ebook img

Seminaire De Probabilites XXXVIII PDF

403 Pages·2005·2.252 MB·English-French
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Seminaire De Probabilites XXXVIII

1857 Lecture Notes in Mathematics Editors: J.--M.Morel,Cachan F.Takens,Groningen B.Teissier,Paris Subseries: InstitutdeMathe´matiques,Universite´deStrasbourg Adviser:J.-L.Loday ´ M. Emery M. Ledoux M. Yor (Eds.) Se´minaire de Probabilite´s XXXVIII 123 Editors MichelE´mery MarcYor InstitutdeRecherche LaboratoiredeProbabilite´s Mathe´matiqueAvance´e etMode`lesAle´atoires Universite´LouisPasteur Universite´PierreetMarieCurie 7,rueRene´Descartes Boˆıtecourrier188 67084StrasbourgCedex,France 4placeJussieu 75252ParisCedex05,France e-mail:[email protected] MichelLedoux LaboratoiredeStatistiques etProbabilite´s Universite´PaulSabatier 118,routedeNarbonne 31601ToulouseCedex,France e-mail:[email protected] LibraryofCongressControlNumber:2004115715 MathematicsSubjectClassification(2000):60Gxx,60Hxx,60Jxx ISSN0075-8434LectureNotesinMathematics ISSN0720-8766Se´minairedeProbabilite´s ISBN3-540-23973-1SpringerBerlinHeidelbergNewYork DOI:10.1007/b104072 Thisworkissubjecttocopyright.Allrightsarereserved,whetherthewholeorpartofthematerialis concerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation,broadcasting, reproductiononmicrofilmorinanyotherway,andstorageindatabanks.Duplicationofthispublication orpartsthereofispermittedonlyundertheprovisionsoftheGermanCopyrightLawofSeptember9, 1965, initscurrentversion,andpermissionforusemustalwaysbeobtainedfromSpringer.Violationsareliable forprosecutionundertheGermanCopyrightLaw. SpringerisapartofSpringerScience+BusinessMedia http://www.springeronline.com (cid:1)c Springer-VerlagBerlinHeidelberg2005 PrintedinGermany Theuseofgeneraldescriptivenames,registerednames,trademarks,etc.inthispublicationdoesnotimply, evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevantprotectivelaws andregulationsandthereforefreeforgeneraluse. Typesetting:Camera-readyTEXoutputbytheauthors 41/3142/du-543210-Printedonacid-freepaper C’est avec gratitude et admiration que nous d´edions ce volume `a Jacques Az´ema, `a l’occasion de son 65e anniversaire. Ses travaux, parmi lesquels ceux sur le retournement du temps, le balayage, les ferm´es al´eatoires et bien suˆr la martingale d’Az´ema, ont prolong´e, toujours avec originalit´e et ´el´egance, la th´eorie g´en´eraledes processus. Sonapparente d´econtraction,sa r´eellerigueur et ses incessantesquestions (“hishealthyskepticism”,commel’´ecrivaitJ.WalshdansTempsLocaux),ont ´et´eindissociablesduS´eminairedeProbabilit´espendantdenombreusesann´ees. We are also indebted and grateful to Anthony Phan, whose patient and time-consuming work behind the scene, up to minute details, on typography, formatting and TEXnicalities, was a key ingredient in the production of the present volume. Volume XXXIX, whichconsists ofcontributions dedicatedto the memory of P. A. Meyer, is being prepared at the same time as this one and should appear soon, also in the Springer LNM series. It may be considered as a companion to the special issue, also in memory of Meyer, of the Annales de l’Institut Henri Poincar´e. Finally, the R´edaction of the S´eminaire is thoroughly modified: J. Az´ema retiredfromourteamafterS´eminaireXXXVIIwascompleted;now,following his steps, two of us—M. Ledoux and M. Yor—are also leaving the board. From volume XL onwards, the new R´edaction will consist of Catherine Donati-Martin(Paris),MichelE´mery(Strasbourg),AlainRouault(Versailles) andChristopheStricker(Besan¸con).Thecombinedexpertiseofthenewmem- bers of the board will be an important asset to blend the themes which are traditionally studied in the S´eminaire together with the newer developments in Probability Theory in general and Stochastic Processes in particular. M. E´mery, M. Ledoux, M. Yor Table des Mati`eres Processus de L´evy Tanaka’s construction for random walks and L´evy processes Ronald A. Doney ................................................ 1 Some excursion calculations for spectrally one-sided L´evy processes Ronald A. Doney ................................................ 5 A martingale review of some fluctuation theory for spectrally negative L´evy processes Andreas E. Kyprianou, Zbigniew Palmowski ......................... 16 A potential-theoretical review of some exit problems of spectrally negative L´evy processes Martijn R. Pistorius ............................................. 30 Some martingales associated to reflected L´evy processes Laurent Nguyen-Ngoc, Marc Yor ................................... 42 Generalised Ornstein–Uhlenbeck processes and the convergence of L´evy integrals K. Bruce Erickson, Ross A. Maller................................. 70 Autres expos´es Spectral gap for log-concave probability measures on the real line Pierre Foug`eres.................................................. 95 VIII Table des Mati`eres Propri´et´e de Choquet–Deny et fonctions harmoniques sur les hypergroupes commutatifs Laurent Godefroy ................................................124 Exponential decay parameters associated with excessive measures Mioara Buiculescu ...............................................135 Positive bilinear mappings associated with stochastic processes Valentin Grecea..................................................145 An almost sure approximation for the predictable process in the Doob–Meyer decomposition theorem Adam Jakubowski ................................................158 On stochastic integrals up to infinity and predictable criteria for integrability Alexander Cherny, Albert Shiryaev .................................165 Remarks on the true no-arbitrage property Yuri Kabanov, Christophe Stricker .................................186 Information-equivalence: On filtrations created by independent increments Hans Bu¨hler.....................................................195 Rotations and tangent processes on Wiener space Moshe Zakai ....................................................205 Lp multiplier theorem for the Hodge–Kodaira operator Ichiro Shigekawa.................................................226 Gaussian limits for vector-valued multiple stochastic integrals Giovanni Peccati, Ciprian A. Tudor ................................247 Derivatives of self-intersection local times Jay Rosen ......................................................263 On squared fractional Brownian motions Nathalie Eisenbaum, Ciprian A. Tudor .............................282 Regularity and identification of generalized multifractional Gaussian processes Antoine Ayache, Albert Benassi, Serge Cohen, Jacques L´evy V´ehel .....290 Failure of the Raikov theorem for free random variables Florent Benaych-Georges..........................................313 Table des Mati`eres IX A sharp small deviation inequality for the largest eigenvalue of a random matrix Guillaume Aubrun ...............................................320 The tangent space to a hypoelliptic diffusion and applications Fabrice Baudoin .................................................338 Homogenizationof a diffusionwithlocallyperiodiccoefficients Abdellatif Bench´erif-Madani, E´tienne Pardoux .......................363 Tanaka’s Construction for Random Walks and L´evy Processes Ronald A. Doney Department of Mathematics, University of Manchester Oxford Road,Manchester, UK M13 9PL e-mail: [email protected] Summary. Tanaka’s construction gives a pathwise construction of “random walk conditioned to stay positive”, and has recently been used in [3] and [8] to establish other results about this process. In this note we give a simpler proof of Tanaka’s construction using a method which also extendsto thecase of L´evy processes. 1 The random walk case If S is any rw starting at zero which does not drift to −∞, we write S∗ for S killed at time σ := min(n (cid:1) 1 : S (cid:2) 0), and S↑ for the for the harmonic n transformofS∗ whichcorrespondsto “conditioningS to staypositive”.Thus for x>0,y >0, and x=0 when n=0 P(S↑ ∈dy|S↑ =x)= V(y) P(S ∈dy|S =x)= V(y) P(S ∈dy−x), n+1 n V(x) n+1 n V(x) 1 (1) where V is the renewalfunction in the weak increasing ladder process of−S. In [10], Tanaka showed that a process R got by time-reversing one by one the excursions below the maximum of S has the same distribution as S↑; specifically if {(T ,H ),k (cid:1)0} denotes the strict increasing ladder process of k k S (with T =H ≡0) then R is defined by 0 0 T(cid:1)k+1 R =0, R =H + Y , T <n(cid:2)T , k (cid:1)0. (2) 0 n k i k k+1 i=Tk+1+Tk+1−n If S drifts to +∞, then it is well known (see [9]) that the post-minimum process (cid:2) (cid:3) −→ S :=(S −S , n(cid:1)0), where J =max n:S =minS (3) J+n J n r r(cid:1)n alsohas the distributionof S↑. Inthis casea very simple argumentwas given −→ in[7]toshowthatthedistributionsofRand S agree,thusyieldingaproofof M.E´mery,M.Ledoux,andM.Yor(Eds.):LNM1857, pp.1–4,2005. (cid:1)c Springer-VerlagBerlinHeidelberg2005

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.