ebook img

Semistable abelian varieties over Q PDF

23 Pages·2004·0.2 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Semistable abelian varieties over Q

manuscriptamath.113,507–529(2004) ©Springer-Verlag2004 FrankCalegari Q Semistable abelian varieties over Received:2October2002/RevisedVersion:17November2003 Publishedonline:3March2004 Abstract. WeprovethatforN =6andN =10,theredonotexistanynon-zerosemista- bleabelianvarietiesoverQwithgoodreductionoutsideprimesdividingN.Ourresultsare contingentontheGRHdiscriminantboundsofOdlyzko.Combinedwithrecentresultsof Brumer–KramerandofSchoof,thisresultisbestpossible:ifN issquarefree,thereexists anon-zerosemistableabelianvarietyoverQwithgoodreductionoutsideprimesdividing N preciselywhenN ∈/ {1,2,3,5,6,7,10,13}. 1. Introduction In 1985, Fontaine [3] proved a conjecture of Shafarevich to the effect that there donotexistanynonzeroabelianvarietiesoverZ(orequivalently,abelianvarieties A/Qwithgoodreductioneverywhere).Fontaine’sapproachwasviafinitegroup schemesoverlocalfields.Inparticular,heprovedthefollowingtheorem: Theorem1.1(Fontaine).LetG beafiniteflatgroupschemeoverZ killedby(cid:1). (cid:1) (cid:1) LetL=Q (G ):=Q (G (Q )).Then (cid:1) (cid:1) (cid:1) (cid:1) (cid:1) 1 v(DL/Q(cid:1))<1+ (cid:1)−1 where v is the valuation on L such that v((cid:1)) = 1, and DL/Q(cid:1) is the different of L/Q . (cid:1) IfG istherestrictionofsomefiniteflatgroupschemeG/ZthenQ(G)isafortiori (cid:1) unramified at primes outside (cid:1). In this context, the result of Fontaine is striking sinceitimpliesthatthefieldQ(G)hasparticularlysmallrootdiscriminant.IfA/Q has good reduction everywhere, then it has a smooth proper Ne´ron model A/Z, andG := A[(cid:1)]/Zisafiniteflatgroupscheme.Usingthediscriminantboundsof Odlyzko [8], Fontaine showed that for certain small primes (cid:1), for every n, either A/Zorsomeisogenousabelianvarietyhasarational(cid:1)n-torsionpoint.ReducingA modulopforsomeprimepofgoodreduction(inthiscase,anyprime),onefinds abelianvarietiesoverF withatleast(cid:1)nrationalpoints.Oneknows,however,that p F. Calegari: Department of Mathematics, Harvard University, Cambridge, MA 02138, USA.e-mail:[email protected] MathematicsSubjectClassification(2000):14K15 DOI:10.1007/s00229-004-0445-1 508 F.Calegari isogenous abelian varieties over F have an equal and thus bounded number of p points.ThiscontradictionprovesthatA/Qcannotexist. IfoneconsidersabelianvarietiesA/QsuchthatAhasgoodreductionoutside asingleprimep,onecannolongerexpectnonexistenceresults.Indeed,thereexist abelian varieties with good reduction everywhere except at p. One such class of examplesaretheJacobiansofmodularcurvesX (pn),whichhavepositivegenus 0 foreveryp andsufficientlylargen.Anaturalsubclassofabelianvarieties,how- ever,arethesemistableones.ByconsideringthemodularabelianvarietiesJ (N), 0 onefindsnonzerosemistableabelianvarietiesoverQwhichhavegoodreduction outsideN forallsquarefreeN ∈/ {1,2,3,5,6,7,10,13}.Areasonableconjecture tomakeisthattherearenosemistableabelianvarietiesoverZ[1/N]forN inthis set.Fontaine’sTheoremisthecaseN =1.RecentlyBrumerandKramer[1]proved this statement for N ∈ {2,3,5,7}, and (by quite different methods) Schoof [12] for N ∈ {2,3,5,7,13}. In this paper, we treat the remaining cases N ∈ {6,10}, andprovethefollowingtheorems: Theorem1.2.Let A/Q be an abelian variety with everywhere semistable reduc- tion,andgoodreductionoutside2and3.IftheGRHdiscriminantboundsofOdlyzko hold,thenAhasdimension0. Theorem1.3.Let A/Q be an abelian variety with everywhere semistable reduc- tion,andgoodreductionoutside2and5.IftheGRHdiscriminantboundsofOdlyzko hold,thenAhasdimension0. WenotethatinFontaine[3],Brumer–Kramer[1]andSchoof[12],theGRHisnot assumed.Ourtechniqueforprovingtheseresultsislinkedstronglytotheideasin Brumer–Kramer[1]andSchoof[12],andthusweconsideritimportanttobriefly recallthemainideasofthesepapersnow.Schoof’sapproachissimilarinspiritto Fontaine’s.InsteadofworkingwithfiniteflatgroupschemesoverZ,oneconsiders finite flat group schemes over Z[1], where p is prime. In order to restrict to the p classofgroupschemespossiblyarisingfromnon-semistableabelianvarieties,one usesthefollowingfactduetoGrothendieck([4],Expose´ IX,Prop.3.5): Theorem1.4(Grothendieck).LetAbeanabelianvarietyoverQwithsemistable reductionatp.LetI ⊂ Gal(Q/Q)denoteachoiceofinertiagroupatp.Then p theactionofI onthe(cid:1)n-divisionpointsofAfor(cid:1)(cid:3)=pisranktwounipotent;i.e., p asanendomorphism,forσ ∈I , p (σ −1)2A[(cid:1)n]=0. Inparticular,I actsthroughitsmaximalpro-(cid:1)quotient,whichisprocyclic. p Thus one may restrict attention to finite flat group schemes G/Z[1] of (cid:1)-power p ordersuchthatinertiaatp actsthroughitsmaximalpro-(cid:1)quotient.Thekeystep ofSchoof’sapproachistoshowthatanysuchgroupschemeadmitsafiltrationby thegroupschemesZ/(cid:1)Zandµ .Usingthisfiltration,alongwithvariousextension (cid:1) results(inthespiritofMazur[9],inparticularProposition2.1pg.49andPropo- sition4.1pg.58)forgroupschemesoverZ[1],oneshowsasinFontainethatfor p SemistableabelianvarietiesoverQ 509 eachn,someabelianvarietyisogenoustoAhasrationaltorsionpointsoforder(cid:1)n. TheapproachofBrumerandKramerisquitedifferent.Although,asinSchoofand Fontaine, they use discriminant bounds to control Q(A[(cid:1)]) for particular (cid:1), they seekacontradictionnottoanylocalboundsbuttoatheoremofFaltings.Namely, theyconstructinfinitelymanypairwisenonisomorphicbutisogenousabelianvari- eties,contradictingthefinitenessofthisset(asfollowsfromFaltings[2],Satz6, pg.363).Theessentialdifferenceinthetwoapproaches,however,isthatBrumer andKramerusetheexplicitdescriptionoftheTatemoduleT ofAataprimepof (cid:1) semistablereduction.SuchadescriptionisoncemoreduetoGrothendieck[4]. Both of these approaches fail (at least na¨ıvely) to work when N = 6 or 10. Using Schoof’s approach one runs into a problem (when N = 10) because µ 3 admits non-isomorphic finite flat group scheme extensions by Z/3Z over Z[ 1 ], 10 whereasnonontrivialextensionsexistovereitherZ[1]orZ[1].Onedifficultythat 2 5 arises in Brumer and Kramer’s approach is that the field Q(A[3]) fails to have a unique prime above the bad primes 2 or 5, as fortuitously happens in the cases theyconsider.Wecombinebothmethods,aswellassomenewideas,toproveour results.InthenextsectionwerecallsomedefinitionsandresultsfromBrumerand Kramer’spaper. 1.1. Notation Letp beaprimenumber.LetD = Gal(Q /Q )denotethelocalGaloisgroup p p p atp.ForaGaloisextensionofglobalfieldsL/Q,wedenoteadecompositiongroup at p by D (L/Q). This is well defined up to conjugation, or equivalently, up to p anembeddingL(cid:3)→Q whichweshallfixwhennecessary.Inthesamespirit,let p I = Gal(Q /Qunr),andletI (L/Q)beaninertiagroupatp asasubgroupof p p p p D (L/Q)andofGal(L/Q).OnenotesthatI isnormalinD .ForanyD -module p p p p M,letMdenoteM/(cid:1)M;itisaD -modulekilledby(cid:1).WeshalluseM(cid:1)todenote p aGal(Q/Q)-modulekilledby(cid:1)constructedfunctoriallyfromM.A“finite”group schemeG/RwillalwaysmeanagroupschemeGfiniteandflatoverSpecR.For ˆ anabelianvarietyA,letAdenotethedualabelianvariety. 2. LocalConsiderations 2.1. Preliminaries In this section we introduce some notation and results from the paper of Brumer andKramer[1]. LetA/Qbeanabelianvarietyofdimensiond >0withsemistablereductionat p.Let(cid:1)beaprimedifferentfromp,andconsidertheTatemoduleT (A/Q ).Let (cid:1) p Mf(p) = T(cid:1)(A/Qp)Ip,andletMt(p)bethesubmoduleofT(cid:1)(A/Qp)orthog- onaltoM (p)(Aˆ)undertheWeilparing f e:T (A)×T (Aˆ)−→Z (1). (cid:1) (cid:1) (cid:1) 510 F.Calegari InBrumerandKramer,thesemoduleswerereferredtoasM andM respectively. 1 2 Followingasuggestion,weuseinsteadthehopefullymoresuggestivenotationM f (f forfiniteorfixed)andM (tfortoric).SinceAissemistable,thereareinclusions t 0⊆M (p)⊆M (p)⊆T (A/Q ). t f (cid:1) p SinceI isnormalinD ,thegroupsM (p)andM (p)areD =Gal(Q /Q )- p p f t p p p modules.LetA/ZbetheNe´ronmodelforA.LetA0 betheconnectedcomponent F p of the special fibre of A at p. It is an extension of an abelian variety of dimen- sion a by a torus of dimension t = d −a . One has rank(M (p)) = t and p p p t p rank(M (p))=t +2a =d+a . f p p p Definition2.1(Brumer–Kramer).LetAbeanabelianvarietywithbadreductionat p.Leti(A,(cid:1),p)denotetheminimalintegern≥1suchthatQ (A[(cid:1)n])isramified p atp.Calli(A,(cid:1),p)the“effectivestageofinertia”. Wenotethati(A,(cid:1),p)isfinitebythecriterionofNe´ron–Ogg–Shafarevich. Let (cid:4) (p) = (A/A0)(F ) be the component group of A at p. For a finite A p groupG,letord (G)denotethelargestexponentd suchthat(cid:1)d dividestheorder (cid:1) ofG.Recallthefollowingresultfrom[1]: Theorem2.2(Brumer–Kramer). Let A be a semistable abelian variety with bad reduction at p. Let M (p) and M (p) denote the projections of M (p) and f t f M (p)toA[(cid:1)].Supposethatκ isaGal(Q /Q )-submoduleofA[(cid:1)]andletφ : t p p A−→A(cid:7)beaQ -isogenywithkernelκ.Then p ord(cid:1)((cid:4)Aˆ(cid:7)(p))−ord(cid:1)((cid:4)Aˆ(p))=dim(κ∩Mt(p))+dim(κ∩Mf(p))−dim κ. Moreover,ifM (p)⊆κ ⊆M (p),theni(A(cid:7),(cid:1),p)=i(A,(cid:1),p)+1. t f Bytakingκ tobeaproperGal(Q/Q)submoduleofA[(cid:1)],BrumerandKramer usethistheoremtoconstructinfinitelymanynon-isomorphicvarietiesisogenous toAoverQ.ThiscontradictsFaltings’Theorem.AlthoughweshallalsouseFal- tings’Theorem, our final contradiction will come from showing that A (or some isogenousabelianvariety)hastoomanypointsoversomefinitefield,contradicting Weil’sRiemannhypothesis,muchasintheapproachofSchoof[12].Weshallalso makeuseofthefollowinglemma. Lemma2.3.Let σ ∈ I . The image of (σ −1) acting on T (A) lies in M (A). p (cid:1) t Theimageof(σ −1)onA[(cid:1)]liesinM (p). t Proof. Lety∈M (p)(Aˆ),andx∈T (A).Thene((σ−1)x,y)=e(xσ,y)/e(x,y). f (cid:1) Sincebothy andZ (1)arefixedbyσ,weconcludethat (cid:1) e((σ −1)x,y)=e(xσ,yσ)/e(x,y)=e(x,y)σ/e(x,y)=1. Thus (σ −1)x ∈ M (p).The second statement of Lemma 2.3 follows from the t first. (cid:9)(cid:10) SemistableabelianvarietiesoverQ 511 2.2. Results InprovingTheorem1.2(or1.3),wemayassumethatAhasbadreductionatboth 2 and 3 (respectively, both 2 and 5), since otherwise we may apply the previous resultsofBrumer–Kramer[1],Schoof[12],orFontaine[3]. TheproofofTheorem1.3isverysimilartotheproofofTheorem1.2,although some additional complications arise. Thus we restrict ourselves first to the case N = 6,andthenlaterexplainhowourproofcanbeadaptedtoworkforN = 10. Onemainingredientisthefollowingresult,provedinsection3: Theorem2.4.LetG/Z[1]beafinitegroupschemeof 5-powerordersuchthat: 6 1.Inertiaat2and3actsthroughacyclic5-group. 2.TheactionofinertiaonthesubquotientsG[5n](Q)/G[5n−1](Q)isthroughan order5quotientforalln. AssumetheGRHdiscriminantboundsofOdlyzko.ThenGhasafiltrationbythe groupsch√emes√Z/5Zandµ5.Moreover,ifGiskilledby5,thenQ(G)⊆K,where K :=Q(52, 53,ζ ). 5 Inparticular,ifA/Qisasemistableabelianvarietywithgoodreductionoutside 2and3,andA/ZisitsNe´ronmodel,thenbyTheorem1.4theconditionsofTheo- rem2.4aresatisfiedbythefinitegroupschemeA[5n]/Z[1]foreachn.ThusA[5n] 6 has a filtration by the group schemes Z/5Z and µ , and Q(A[5]) ⊆ K. These 5 resultsandtheirproofsareofthesameflavourasresultsinSchoof[12].Onesuch resultfromthatpaperweuseexplicitlyisthefollowing(aspecialcaseofTheorem 3.3andtheproofofCorollary3.4inloc.cit.): Theorem2.5(Schoof).Letp = 2 or3.LetG/Z[1]beafinitegroupschemeof p 5-power order such that inertia at p acts through a cyclic 5-group. Then G has a filtration by the group schemes Z/5Z and µ . Moreover, the extension group 5 Ext1(µ ,Z/5Z) of group schemes over Z[1] is trivial, and there exists an exact 5 p sequenceofgroupschemes 0−→M −→G−→C −→0 whereM isadiagonalizablegroupschemeoverZ[1],andC isaconstantgroup p scheme. Insections2.3,2.4and2.5weshallassumethereexistsasemistableabelian varietyA/Z[1],andderiveacontradictionusingTheorem2.4. 6 2.3. ConstructionofGaloisSubmodules TheproofofBrumerandKramerreliesonthefactthatforabelianvarietieswith badsemistablereductionatoneprimep ∈ {2,3,5,7},thereexistsan(cid:1)suchthat thereisauniqueprimeabovepinQ(A[(cid:1)]).Inthiscase,theD -modulesM (p) p f and M (p) are automatically Gal(Q/Q)-modules, and so one has a source of t Gal(Q/Q)-moduleswithwhichtoapplyTheorem2.2.Thisapproachfailsinour 512 F.Calegari case,(atleastif(cid:1)=5)sinceTheorem2.4allowsthepossibilitythatQ(A[5])could beasbigasK :=Q(21/5,31/5,ζ ),and2and3splitinto5distinctprimesinO . 5 K On the other hand, something fortuitous does happen, and that is that the inertia subgroupsI (K/Q)forp =2,3arenormalsubgroupsofGal(K/Q),whenapri- p oritheyareonlynormalsubgroupsofD (K/Q).Usingthisfactwemayconstruct p globalGaloismodulesfromthelocalD (K/Q)-modulesM (p)asfollows. p f Lemma2.6.Let F = Q(A[(cid:1)]), (cid:8) = Gal(F/Q), and H ⊆ (cid:8) be a normal sub- group of (cid:8). Let M be a subgroup of A[(cid:1)] fixed pointwise by H. Let M(cid:1)be the Gal(Q/Q)-submodulegeneratedbythepointsofM.ThenQ(M(cid:1)) ⊆ E,whereE isthefixedfieldofH. Proof. By Galois theory, it suffices to show that M(cid:1)is fixed by H.This result is a special case of the more general fact: If H is any normal subgroup of (cid:8), then any(cid:8)-modulegeneratedbyH-invariantelementsisitselfH-invariant.Anysumof elementsfixedbyH isclearlyfixedbyH.Thusitremainstoshowthatanyelement gP withg ∈(cid:8)isalsofixedbyH.Forthisweobservethat h(gP)=g(g−1hgP)=gP sinceg−1hg ∈H. (cid:9)(cid:10) Definition2.7.LetM(cid:1) (p)betheGal(Q/Q)-modulegeneratedbyM (p),con- f f sideredasasubgroupofA[(cid:1)]afterchoosingsomeembeddingQ(cid:3)→Q . p SinceallembeddingsQ (cid:3)→ Q differbyanautomorphismofQ,wefindthat p M(cid:1) (p) does not depend on the choice of embedding, although M (p) does, in f f general.We note that by Faltings theorem, there exist only finitely many abelian varietiesoverQisogenoustoA.Thusismakessensetochosearepresentativefrom theisogenyclassofAthatismaximal withrespecttoanywelldefinedproperty. Lemma2.8.Supposethatord5((cid:4)Aˆ(2))ismaximalamongstallabelianvarieties isogenoustoA.Then 1.A[5]isunramifiedat2 2.Thereisanexactsequence 0−→µm −→A[5]−→(Z/5Z)n −→0 5 withm+n=2d.Moreover,m=n=d. Similarly,ifAischosensuchthatord5((cid:4)Aˆ(3))ismaximal,thenA[5]isunramified at 3 and statement 2 still holds. Finally, A and any variety isogenous to A has ordinaryreductionat5. SinceI (K/Q)isanormalsubgroupofGal(K/Q),Lemma2.6impliesthat p Q(M(cid:1) (2))⊆Q(ζ ,31/5), Q(M(cid:1) (3))⊆Q(ζ ,21/5). f 5 f 5 WenowapplyTheorem2.2withκ =M(cid:1) (2).LetA(cid:7) =A/κ.SinceκisaGal(Q/Q) f moduleA(cid:7)isanabelianvarietyoverQ.Weseethat ord5((cid:4)Aˆ(cid:7)(2))−ord5((cid:4)Aˆ(2))=dim κ ∩Mt(2)+dim κ ∩Mf(2)−dim κ. SemistableabelianvarietiesoverQ 513 SincebyconstructionM (2)⊆M (2)⊆κ,therighthandsideisequalto t f 2d−dim κ ≥0. Yet from the maximality of ord5((cid:4)Aˆ(2)), it follows that 2d −dim κ ≤ 0.Thus dim κ = d, and in particular M(cid:1) (2) = κ = A[5].Thus by Lemma 2.6 A[5] is f unramifiedat2.Notethatthissameconstructioncanbeappliedmutatismutandis when2isreplacedby3.SinceA[5]isunramifiedat2,itfollowsfromastandard patchingargument([9],1.2(b),p.44)thatA[5]prolongstoafinitegroupscheme overZ[1].ThuswemaynowapplyTheorem2.5,andconcludethatthereexistsan 3 exactsequenceofgroupschemesoverZ[1] 3 0−→µm −→A[5]−→(Z/5Z)n −→0 5 wherem+n=2d.Itnowremainstoshowthatm=n=d. Let A(cid:7) = A/µm.The morphism A → A(cid:7) induces a proper map (Z/5Z)n = 5 A[5]/µm →A(cid:7).Byanfppfabeliansheafargument,weseethatthismapisacat- 5 egoricalmonomorphismandhencebyEGAIV 8.11.5([5])aclosedimmersion. 3 SpecializingtothefibreoverF wefindthat 5 (Z/5Z)n (cid:3)→A(cid:7) [5]. F 5 Thep-rankofthep-torsionsubgroupofanabelianvarietyoveranalgebraically closedfieldofcharacteristicpisatmostthedimensiond,withequalityonlyifA isordinaryatp.Thusn≤d.ApplyingthesameargumenttoAˆwefindthatm≤d andthusn=m=d,andAhasordinaryreductionat5.Sinceordinaryreduction ispreservedunderisogeny,wearedone. (cid:9)(cid:10) Wenowdivideourproofbycontradictionintotwocases.Inthefirstcasewe assume that A has mixed reduction at at least one of 2 or 3 (i.e. the connected componentofthespecialfibreistheextensionofanon-trivial abelianvarietyof dimensiona (cid:3)= 0byatorusofdimensiont = d −a ).Inthesecondcasewe p p p assumethatAhaspurelytoricreductionatboth2and3. 2.4. AhasMixedReductionat2or3 Let ord5((cid:4)Aˆ(2)) be maximal. Then from Lemma 2.8 there is an exact sequence overZ[1] 3 0−→µd −→A[5]−→(Z/5Z)d −→0. 5 If A has mixed reduction at 2 then a > 0, and M (2) has rank t + 2a = 2 f 2 2 d +a >d.Inparticular,κ :=M (2)∩µd isnontrivialanddefinesadiagonal- 2 f 5 izableGal(Q/Q)-submoduleofA[5](hereweusethefactthateverysubgroupof µd(Q)isGal(Q/Q)stable).WenowapplyTheorem2.2.LetA(cid:7) = A/κ.Wefind 5 that ord5((cid:4)Aˆ(cid:7)(2))−ord5((cid:4)Aˆ(2))=dim κ ∩Mt(2)+dim κ ∩Mf(2)−dim κ. 514 F.Calegari Sinceκ ⊆ Mf(2),thelasttwotermscancel,andord5((cid:4)Aˆ(cid:7)(2))isalsomaximal. Hence we may repeat this process, thereby constructing morphisms A −→ A(n) withlargerandlargerkernelsκ ,whereκ hasafiltrationbycopiesofthefinite n n groupschemeµ . 5 Lemma2.9.Anyextensionofdiagonalizablegroupschemesof5-powerorderover Z[1]isdiagonalizable. 6 Proof. By taking Cartier duals, it suffices to prove the analogous statement for constantgroupschemes:Anyextensionof5-powerorderconstantgroupschemes overZ[1]isconstant.TheactionofGal(Q/Q)onanysuchextensionisunramified 6 outside2and3,andactsviaa5-group.Sincep-groupsaresolvable,itsufficesto provethattherearenoGalois5-extensionsofQunramifiedoutside2and3.Easy classfieldtheory(forexample,theKronecker–Webertheorem)showsthatnosuch extensionsexist. (cid:9)(cid:10) Thuswehaveproventhatforalln,thereexistexactsequences 0−→κ −→A[5k(n)]−→M −→0. n n whereκ isadiagonalizablegroupscheme,k(n)thesmallestintegersuchthat5k(n) n ˆ ∨ killsκ ,andM isthecokernel.HencethevarietyA/M containsthearbitrarily n n n ∨ largeconstantgroupschemeκ ,andso,afterchoosingsomeauxiliaryprimeq of n goodreduction,weseethat(Aˆ/M∨)(F )canbearbitrarilylarge.Thiscontradicts n q theuniformboundednessofthenumberofpointsoverF forallvarietiesisogenous q ˆ toA(indeed,thenumberofpointsforallsuchvarietiesisequal). IfAdoesnothavepurelytoricreductionat3,asimilarargumentapplies. 2.5. AhasPurelyToricReductionat2and3 Underthisassumption,forp ∈{2,3},wehaveM (p)=M (p),andsowewrite t f both as M(p).Again we assume that ord5((cid:4)Aˆ(2)) is maximal. In particular, we mayassumethatM(cid:1)(2)=A[5],thatQ(A[5])iscontainedinQ(ζ ,31/5),andthat 5 wehaveanexactsequenceofgroupschemesoverZ[1]: 3 0−→µd −→A[5]−→(Z/5Z)d −→0. 5 ByabuseofnotationwemayalsothinkofthisasanexactsequenceofGal(Q/Q)- modules. Lemma2.10.TheGaloismodulesM(cid:1)(3)andµd coincide.Equivalently,thereis 5 anequalityofGaloismodules:M(cid:1)(3)=µd. 5 Proof. FirstweshowthatM(2)∩µd ={0}.Ifnot,thensincedim M(2)=d,the 5 moduleM(2)wouldnotsurjectonto(Z/5Z)d,andtheelementsofM(2)could SemistableabelianvarietiesoverQ 515 notpossiblygenerateA[5]asaGal(K/Q)-module1.Thusbydimensionconsider- ations,asaF -vectorspace,wehavethatA[5]=µd ⊕M(2). 5 5 LetL := Q(ζ ,31/5).Thenaswehavenoted,Q(A[5]) ⊆ L.Letσ generate 5 I (L/Q).FromGrothendieck’sTheorem(Theorem1.4),wehave(σ−1)2 =0as 3 anendomorphismonA[5].ThusM(2)+σM(2)isawelldefinedI -module.On 3 theotherhand,M(2)isaD (L/Q)-module,andI isasetofrepresentativesforthe 2 3 leftcosetsofD (L/Q)inGal(L/Q).ThusM(2)+σM(2)isaGal(L/Q)-module, 2 andso M(cid:1)(2)=M(2)+σM(2). SincedimF M(cid:1)(2) = dimF (A[5]) = 2d,bydimensionconsiderationsonemust 5 5 haveσM(2)∩M(2)=0. ThedecompositiongroupofL := Q(ζ ,31/5)at3istheentireGaloisgroup 5 Gal(L/Q),andtheinertiagroupI isequalto(cid:15)σ(cid:16).Weshowthatµd ⊂M(cid:1)(3)and 3 5 M(cid:1)(3)⊂µd. 5 SinceσM(2)∩M(2)={0},wehaveker(σ −1)∩M(2)={0}.Anelement killedbyσ−1isexactlyfixedbyI .ThustheonlyelementsofA[5]fixedbyI are 3 3 thoseinµd.Since(byLemma2.6)M(cid:1)(3)isunramifiedat3,wehaveM(cid:1)(3)⊆µd. 5 5 Ontheotherhand,|M(cid:1)(3)|≥|M(3)|=5d =|µd|.Thuswearedone. (cid:9)(cid:10) 5 WenowapplyTheorem2.2againwithκ =M(cid:1)(3)=µd.IfA(cid:7) =A/µd,then 5 5 sinceM(3)=M(cid:1)(3),wehavei(A(cid:7),5,3)=i(A,5,3)+1≥2.Ontheotherhand, weseefromtheexactsequenceforA[5]that(Z/5Z)d ⊂ A(cid:7)[5].ByTheorem2.4 andtheproofofLemma2.8weinferthatthereexistsanexactsequenceofgroup schemesoverZ[1]: 6 0−→(Z/5Z)d −→A(cid:7)[5]−→µd −→0. 5 ReplaceAbyA(cid:7).SinceQ(A[5])isunramifiedat3,weknowthatismustbecon- tainedwithinQ(ζ ,21/5).SinceAisordinaryat5,however,wemayprovemore. 5 Lemma2.11.ThefieldQ(A[5])isQ(ζ ).Thereisonlyoneprimeabove3inthe 5 extensionQ(A[5])/Q. Proof. ConsidertheactionofI onA[5].ByLemma2.8,Aisordinaryat5.Thus 5 A[5]asanI -moduleisanextensionofaconstantmoduleofrankd byacyclo- 5 tomicmoduleofrankd.The(Z/5Z)d insideA[5]mustintersecttriviallywiththis cyclotomic module. Thus it provides a splitting of A[5] as an I -module into a 5 productofacyclotomicmoduleandaconstantmodule.ThusQ (A[5])isunrami- 5 fiedoverQ (ζ ).ThemaximalextensionofQ(ζ )insideKunramifiedat1−ζ is 5 5 5 5 Q(ζ ,181/5).SinceQ(A[5])isalsounramifiedover3(asi(A,5,3)≥2),Q(A[5]) 5 must be exactly Q(ζ ).The second statement of the lemma clearly follows from 5 thefirst. (cid:9)(cid:10) 1 Another way to reduce to the case where M(2)∩µd = {0} is as follows: if this 5 intersection was nontrivial, we could take quotients repeatedly until the resulting inter- sectionwastrivial.Ifthisprocessrepeatedindefinitely,wecouldapplytheargumentsof section2.4toproduceacontradiction. 516 F.Calegari ThesecondpartofLemma2.11impliesthatM(3)isaGal(Q/Q)-module,as in [1].ApplyingTheorem 2.2 once more, with κ = M(cid:1)(3) = M(3), and setting A(cid:7) =A/κ,wefindthat i(A(cid:7),5,3)=i(A,5,3)+1≥3. ReplaceAbyA(cid:7).Inparticular,Q(A[52])isunramifiedat3.ThusbyTheorem2.5 thereexistsafiltrationofgroupschemesoverZ[1]: 2 0−→M −→A[52]−→C −→0 whereM isadiagonalizablegroupscheme,andCisaconstantgroupscheme.Let q ∈Zbeaprimeofgoodreduction.WeobservethatthevarietiesA/MandAˆ/C∨ contain constant subgroup schemes of order #C and #M respectively. It follows fromWeil’sRiemannHypothesisthatabelianvarietiesofdimensiondoverF have √ √ √ q atmost(1+ q)2d points.Thus#C ≤(1+ q)2d and#M ≤(1+ q)2d,and √ 54d =#A[52]=#C#M ≤(1+ q)4d. √ Choosingq = 7,say,thensince5 > 1+ 7,wehaveacontradictionifd > 0. ThiscompletestheproofofTheorem1.2exceptforTheorem2.4,whichweprove now. 3. GroupSchemesoverZ[1/6] First,somepreliminaryremarksongroupschemes.HerewefollowSchoof[12]. Let((cid:1),N)=1.LetC bethecategoryoffinitegroupschemesGoverZ[1/N] satisfyingthefollowingproperties: 1. Giskilledby(cid:1):G=G[(cid:1)]. 2. Forallp|N,theactionofσ ∈I onG(Q )iseithertrivialorcyclicoforder(cid:1). p p Forexample,Z/(cid:1)Zandµ areobjectsofC.Asremarkedin[12],thiscategoryis (cid:1) closedunderdirectproducts,flatsubgroupsandflatquotients.Thus,toprovethat anyobjectofChasafiltrationbyZ/(cid:1)Zandµ itsufficestoshowthattheonlysim- (cid:1) pleobjectsofCareZ/(cid:1)Zandµ .IfA/Qisasemistableabelianvarietywithgood (cid:1) reduction at primes not dividing N, then fromTheorem 1.4, we have A[(cid:1)] ∈ C. AnotherclassofexamplesarethegroupschemesG definedbyKatz–Mazur([7] (cid:9) Chapter 8, Interlude 8.7, [12]); for any unit (cid:9) ∈ Z[1/N] they construct a group scheme G ∈ C of order (cid:1)2 killed by (cid:1). G is an extension of Z/(cid:1)Z by µ , and (cid:9) (cid:9) (cid:1) G (Q)=Q(ζ ,(cid:9)1/(cid:1)). (cid:9) (cid:1) LetN = 6and(cid:1) = 5.ToprovethattheonlysimpleobjectsofC areµ and 5 Z/5Z,itsufficestoshowthattheQpointsofanyobjectofC aredefinedoverthe fieldK,whereK =Q(ζ ,21/5,31/5),becauseofthefollowingresult: 5 Lemma3.1.LetG/Z[1/N]beasimplegroupschemekilledby(cid:1),where(N,(cid:1))= 1. Let L = Q(G(Q)) and suppose that Gal(L/Q(ζ )) is an (cid:1)-group. Then G is (cid:1) eitherZ/(cid:1)Zorµ . (cid:1)

Description:
abelian varieties over Fp with at least n rational points. One knows, however, that F. Calegari: Department of Mathematics, Harvard University, Cambridge, MA 02138,
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.