Lecture Notes in Mathematics 2078 Séminaire de Probabilités Catherine Donati-Martin Antoine Lejay Alain Rouault Editors Séminaire de Probabilités XLV Lecture Notes in Mathematics 2078 Editors: J.-M.Morel,Cachan B.Teissier,Paris Forfurthervolumes: http://www.springer.com/series/304 Catherine Donati-Martin Antoine Lejay (cid:2) Alain Rouault Editors Se´minaire de Probabilite´s XLV 123 Editors CatherineDonati-Martin AntoineLejay Universite´deVersailles-StQuentin Nancy-Universite´,INRIA Versailles,France Vandoeuvre-le`s-Nancy,France AlainRouault Universite´deVersailles-StQuentin Versailles,France ISBN978-3-319-00320-7 ISBN978-3-319-00321-4(eBook) DOI10.1007/978-3-319-00321-4 SpringerChamHeidelbergNewYorkDordrechtLondon LectureNotesinMathematicsISSNprintedition:0075-8434 ISSNelectronicedition:1617-9692 LibraryofCongressControlNumber:2013941134 MathematicsSubjectClassification(2010):60-XX,60JXX,60J60,60J10,60J65,60J55,46L54 (cid:2)c SpringerInternationalPublishingSwitzerland2013 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped.Exemptedfromthislegalreservationarebriefexcerptsinconnection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’slocation,initscurrentversion,andpermissionforusemustalwaysbeobtainedfromSpringer. PermissionsforusemaybeobtainedthroughRightsLinkattheCopyrightClearanceCenter.Violations areliabletoprosecutionundertherespectiveCopyrightLaw. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. While the advice and information in this book are believed to be true and accurate at the date of publication,neithertheauthorsnortheeditorsnorthepublishercanacceptanylegalresponsibilityfor anyerrorsoromissionsthatmaybemade.Thepublishermakesnowarranty,expressorimplied,with respecttothematerialcontainedherein. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) Preface The series of advanced courses, initiated in Se´minaire de Probabilite´s XXXIII, continueswithacourseofIvanNourdinonGaussianapproximationsbyMalliavin calculus. The Se´minaire also occasionally publishes a series of contributions on somegiventheme;inthisspirit,someparticipantsfromSeptember2011Conference on Stochastic Filtrations, held in Strasbourg and organized by Michel E´mery, have contributed to this volume. The rest of the volume covers a wide range of themes, such as stochastic calculus and Markov processes, random matrices and free probability, and combinatorial optimization. These contributions come from thespontaneoussubmissionsorweresolicitedbytheeditors. WeremindthatthewebsiteoftheSe´minaireis http://portail.mathdoc.fr/SemProba/ andthatallthearticlesoftheSe´minairefromVolumeIin1967toVolumeXXXVI in2002arefreelyaccessiblefromthewebsite http://www.numdam.org/numdam-bin/feuilleter?j=SPS WethanktheCelluleMathDocforhostingallthesearticleswithintheNUMDAM project. Versailles,France C.Donati-Martin Vandoeuvre-le`s-Nancy,France A.Lejay Versailles,France A.Rouault v Contents PartI SpecializedCourse LecturesonGaussianApproximationswithMalliavinCalculus ........... 3 IvanNourdin PartII OtherContributions SomeSufficientConditionsfortheErgodicityoftheLe´vy Transformation................................................................... 93 VilmosProkaj Vershik’sIntermediateLevelStandardnessCriterion andtheScaleofanAutomorphism............................................. 123 Ste´phaneLaurent FiltrationsIndexedbyOrdinals;ApplicationtoaConjecture ofS.Laurent...................................................................... 141 ClaudeDellacherieandMichelE´mery APlanarBorelSetWhichDividesEveryNon-negligibleBorel Product............................................................................ 159 MichelE´mery CharacterisingOconeLocalMartingaleswithReflections.................. 167 JeanBrossardandChristopheLeuridan ApproximationandStabilityofSolutionsofSDEsDriven byaSymmetric˛StableProcesswithNon-LipschitzCoefficients......... 181 HiroyaHashimoto PathPropertiesandRegularityofAffineProcessesonGeneral StateSpaces....................................................................... 201 ChristaCuchieroandJosefTeichmann vii viii Contents LangevinProcessReflectedonaPartiallyElasticBoundaryII............. 245 EmmanuelJacob WindingsofPlanarStableProcesses........................................... 277 R.A.DoneyandS.Vakeroudis AnElementaryProofthattheFirstHittingTimeofanOpen SetbyaJumpProcessisaStoppingTime .................................... 301 AlexanderSokol CatalyticBranchingProcessesviaSpineTechniques andRenewalTheory............................................................. 305 LeifDo¨ringandMatthewI.Roberts MalliavinCalculusandSelfNormalizedSums ............................... 323 SolesneBourguinandCiprianA.Tudor ANoteonStochasticCalculusinVectorBundles ............................ 353 PedroJ.Catuogno,DiegoS.Ledesma,andPauloR.Ruffino FunctionalCo-monotonyof Processes with Applications toPeacocksandBarrierOptions............................................... 365 GillesPage`s FluctuationsoftheTracesofComplex-ValuedRandomMatrices ......... 401 SalimNoreddine FunctionalsoftheBrownianBridge ........................................... 433 JanoschOrtmann E´tudespectraleminutieusedeprocessusmoinsinde´cisquelesautres..... 459 LaurentMicloetPierreMonmarche´ CombinatorialOptimizationOverTwoRandomPointSets................ 483 FranckBartheandCharlesBordenave ASimpleProofofDuquesne’sTheoremonContourProcesses ofConditionedGalton–WatsonTrees.......................................... 537 IgorKortchemski Part I Specialized Course