsaresmalland vergenceof the excitation energies is more difficult to reach thebandswithandwithoutthechiral3Ninteractionoverlap. thanforthe12Cspectrum. Particularlytheresultswithchiral Interestingly,allinteractionstendtounderestimatethe2+ ex- 3NinteractionsshowaresidualN dependence,i.e.,theex- max citationenergyslightly. citation energies for N = 8 and 6, indicated in Fig. 3 by max the solid and dashed levels, respectively, are slightly differ- Itisalsointerestingtostudytheabsolute12Cground-state ent. ThisresidualN dependenceismuchsmallerthanthe energiesresultingfromthedifferentNN+3Ninteractions.The max variationsduetodifferentHamiltoniansand,therefore,donot energies calculated with the EGM interactions span a range affectthepresentdiscussion. of−96.8to−80.5MeV. Thisrangecontainstheexperimental energyof−92.16MeV.Alsotheground-stateenergyobtained Already the first ab initio calculations of 10B with 3N in- withN2LO interactioniswithintheEGMrange,whilethe teractionshaveshownthattheorderingofthefirst3+ and1+ opt EM interactions predicts an energy of −97.8MeV and thus statesdependsonthe3Ninteraction[69]. Manyoftherealis- the largest bindingenergy. However, it is importantto note, ticNN interactionsincorrectlypredictthe1+ asgroundstate that the energiesare extrapolatedfromNCSM modelspaces andonlythe3Ninteractionrestoresthecorrectlevelordering. uptoN =8causinganestimatedextrapolationuncertainty This is also observed in Fig. 3 for the chiral interactions— max ofabout1−2MeV. Whatismoreimportantistheimpactof with one exception all chiral NN interactions predict the 1+ omittedSRG-induced4Ncontributionsthataresizableforthe below or degenerate with the 3+ state. In all these cases, SRG flow-parameterα = 0.08fm4 usedhere. Fromananal- thechiral3Ninteractionshiftsthe1+ upwardsrelativetothe ysis of the flow-parameter dependence we find that the 4N 3+,thus,restoringthecorrectlevelordering. Anexceptionis contributions are repulsive and, thus, will reduce the above theEGMinteractionwithcutoffs(450/500)MeV/c,whichal- binding energies. For instance, changing α for the EM in- readygivesthecorrectlevelorderingwiththeNNinteraction, teraction to α = 0.04fm4, i.e., towards the bare interaction thechiral3Ninteractiononlyleadstoaslightreductionofall reducesthe bindingenergybyabout2.3MeV. Based on the excitationenergies.TheEGMuncertaintybandforthe1+ex- flow-parameter dependence we cannot reliably estimate the citationenergyisreducedbyincludingthechiral3Ninterac- binding energy expected for the bare interaction. Neverthe- tionandrobustlyindicatesthe3+ asthegroundstate. Within less, we can conclude that the absolute binding energies for the cutoff-uncertainty bands all excitation energies obtained thebareinteractionswillexhibitaspreadofseveralMeVand withthechiralNN+3Narecompatiblewithexperiment. tendtounderestimatetheexperimentalbindingenergies.This Our uncertaintyanalysis for the p-shellspectra providesa sensitivity of the absolute binding energies to the details of crucial verification of the predictive power of the chiral in- the interactions is consistent with the finding in [9] for the teractions. Besidesdistinctsensitivitiesofexcitationenergies 6 to the 3N force, also systematic deviations from experiment 8.5 beyondthetheoreticaluncertaintycanbeidentified.Thesein- vestigationsidentifythefirst1+statein12Casanidealbench- 8 markforthenextgenerationofchiralNN+3Ninteractions. 4]7.5 m f 2 IV. ELECTROMAGNETICTRANSITIONSAND [e 7 MOMENTS +) 0 → 6.5 Electromagneticobservablesprovideanotherwindowinto + 2 6 structure of nuclei with differentsensitivities and addressing 2, E complementary information. Therefore, we extend the dis- ( B5.5 cussionofsensitivitiesofnuclearobservablestoelectromag- netic moments and transition strengths, focusing on electric 5 quadrupole(E2)andmagneticdipole(M1)observables. Coming from the discussion of excitation energies, sev- 4.5 eral comments are in order: First, the convergence rate of . electromagnetic observables, particularly of E2 observables, 3 4 5 6 7 8 9 issignificantlyslowerthantheconvergenceofexcitationen- Q(2+)[efm2] ergies. Owing to the sensitivity of the E2 operator on the long-rangebehaviorofthewavefunction,largeNCSMbasis FIG.4. (coloronline)Correlationofquadrupoleobservablesforthe spacesarerequiredtoobtainthecorrectasymptoticbehavior first 2+ state in 12C. Plotted is the reduced quadrupole transition ofthewavefunctionsandtoconvergeE2observables. Even- strength B(E2,2+ → 0+)totheground stateversusthequadrupole tually, one mightstill rely on extrapolations,e.g., within the moment Q(2+) obtained with different chiral NN (open symbols) novelschemesconstructedinaneffectivefieldtheoryframe- andNN+3Ninteractions(solidsymbols): EM(box), N2LO (cir- opt work[70],toextractarobustresult. cle), and EGM with cutoffs (Λ /Λ˜ ) = {(450/500),(600/500), χ χ Second,theE2orM1operatorsshouldbetransformedcon- (550/600),(450/700),(600/700)}MeV/c(diamond,triangleup,tri- sistently with the Hamiltonian when using SRG transforma- angle down, hexagon, cross). The IT-NCSM calculations are per- tionstoimprovetheconvergencebehavior. Theeffectofthis formedat~Ω = 16MeVandα = 0.08fm4 usingamodelspaceof consistent SRG transformation of electromagnetic operators Nmax = 2(blue),4(green),6(violet),and8(redsymbols). Theer- rorbarsindicatetheuncertaintiesofthethresholdextrapolationsin wasonlystudiedinafewselectedcases. Thesestudiesindi- theIT-NCSM.Thedashedcurvescorrespondstothecorrelationob- catedthattheconsistentSRGtransformationchangeselectro- tainedfromformula(5)withaquotient of theintrinsicquadrupole magneticobservablesonlybyafewpercent[71,72],whichis momentsettoone(grey)orfittedtotheoreticaldatapoints(black). whyNCSMapplicationshavenotincludedtheseeffectsofar. The grey shaded area indicates the error band of the experimental Finally, chiral EFT also predicts the electromagnetic two- B(E2)[76]and Q[77]value. Theblueshadedareacorresponds to bodycurrentcontributionsconsistentlywith theinteractions. apredictionforQconsistentwiththetheoreticalcorrelationandthe Also these contributions should be included for a complete B(E2)measurement. treatment of electromagnetic observables. Pioneering calcu- lation in a hybrid frameworkusing chiral EFT currents with anArgonneinteractionhaveindicateda significantinfluence present these two observablesfor the same set of chiral NN ofcurrentcontributiontoelectromagneticmomentsandtran- andNN+3Ninteractionsusedforthestudyofexcitationspec- sitionstrengths[73]. tra. Inadditionweshowtheresultsfordifferentmodel-space Addressingalltheseeffectsinacomprehensivefashionwill truncationsfromN =2to8,whichisimportantbecauseof max betheaimofourfuturestudiesofelectromagneticproperties the slow convergenceof these observables. Thus each sym- starting from consistent chiral EFT inputs. In a preparatory bol in the figure corresponds to a specific Hamiltonian at a step towards the complete calculations, we study the impact specific value of N . The grey rectangle indicates the ex- max oftheHamiltonianonE2andM1observables.Asanovelas- perimentalvalues for the B(E2) and the quadrupolemoment pectintheabinitiocontext,weexplorecorrelationsbetween includingtheirexperimentaluncertainty. Theuncertaintyfor pairsofE2or M1observablesinvolvingthesame states. As thequadrupolemomentisparticularlylarge[77],butnewex- we will see in the following, the study of such correlations perimentsareplannedtoreducethisuncertainty[78]. in an ab initio framework can be extremely beneficial. Re- The picture that emerges from Fig. 4 is remarkable. All cently, correlations of E1 observables in closed-shell nuclei data pointsfall ontothe same line, irrespectiveof the under- havebeenexploitedforimpressivepredictionsofobservables lying chiral NN or NN+3N interactions and of N . There max sensitivetothechargeandneutrondistribution[74,75]. isastrongandrobustcorrelationbetweenthetwoE2observ- We start with the discussion of E2 observables involving ablesemergingfromourabinitiocalculations. Thevaluesof the first excited 2+ state and the 0+ groundstate in 12C, i.e., theindividualobservablesshowasizable dependenceonthe the B(E2) transition strengthform the 2+ state to the ground underlyinginteractionand N , buttheyalways stay on the max stateandthequadrupolemomentofthe2+ state. InFig.4we correlationline. Asageneraltrend,withincreasingN the max 7 quadrupolemomentandtheB(E2)continuetoincrease,indi- 11 catingtheslowconvergenceoftheselong-rangeobservables. Therobustcorrelationbetweenthispairofquadrupoleob- 10 servables emerging from ab initio calculations can be in- terpreted in terms of the simple rotational model by Bohr ] 4 andMottelson[79],wherebothobservablesinthelaboratory m 9 f frame are connected to the intrinsic quadrupole moment Q0 2[e viatheformulas +) 8 2 → 3K2−J(J+1) Q(J)= (J+1)(2J+3)Q0,s , (3) +4 7 2, E and (B 6 5 J 2 J B(E2,J → J )= Q2 i f . (4) i f 16π 0,t K0(cid:12)(cid:12)K! 5 (cid:12) (cid:12) Here J is the angular momentum with the(cid:12)index i and f re- ferringtotheinitialandfinalstate, K istheprojectionofthe . 4 total angular momentumon the symmetry axis of the intrin- 4.5 5 5.5 6 6.5 sicallydeformednucleus. Fortheinvestigatednuclei12Cand Q(2+)[efm2] 6Li,K correspondstotheangularmomentumoftheirground states. Theindicessandtoftheintrinsicquadrupolemoment FIG.5. (coloronline)Correlationofthe B(E2,4+ → 2+)valueand indicatethe”static”and”transition”observableQandB(E2), the quadrupole moment Q(2+) in 12C. The parameters and defini- tion of the symbols are as in Fig. 4. The black dashed lines mark respectively.Onecancombinebothformulassuchthatthera- theregimeofthecorrelatedtheoreticaldatapoints. Theblueshaded tio of the intrinsic quadrupolemoments Q /Q is the only 0,t 0,s areacorrespondstoapredictionfortheB(E2)transitionstrengthcon- parameterthatrelatesthetwoobservables sistentwiththetheoreticalcorrelationandthepredictedquadrupole momentfromFig.4. 5 (J+1)(2J+3) 2 J 2 J B(E2,J → J )= i f i f 16π(cid:0)3K2−J(J+1)(cid:1)2 K0(cid:12)K! (cid:12) (5) (cid:12) × Q0,t(cid:0)2Q(J)2 . (cid:1) (cid:12)(cid:12) a substantialtheoryuncertainty,which is eliminated through (cid:16)Q0,s(cid:17) theuseofthecorrelationtogetherwithoneexperimentalob- servable.Thequadrupolemomentisalsoconsistent,butmore Ina rigidrotormodeltheintrinsicquadrupolemomentsQ 0,s precise than direct predictionsby nuclear lattice simulations and Q0,t are expected to be equal. The correlation result- ofQ(2+)=(6±2)efm2obtainedatLO[80]. ing from this assumption is represented by the grey dashed Due to the stability of the correlation in 12C one can also lineinFig.4,whichslightlymissesthecorrelationpredicted address higher excited states of the yrast band, as shown in in the ab initio calculations. Using the ratio of the intrinsic Fig. 5. In analogy to the previous correlation analysis we quadrupolemomentsasaparametertofittheaboverelations totheabinitioresultsleadstoQ /Q = 0.964andacorre- plot the B(E2,4+ → 2+) as function of the quadrupole mo- 0,t 0,s ment Q(2+). The correlation motivated by the rotor model lationlinethatmatchestheabinitioresultsperfectly,asseen is present, but less clean. In particular, for the larger model fromtheblackdashedlineinFig.4. spaces the theoretical data points start to spread around the Afterhavingestablishedthiscorrelationinabinitiocalcu- fittedquadraticcorrelationcurve. Thisindicatesamorecom- lations,wecanexploitittomakepredictionsononeofthetwo plicated structure of the 4+ state in large model spaces, de- observablesbasedonexperimentaldatafortheotherobserv- able. Inthisparticularcase,thequadrupolemomentofthe2+ viating from the simple rotor model. Already the excitation energyof the 4+ state was much more sensitive to the inter- state is poorly known, whereas the B(E2) has a much lower actionthanthefirst2+ state(cf. Fig.2),indicatingadifferent relativeuncertainty. Thuswecanusetheexperimentalvalue anduncertaintyB(E2)=7.94±0.66e2fm4[76]andtranslateit andmoreintricatestructureforthe4+state. viatheabinitiocorrelationlineintoanvalueanduncertainty Still, we can identify a correlation band indicated by for the quadrupole moment of Q(2+) = (5.91± 0.25)efm2. the black curves covering almost all ab initio results and Theuncertaintyofthisvalueisoneorderofmagnitudesmaller parametrizeitthroughtherotormodelusingarangeforthera- thantheuncertaintyofthedirectmeasurement. tio Q /Q from0.795to 0.905, which differs significantly 0,t 0,s Itisalsomuchbetterthanthetheoryuncertaintyforadirect from the rigid rotor. Still, we can use this correlation band calculationofthequadrupolemoment. ForN = 8thedif- to predict the B(E2,4+ → 2+) in the range from 7.05 to max ferentchiralNN+3Ninteractionpredictquadrupolemoments 10.82e2fm4,basedonourpreviousextractionforQ(2+).This intherangefrom4.5to6.2efm2(redfilledsymbolsinFig.4) B(E2)isnotknownexperimentally. Clustermodelspredicta and these values still increase with increasing N . So the value around15e2fm4 [81] and a rigid rotor model with the max sensitivitytotheinteractionandtheslowconvergenceleadto intrinsicquadrupoledeformationobtainedfromthe3αmodel 8 12 12 11 11 ]10 ]10 4 4 m m 2f 9 2f 9 e e [ [ ) ) +1 8 +1 8 → → + 7 + 7 3 3 2, 2, E 6 E 6 ( ( B B 5 5 4 4 3 3 . . -6.5 -6 -5.5 -5 -4.5 -4 -3.5 -0.25 -0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2 Q(3+)[efm2] Q(1+)[efm2] FIG. 6. (color online) Correlation of quadrupole observables for FIG. 7. (color online) Correlation of quadrupole observables for the first 3+ state in 6Li. Plotted is the reduced quadrupole tran- the first 1+ state in 6Li. Plotted is the reduced quadrupole transi- sition strength B(E2,3+ → 1+) to the ground state as function of tionstrength B(E2,3+ → 1+)tothegroundstateasfunctionofthe thequadrupolemoment Q(3+). TheIT-NCSMcalculationsareper- quadrupolemomentQ(1+).Theremainingparametersanddefinition formedfor N = 4(blue),6(green),8(violet),and10(redsym- ofthesymbolshapesareasinFig.6.Thegreyshadedareaindicates max bols).Theremainingparametersanddefinitionofthesymbolshapes theerrorbandoftheexperimentalB(E2)[83]andQ(1+)[85]. are as in Fig. 4. The grey shaded area indicates the error band of theexperimental B(E2)[83]. Note,thereisnomeasurementforthe spectroscopicquadrupolemoment. nectionwiththequadrupolemomentofthe1+groundstatein- steadoftheexcited3+state.AsshowninFig.7thispairofE2 observablesdoesnotexhibitarobustcorrelation.Becausethe appliedinRef.[82]gives25e2fm4[81]. measuredquadrupolemomentof−0.08178(164)efm2 [85]is Wenowmovetothelighternucleus6Liandrepeatthecor- so close to zero, the experimental data point in the correla- relationanalysis. ThelowestE2transitionisbetweenthefirst tionplotisincompatiblewiththerigidrotormodel. Thevery excited 3+ state and the 1+ ground state. As we remarked smallquadrupolemomentoftheground-stateisgovernedby earlier, the 3+ state is a narrowresonanceand, therefore,the more subtle structural effects rather than the robust effects definition of the quadrupolemomentis nontrivial. Since we fromtherotormodel.Notetheimpactoftheimportancetrun- are workingin a bound-stateapproach,we can computethis cationalso becomesnoticeable, becauseof the smallmagni- observablenevertheless.InFig.6weshowthecorrelationplot tudeofthequadrupolemoment.Moreover,severaltheoretical forthe B(E2,3+ → 1+)strengthandthequadrupolemoment quadrupolemomentshavea positivesign, i.e., predicta pro- of the first 3+ state in 6Li. Again we find a tight correlation latedeformation,butmovewithincreasing N towardsthe max betweenthesetwoobservablesforallchiralNNandNN+3N slightlyoblatedeformationasexperimentallymeasured.This interactions and model space truncations. A fit of the rotor exampledemonstrates,thattheE2correlationsin12Cand6Li modelwithQ0,t/Q0,s =0.961againdescribesthiscorrelation that we identified from our ab initio calculations and inter- verywell. pretedbythesimplerotormodelarenon-trivialfindings. Unlike the previous cases, all IT-NCSM calculations un- Finally, we discussan examplefora differentelectromag- derestimate the B(E2) value—we only get about half of the netic operator, the magnetic dipole or M1 operator. Unlike experimentaltransition strengths. At the same time, there is theE2observableswediscussedsofar,theM1operatordoes asystematicdependenceonthemodel-spacetruncationNmax. not depend on the spatial distance, but only probes the spin Forallinteractionstheabsolutevaluesofthequadrupolemo- and orbital angular-momentum structure of the state. This mentandtheB(E2)increasemonotonicallywithNmaxwithno leadstoadifferentconvergencebehaviorofM1observablesin indicationofconvergence.Thisgeneralbehaviorisconsistent NCSM-type calculations. Furthermore, from a macroscopic withthefindingsinRef.[84]usingtheCD-Bonnpotentialand modelbuildonanintrinsicstatethemagneticdipolemoment hintsatmissingcontinuumeffectsforthedescriptionofthe3+ andtheB(M1)transitionstrengthshowalesstrivialbutagain resonance.Still,wecanusetherotormodeltoextractavalue quadratic relation depending on an effective and intrinsic g- of the quadrupolemomentof Q = −6.59(26)efm2 based on factor[79]. Therefore,itisinterestingtoexplorethespinand themeasuredB(E2). orbitalstructurethatdeterminespairsofM1observablesinab We canconsiderthesame B(E2,3+ → 1+) for6Liin con- initiocalculationsandtoidentifycorrelations. 9 N whichmightberelatedtotheresonancenatureofthe0+ max state. 15.8 Comparingthecalculationstoexperiment,indicatedbythe narrow grey rectangle in Fig. 8, provides an interesting per- spective. Theground-statemagneticdipolemomentof6Liis ] 2N15.6 knownwith anexcellentaccuracyfromatomicphysicsmea- µ )[ surements[86, 87]. Thecalculationswith chiralNN+3Nin- + 1 teractionsdeviatefromexperimentbyabout2%—thoughthis → isasmalldeviationbyourstandards,itisverysystematic.The + 15.4 0 experimentaluncertaintyontheB(M1)arelargerandmostof M1, the calculations fall within the error bar of the experiment. ( However, the systematic N dependenceof the calculation B max 15.2 suggeststhattheconvergedB(M1)willbeoutsidetheexperi- mentalerrorbarforallHamiltonians. This is clearly a case where precision studies, both in ex- periment and in ab initio theory will be very valuable. As 15.0 mentionedinthebeginningofthissection,ourstudiesofelec- . tromagneticobservablesarenotfullycompleteyet. Wehave 0.82 0.83 0.84 0.85 0.86 notincludedtheconsistentSRGevolutionoftheelectromag- µ(1+)[µN] netic operators and we have not included consistent electro- magnetic two-body currents from chiral EFT. Both correc- FIG.8.(coloronline)Correlationofmagnetic-dipoleobservablesfor tionsenterasadditivetwo-bodypiecesintheelectromagnetic the1+groundstateandthefirst0+excitedstatein6Li.Plottedisthe operators and they will affect both observables in the pairs magnetic dipole transition strength B(M1,0+ → 1+) to the ground of E2 andM1 observablesdiscussed here. In case of the E2 stateversusthemagnetic-dipolemomentµ(1+). TheIT-NCSMcal- observables, we expect the correlation line to be largely un- culationsareperformedforN =4(blue),6(green),8(violet),and max affectedbythese corrections. However,theywillplaya role 10 (red symbols). The remaining parameters and definition of the for the specific values of the observables, particularly at the symbolshapesareasinFig.4.Thegreyrectangleindicatestheerror band of theexperimental µ(1+) [86,87] and B(M1,0+ → 1+) [83] precisionlevelof the M1 observablesdiscussed above. This value. aspectwillbeafocusofourfuturestudies. In Fig. 8 we plot the B(M1,0+ → 1+) transition strength V. CONCLUSIONS fromtheexcited0+statetothe1+groundversusthemagnetic dipolemomentµ(1+)ofthegroundstatein6Li.Asbefore,we WehavepresentedabinitioIT-NCSMcalculationsforthe considerthefullsetofinteractionsforarangeofmodelspace spectroscopy of p-shell nuclei using a large set of different truncations Nmax = 4,6,8,and 10. One should note that the chiralNN+3Ninteractions.Inthiswayweaddressedthesen- rangeof B(M1)andµpresentedintheplot, coveringaround sitivityofexcitationspectraandelectromagneticobservables 7% relative change in both observables, is very small com- to the input interactions, which constitutes a significant and paredtothetypicalvariationsoftheE2observablesdiscussed previouslyunexploredcontributiontothetheoryuncertainties before. This alreadyindicatesthatM1 observablesare more ofstate-of-the-artabinitiocalculations. Thevariationofthe robustwithrespecttointeractionandmodel-spacechoices. input interactions also provides yet unexplored insights into Thepictureregardingcorrelationsisalsodifferentfromthe thedetailsofnuclearstructure. E2observables,thecalculationsdonotcollapseona univer- We discussed the sensitivities of individual excitation en- sal correlation line. There are distinct groupsof points with ergiesandcomparedtheresultingtheoryuncertaintiestoex- very systematic trends. First, the calculations using chiral periment.Thisprovidesanimportantdiagnosticforthechiral NN+3N interactions (full symbols) are separated from cal- interactions,particularlyincaseofasystematicdisagreement culations with only chiral NN forces (open symbols). The with experiment beyond the uncertainties obtained from the inclusionof thechiral3N interactionreducesthe dipolemo- differentinteractions. Anexampleistheexcitationenergyof mentsystematicallybyabout1%, simultaneouslythe B(M1) the first 1+ state in 12C, wherethe sensitivity to the different isreducedbyasimilaramount.Second,withincreasingN chiralNN+3Ninteractionsismuchsmallerthanthedeviation max theB(M1)strengthissystematicallyreduced,whilethedipole fromexperiment.Thiswillbeanimportanttestcasefornext- momentremainspracticallyconstant. Third,thedifferentin- generationchiralinteractions. putHamiltoniansforfixedN giveverysimilarresultsasin- Forelectromagneticobservablesthevariationoftheunder- max dicatedbythegroupsofsame-coloredopenorfullsymbolsin lyinginteractionandofthemodel-spacetruncationallowedus Fig.8. Insummary,bothobservablesarerobustwithrespect toidentifyrobustcorrelationsbetweenpairsofE2observables tothechoiceofchiralNN+3Ninteractionbuttheyareinflu- mergingfromabinitiocalculations,whichcanbeinterpreted encedbythechiral3Nforce.Thedipolemomentisconverged intermsofarigidrotormodel.Thesecorrelationsofferanew whiletheB(M1)showsasystematicdecreasewithincreasing toolto extractaccurate predictionsfor ab initio calculations. 10 By combiningthe theoreticallypredictedcorrelationsof two thatexploitthefullpotentialofchiralEFT. observableswithasingleexperimentaldatumforoneobserv- able we can extracta value for the second observablethat is far more accurate and robustthan any directab initio result. ACKNOWLEDGMENTS Anexampleisthequadrupolemomentofthefirstexcited2+ statein12C,thatwepredicttobeQ(2+) = (5.91±0.25)efm2 We thank Marina Petri and Alfredo Povesfor helpfuldis- basedontheexperimentalvalueoftheassociatedB(E2). cussions. This work is supported by the DFG throughgrant SFB1245,theHelmholtzInternationalCenterforFAIR(HIC Thisworkisapreparatorysteptowardsafullquantification forFAIR),theBMBFthroughcontracts05P15RDFN1(NuS- oftheoryuncertaintiesbasedonconsistentinputsfromchiral TAR.DA) and 05P2015(NuSTAR R&D). TRIUMF receives EFT.Forexample,usingthenewfamilyofchiralinteractions fundingviaacontributionthroughtheCanadianNationalRe- from LO to N4LO developed within the LENPIC collabora- searchCouncil. Numericalcalculationshavebeenperformed tion[5,6,8],wewillbeabletostudytheorder-by-ordersys- at the computing center of the TU Darmstadt (LICHTEN- tematics of nuclear observables and thus propagate the EFT BERG),attheJu¨lichSupercomputingCentre,attheLOEWE- uncertaintiesconsistentlytothelevelofnuclearstructureob- CSCFrankfurt,andattheNationalEnergyResearchScientific servables. Includingtwo-bodycurrentsand consistentSRG- ComputingCenter supportedby the Office of Science of the evolutionfortheelectromagneticobservableswillbeanother U.S. Department of Energy under Contract No. DE-AC02- important milestone towards precision ab initio calculations 05CH11231. [1] E.Epelbaum,Prog.Part.Nucl.57,654(2006). [18] H.Krebs,E.Epelbaum, andU.-G.Meißner,Eur.Phys.J.A32, [2] E.Epelbaum,H.-W.Hammer, andU.-G.Meißner,Rev.Mod. 127(2007). Phys.81,1773(2009). [19] B.R.Barrett,P.Navra´til, andJ.P.Vary,Prog.Part.Nucl.69, [3] R.MachleidtandD.R.Entem,Phys.Rep.503,1(2011). 131(2013). [4] A. Gezerlis, I. Tews, E. Epelbaum, S. Gandolfi, K. Hebeler, [20] P.Navra´til,S.Quaglioni,I.Stetcu, andB.Barrett,J.Phys.G: A. Nogga, and A. Schwenk, Phys. Rev. Lett. 111, 032501 Nucl.Part.Phys.36,083101(2009). (2013). [21] P.Navra´til, V.G.Gueorguiev, J. P.Vary, W.E.Ormand, and [5] E.Epelbaum, H.Krebs, and U.-G.Meißner, Phys. Rev.Lett. A.Nogga,Phys.Rev.Lett.99,042501(2007). 115,122301(2015). [22] S.C.PieperandR.B.Wiringa,Ann.Rev.Nucl.Part.Sci.51, [6] E.Epelbaum,H.Krebs, andU.-G.Meißner,Eur.Phys.J.A51, 53(2001). 53(2015). [23] R. B. Wiringa and S. C. Pieper, Phys. Rev. Lett. 89, 182501 [7] Low-Energy Nuclear Physics International Collaboration (2002). (LENPIC),seehttp://www.lenpic.org. [24] S.C.Pieper,R.B.Wiringa, andJ.Carlson,Phys.Rev.C70, [8] S. Binder, A. Calci, E. Epelbaum, R. J. Furnstahl, J. Golak, 054325(2004). K.Hebeler,H.Kamada, H.Krebs, J.Langhammer, S.Liebig, [25] A.G.TaubeandR.J.Bartlett,TheJournalofChemicalPhysics P. Maris, U.-G. Meißner, D. Minossi, A. Nogga, H. Potter, 128,044110(2008). R.Roth,R.Skibin´ski,K.Topolnicki,J.P.Vary, andH.Witała [26] I.ShavittandR.J.Bartlett,Many-BodyMethodsinChemistry (LENPICCollaboration),Phys.Rev.C93,044002(2016). andPhysics: MBPTandCoupled-ClusterTheory(Cambridge [9] B.D.Carlsson,A.Ekstro¨m,C.Forsse´n,D.F.Stro¨mberg,G.R. UniversityPress,2009). Jansen,O.Lilja,M.Lindby,B.A.Mattsson, andK.A.Wendt, [27] G.Hagen, T.Papenbrock, D.J.Dean, andM.Hjorth-Jensen, Phys.Rev.X6,011019(2016). Phys.Rev.C82,034330(2010). [10] A. Ekstro¨m, G. Baardsen, C. Forsse´n, G. Hagen, M. Hjorth- [28] G.Hagen,M.Hjorth-Jensen,G.R.Jansen,R.Machleidt, and Jensen,G.R.Jansen,R.Machleidt,W.Nazarewicz,T.Papen- T.Papenbrock,Phys.Rev.Lett.108,242501(2012). brock,J.Sarich, andS.M.Wild,Phys.Rev.Lett.110,192502 [29] S.Binder,P.Piecuch,A.Calci,J.Langhammer,P.Navra´til, and (2013). R.Roth,Phys.Rev.C88,054319(2013). [11] A. Ekstro¨m, G. R. Jansen, K. A. Wendt, G. Hagen, T. Pa- [30] S.Binder,J.Langhammer,A.Calci,P.Navra´til, andR.Roth, penbrock, B. D. Carlsson, C. Forsse´n, M. Hjorth-Jensen, Phys.Rev.C87,021303(R)(2013). P.Navra´til, and W.Nazarewicz, Phys.Rev. C91, 051301(R) [31] S.Binder,J.Langhammer, A.Calci, andR.Roth,Phys.Lett. (2015). B736,119 (2014). [12] D. R. Entem and R. Machleidt, Phys. Rev. C 68, 041001(R) [32] V.Soma`,T.Duguet, andC.Barbieri,Phys.Rev.C84,064317 (2003). (2011). [13] P.Navra´til,FewBodySyst.41,117(2007). [33] A.Cipollone,C.Barbieri, andP.Navra´til,Phys.Rev.Lett.111, [14] E.Epelbaum,W.Glo¨ckle, andU.-G.Meißner,Eur.Phys.J.A 062501(2013). 19,401(2004). [34] V.Soma`,A.Cipollone,C.Barbieri,P.Navra´til, andT.Duguet, [15] E.Epelbaum, W.Glo¨ckle, andU.-G.Meißner,Nucl.Phys.A Phys.Rev.C89,061301(R)(2014). 747,362(2005). [35] K.Tsukiyama,S.K.Bogner, andA.Schwenk,Phys.Rev.Lett. [16] E. Epelbaum, A. Nogga, W. Glo¨ckle, H. Kamada, U.-G. 106,222502(2011). Meißner, andH.Witała,Phys.Rev.C66,064001(2002). [36] H.Hergert,S.K.Bogner,S.Binder,A.Calci,J.Langhammer, [17] V.Bernard,E.Epelbaum,H.Krebs, andU.-G.Meißner,Phys. R.Roth, andA.Schwenk,Phys.Rev.C87,034307(2013). Rev.C77,064004(2008).