ebook img

Seminaire de Probabilites XLIX PDF

544 Pages·2018·3.376 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Seminaire de Probabilites XLIX

Lecture Notes in Mathematics 2215 Séminaire de Probabilités Catherine Donati-Martin  Antoine Lejay · Alain Rouault Editors Séminaire de Probabilités XLIX Lecture Notes in Mathematics 2215 Editors-in-Chief: Jean-MichelMorel,Cachan BernardTeissier,Paris AdvisoryBoard: MichelBrion,Grenoble CamilloDeLellis,Princeton AlessioFigalli,Zurich DavarKhoshnevisan,SaltLakeCity IoannisKontoyiannis,Athens GáborLugosi,Barcelona MarkPodolskij,Aarhus SylviaSerfaty,NewYork AnnaWienhard,Heidelberg Moreinformationaboutthisseriesathttp://www.springer.com/series/304 Catherine Donati-Martin (cid:129) Antoine Lejay (cid:129) Alain Rouault Editors Séminaire de Probabilités XLIX 123 Editors CatherineDonati-Martin AntoineLejay LaboratoiredeMathématiquesdeVersailles InstitutElieCartandeLorraine UniversitéVersaillesSaint-Quentin Vandoeuvre-les-Nancy,France Versailles,France AlainRouault LaboratoiredeMathématiquesdeVersailles UniversitéVersaillesSaint-Quentin Versailles,France ISSN0075-8434 ISSN1617-9692 (electronic) LectureNotesinMathematics ISBN978-3-319-92419-9 ISBN978-3-319-92420-5 (eBook) https://doi.org/10.1007/978-3-319-92420-5 LibraryofCongressControlNumber:2018950488 MathematicsSubjectClassification(2010):60G,60J,60K ©SpringerNatureSwitzerlandAG2018 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictional claimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Preface In this 49th volume we continue to offer a good sample of the main streams of currentresearch on probabilityand stochastic processes, in particular those active in France. All the contributions come from spontaneous submissions and their diversityillustratesthegoodhealthofthisbranchofmathematics. Since the publication of the 48th volume, we have received two sad pieces of news: Jacques Neveu, former professor at the Université Pierre et Marie Curie and École Polytechnique, passed away on May 15, 2016. His influence on the strong development of probability in France was huge. For details and testimonies, we referto“HommagesàJacquesNeveu”,asupplementtoMatapli112,52pp.,2017, seethewebsitehttp://smai.emath.fr/IMG/pdf/Matapli_J_Neveu.pdf. RonGetoor,professorattheUniversityofCalifornia,SanDiego,passedawayon October28,2017.Hewasaleaderinthegrowthofprobabilitytheory.Fordetails, seethewebsitehttps://www.math.ucsd.edu/memorials/ronald-getoor/. BothofthempublishedexcellentbooksandcontributionstoTheSéminaire.We would like to remind the reader that the website of the Séminaire is http://sites. mathdoc.fr/SemProba/ and that all the articles of the Séminaire from Volume I (1967)toVolumeXXXVI(2002)arefreelyaccessiblefromthewebsitehttp://www. numdam.org/actas/SPS. WethanktheCelluleMathDocforhostingthesearticleswithintheNUMDAM project. Versailles,France CatherineDonati-Martin Vandoeuvre-lès-Nancy,France AntoineLejay Versailles,France AlainRouault v Contents 1 Ornstein-UhlenbeckPinball and the Poincaré Inequality inaPuncturedDomain .................................................... 1 Emmnuel Boissard, Patrick Cattiaux, Arnaud Guillin, andLaurentMiclo 2 AProbabilisticLookatConservativeGrowth-Fragmentation Equations.................................................................... 57 FlorianBouguet 3 IteratedProportionalFittingProcedureandInfiniteProducts ofStochasticMatrices...................................................... 75 J.BrossardandC.Leuridan 4 Limiting Eigenvectors of Outliers for Spiked Information-Plus-NoiseTypeMatrices .................................. 119 MireilleCapitaine 5 CriteriaforExponentialConvergencetoQuasi-Stationary DistributionsandApplicationstoMulti-DimensionalDiffusions..... 165 Nicolas Champagnat,Koléhè AbdoulayeCoulibaly-Pasquier, andDenisVillemonais 6 Bismut-Elworthy-LiFormulaeforBesselProcesses.................... 183 HenriEladAltman 7 LargeDeviationsforInfectiousDiseasesModels ....................... 221 PeterKratzandEtiennePardoux 8 TheGirsanovTheoremWithout(SoMuch)StochasticAnalysis ..... 329 AntoineLejay 9 OnDriftingBrownianMotionMadePeriodic .......................... 363 PaulMcGill vii viii Contents 10 OntheMarkovianSimilarity ............................................. 375 LaurentMiclo 11 SharpRatefortheDualQuantizationProblem......................... 405 GillesPagèsandBenediktWilbertz 12 Cramér’sTheoreminBanachSpacesRevisited ........................ 455 PierrePetit 13 OnMartingaleChaoses.................................................... 475 B.Rajeev 14 ExplicitLawsfortheRecordsofthePerturbedRandomWalk onZ .......................................................................... 495 LaurentSerlet 15 A Potential Theoretic Approach to Tanaka Formula forAsymmetricLévyProcesses........................................... 521 HiroshiTsukada Chapter 1 Ornstein-Uhlenbeck Pinball and the Poincaré Inequality in a Punctured Domain EmmnuelBoissard,PatrickCattiaux,ArnaudGuillin,andLaurentMiclo Abstract In this paper we study the Poincaré constant for the Gaussian measure restrictedtoD =Rd −BwhereBisthedisjointunionofboundedopensets.We willmainlylookatthecasewheretheobstaclesareEuclideanballsB(x ,r )with i i radiir ,orhypercubeswithverticesoflength2r ,andd ≥ 2.Thiswillexplainthe i i asymptoticbehaviorofad-dimensionalOrnstein-Uhlenbeckprocessinthepresence ofobstacleswithelasticnormalreflections(theOrnstein-Uhlenbeckpinball). Keywords Poincaréinequalities · Lyapunovfunctions · Hittingtimes · Obstacles MSC2010 26D10,39B62,47D07,60G10,60J60 1.1 Introduction Inorderto understandthe goalofthepresentpaperletusstartwith a wellknown question: how many non overlapping unit discs can be placed in a large square S? This problem of discs packing has a very long history including the following otherquestion:isitpossibletoperformanalgorithmyieldingtoaperfectlyrandom configurationofN suchdiscsatasufficientlyquickrate(exponentialforinstance)? ThisisoneoftheoriginoftheMetropolisalgorithmsasrefereedin[16]. The meaning of perfectly random is the following: the configuration space for the modelis SN, describingthe locationofthe N centersofthe N discsB(x ,1), i E.Boissard·P.Cattiaux((cid:2))·L.Miclo InstitutdeMathématiquesdeToulouse,CNRSUMR5219,UniversitéPaulSabatier,Toulouse Cedex,France e-mail:[email protected];[email protected] A.Guillin LaboratoiredeMathématiques,CNRSUMR6620,UniversitéBlaisePascal,Aubière,France e-mail:[email protected] ©SpringerNatureSwitzerlandAG2018 1 C.Donati-Martinetal.(eds.),SéminairedeProbabilitésXLIX, LectureNotesinMathematics2215,https://doi.org/10.1007/978-3-319-92420-5_1 2 E.Boissardetal. but under the constraints d(x ,∂S) ≥ 1 and for all i (cid:3)= j, |x − x | ≥ 2. The i i j remaining domain D is quite complicated, and randomness is described by the uniformmeasureonD. Theanswertothesecondquestionispositive,essentiallythankstocompactness, buttheexponentintheexponentialrateofconvergenceisstronglyconnectedwith thePoincaréconstantfortheuniformmeasureonD whichis,atthepresentstage, fartobeknown(theonlyknownupperboundsaredisastrous). One can of course ask the same questions replacing the square by the whole Euclideanspace,andtheuniformmeasurebysomenaturalprobabilitymeasure,for instancetheGaussianone.ButthistimeeventhefinitenessofthePoincaréconstant isnomoreclear.Averypartialstudy(N =2,3)ofthisproblemisdonein[15]. In all cases, the probability measure under study, and supported by the com- plicated state space D is actually an invariant(even reversible)measure for some Markovian dynamics, one can study by itself, and which furnishes a possible algorithm.TheboundaryofDbecomesareflectingboundaryforthedynamics. In this paper we intend to study the asymptotic behavior of a d-dimensional Ornstein-Uhlenbeck process in the presence of bounded obstacles with elastic normal reflections (looking like a random pinball). The choice of an Ornstein- Uhlenbeck(henceofaninvariantmeasureofGaussiantype)ismadeforsimplicity as it capturesalreadyall the new difficultiesof this setting, buta generalgradient driftdiffusionprocess(satisfyinganordinaryPoincaréinequality)couldbeconsid- ered. Of course for the packing problem in the whole space the obstacles are not bounded,but it seems interesting to look first at the present setting. Our modelis alsomotivatedbyothersconsiderationsweshallgivelater. All over the paper we assume that d ≥ 2. We shall mainly consider the ∞ case where the obstacles are non overlapping Euclidean balls or smoothed l balls (hence smoothed hypercubes) of radius ri and centers (xi)1≤i≤N≤+∞, as overlappingobstaclescouldproducedisconnecteddomainsandthusnonuniqueness of invariant measures (as well as no Poincaré inequality). We shall also look at differentformsofobstacleswhenitcanenlightenthediscussion. To be more precise, consider for 1 ≤ N ≤ +∞, X = (xi)1≤i≤N≤+∞ a locally finite collection of points, and (ri)1≤i≤N≤+∞ a collection of non negative realnumbers,satisfying |x −x |>r +r fori (cid:3)=j. (1.1) i j i j TheOrnstein-Uhlenbeckpinballwillbegivenbythefollowingstochasticdifferen- tialsystemwithreflection (cid:2) (cid:3) dXt =(cid:4)dWt − λXtdt + i(Xt −xi)dLit, (1.2) Lit = 0t 1|Xs−xi|=ridLis.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.