ebook img

Séminaire d’Algèbre Paul Dubreil Paris 1975–1976 (29ème Année) PDF

194 Pages·1977·3.736 MB·French-English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Séminaire d’Algèbre Paul Dubreil Paris 1975–1976 (29ème Année)

Lecture Notes ni Mathematics Edited by .A Dold and .B Eckmann 586 Seminaire d'AIg~bre Paul Dubreil Paris 1975-1976 (296me Annee) by Edited .M .P Malliavin galreV-regnirpS Berlin-Heidelberq • NewYork 7791 Editor Marie Paufe Malliavin Universite Pierre et Marie Curie, 10, rue Saint Louis en I'lle ?5004 Paris, France AMS Subject Classifications (1970): 10C20,13D20,13E20,13F20,14E20, 14F20, t6-02,17B20,18G20, 20C20, 20E20, 20M20, 32C20 ISBN 3-540-08243-3 Springer-Verlag Berlin • Heidelberg • New York ISBN 0-38?-08243-3 Springer-Verlag New York • Heidelberg • Berlin This work is subject to copyright. All rights are reserved, whether thew hole or part of the material is concerned, specifically those of translation, re- printing, re-use of illustrations, broadcasting, reproduction by photocopying machine or similar means, dna storage in data banks. Under § 54 of the German Copyright waL where copies era made for other than private a use, fee is to payable the publisher, the amount of the fee to eb with the publisher. agreement by determined © by Springer-Verlag Berlin - Heidelberg 7791 Printed ni Germany Printing dna binding: Offsetdruck, Hemsbach/Bergstr. Beltz 012345-0413/1412 A C'est ne erbmevon 1947 qu'Albert ,TELETAHC Professeur ~ la fonda Sorbonne, le erianim~S" d'Alg~bre et ed Th~orie sed ."serbmoN Jusqu'en 1954, il ne partagea la direction avec Paul LIERBUD auquel vinrent s'adjoindre, nu na plus tard, Charles PISOT, puis Marie-Louise NITOCAJ-LIERBUD ne 1957 et ecno~L RUEISEL ne 1962. A partir ed 1971, ec s~minaire lot ~rcasnoc a uep pros tnemeuqinu ~ l'Alg~bre, Charles TOSIP ayant fondU, avec Hubert ,EGNALED nu s~minaire ed Th~orie sed .serbmoN siupeD la retraite ed Paul ,LIERBUD ne 1974, la direction ed ec S~minaire d'Alg~bre, rattach~ a l'Universit~ Pierre et Marie Curie (Paris Vl) est e~russa rap Marie-Paule .NIVAILLAM eL S~minaire s'efforce ed remplir deux r61es principaux : diffuser sed Theories actuelles encore uep seunnoc et xudonner a alg~bristes l'occasion d'exposer les progr~s r~cents iuq leur sont dus. nU puoc d'oeil rus la liste etelpmoc sed Conf6renciers (ci-dessous, rap ordre alphab~tique) permettra ed voir tnemmoc ec double objectif a 6t~ poursuivi : ABBOTT J. - ALMEIDA COSTA A, - AMARA M. - AMICE Y.-AMITSUR S,A, - ANSCOMBRE J.C. - AUBERT K,E, - AYOUB C. - AULT J. BAER R. - BARANANO E. - BASS H. - BASS J. - BEHANZtN L. - BEHRENS E,A. - BENABOU J. - BENOtS M. - BENZAGHOU 8. - BENZAKEN C. - BERAN L. - B.ERTIN J, E.- BERTRAND M. - BERTRANDIAS F. - BIGARD A. - BFRKHO'FF .G.- BLOCH R. - BLYTH T.S. BOASSON L, - BORUVAK O. - BOULAYE G,- BOUVIER A. - BRAUER R. - BROUE M. - BRZOZOWSKI D. BUCHSBAUM yD. A. - CAILLEAUD A. - CALAIS J, - CAZ~NESCU V.E. - CELEYRETTE I. - CHABAUTY. C-,- CHACRON M. - CHADEYRAS M. - CHAMARD J, Y. - CHAMFY Ch, - CHARLES B ,- CH~TELET F, - CLIFFORD A. H, - COELHO M. - COHN P.M. - CONRAD P, F. COURREGE Ph, - CRESTEY M. - CROISOT R. - CURZIO M. DAVENPORT H. - DECOMPS-GUILLOUX A, - DEHEUVELS R. - DELANGE H. - DESCOMBES R. - DESQ R. - DtEUDONNE I, - DJABALI M. - DLAB W. - DRESS. F. - DUBIKAITIS L. - DUBREIL P. - DUBREIL-JACOTIN M.L. - EGO M. - EISENBUD D, - ENGUEttART M. - EYMARD P. FAISANT A. - FERRANDON M. ~ FLEISCHER I.- FORT J. - FOSSUM R. M. FOUQUES A. - FUCHS L.-FARES N.- GABRIEL P. - GAUTHIER L. - GERENTE A. - GERMA M.CH. - GOLDIE A, W. - GRANDET-HUGOT Marthe - CRAPPY J. - GRILLET P.A. - GROSSWALD E.- GUERINDON J. - GUILLEVIN C. HACQUE M,- HERZ J. C, HOFMANN K.H. - HUDRY A, HUNTER R.P. - ISHAQ M. ~ JACOBSON N. - JAFFARD P. - IEBLI A. - JOULAIN C. - KAHANE J, P. - KALOUJNINE L. - KEGEL O H. - KEIMEL K. - KLASA J. - KLOCHIN E.R. KOLI BIAROKA B. - KOSKAS M.- KOSTANT B. - KRASNER M. - KRISHNAN V, - KRULL W. - KUNTZMANN J. - KUROS A.G.- LAFON J.P. - LALLEMENT G. - LAMBEK J, - LAMBOT de FOUGERES D. ~ LAPSCHER F.- LATSIS D. - LAZARD M. - LECH Ch.- LEDERMANN W. LEFEBVRE P. - LESIEUR L. - LEVY-BRUHL J. - LEVY-BRUHL P. - LICHTENBAUM S. - LOMBARDO-RADICE L. - MAC DONALD I.G. - MACLANE S, MC PHERSON R D. - MALEK M. MALLIAVIN-BRAMERET M.P. MARCHIONNA E. MAROT J. - MATRAS Y. - MATTENET G. - MAURY G. - MENDES-FRANCE M. - MERLIER Th.- MICALI A. - MICHEL J. - MILLER D.D. - MOLtNARO I. - MOTAIS de NARBONNE L, MUNN W.D.- NAGATA M.- NEUMAN B, H. - NICOLAS A. M. - NIVAT M. - NORTHCOTT D.G. - O CARROLL L, - OCHS A. - OEHMKE R. H, - ORTHEAU J.P. - PAUGAM M.- PAYAN J, J. - PEINADO R. E, - PERROT J.F. - PETIT J.C. - PERRIN D, - PETRESCO J. - PETR1CH M. - PIGHAT E.- PICKERT G. - PISOT Ch. - PITTI CH.- POITOU G. ~ PRESTON G.B. - RAFFIN R. - RAUZY G. - RAVEl_, J. - READ J.A, * REES D, - RENAULT G. - REVOY Ph.- RHODES J. - RIABUKHIN J.M.- RIBENBOIM P.- RIGUET J.- ROUX B.- RUEDIN J.- SAITO T.-vSAKAROVITCH J.- SALLES D.- SAMUEL P,- SCH~JTZENBERGER M. P, - SCHWARZ B.- SCOTT D. B.- SERRE J. p.- SPRINGER T, A.- STEINFELD O.- STROOKER J.- SZPIRO L. IV TAFT E. J. - TAMARI D. - TAMURA T - TE1SSIER-GUILLEMOT M, - THIBAULT R. - THIERRIN G,- TISSERON C1.- VA'N DER WAERDEN B.L.- VAN METER K, M.- VIDAL R. - VIENNOT G.- VINCENT Ph VORS, G. = WASCHNITZER G= WILLE R,- WOLFENSTEIN S. - ZARISKI O,- ZERVOS S.- ZISMAN M,- Table des Mati~res DAVID EISENBUD : Enriched free resolutions and change of rings . . . . . . . . . . . . . . DAVID EISENBUD : Solution du probl@me de Serre par Quillen-Suslin . . . . . . . . . . . . oE MAHARG EVANS Jr. : A generalized principal ideal theorem with applications to intersection theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 DRAREG TNEMELLAL : Sur les produits amalgam@s de monoTdes . . . . . . . . . . . . . . . . . 25 DRAHREG .O MICHLER : Small projective modules of finite groups . . . . . . . . . . . . . . . . 34 BORIS NOZEHSIOM : Algebraic surfaces and 4-manifolds . . . . . . . . . . . . . . . . . . . 43 ANNE-MARIE NICOLAS : Sur les conditions de chaines ascendantes dans des groupes ab@liens et des modules sans torsion . . . . . . . . . . . . . . . . . . . . . . . . 50 SNARF TROO : Singularities of coarse moduli schemes . . . . . . . . . . . . . . . . . 61 JULIEN ERREUQ : Sur les anneaux compl@tement integralement clos . . . . . . . . . . . . . 77 YNOT A. SPRINGER : Representations de groupes de Weyl et ~l#ments nilpotents d'alg@bres de Lie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 FLODUR RELHCSTNER : Comportement de l'application de Dixmier par rapport ~ l'anti automor- phisme principal pour des alg@bres de Lie compl@tement r@solubles .... 93 J.C. NOSBOR : Quotient categories and Weyl algebras . . . . . . . . . . . . . . . . I01 J 0 U R N E E S S U R L E S D E M I-G R 0 U P E S organis#es avec le concours de Jean-Frangois TORREP J.M. EIWOH : Sur les demi-groupes engendr#s par des idempotents . . . . . . . . . . II0 DRAREG JACOB : Semi-groupes lin~aires de rang born#. D~cidabilit# de la finitude . . 116 DRAREG TNEMELLAL : Presentations de mono#des et probl~m~algorithmiques . . . . . . . . . 136 F. PASTIJN et .H STREANYER : Semilattices of modules . . . . . . . . . . . . . . . . . . . . . . . . 145 DANIEL PERRIN : La representation ergodique des codes biprefixes . . . . . . . . . . . 156 J. SAKAROVITCH : Sur les groupes infinis, consid6r~s comme monoTdes syntaxiques de langages formels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168 H.J. SHYR et G. THIERRIN : Codes and binary relations . . . . . . . . . . . . . . . . . . . . . . . 180 ENRICHED FREE RESOLUTIONS AND CHANGE OF RINGS by David EISENBUD The author is grateful for the support of the Alfred P. Sloan foundation and the hospitality of the Institut des Hautes Etudes Scientifiques during the preparation of this work. Let A be a commutative local ring ang let B = A/I be a factor ring. In [B-El it is shown that any A-free resolution of B possesses the structure of a homotopy-associative, commutative differential graded algebra. This algebra structure, which generalizes the exterior algebra structure of the Koszul complex, can be quite useful in the analysis of free resolutions (The results of ~B-E~ are one example). The idea of its construction is as follows : If : .... -_~ 2 F ~ I F _._~ A is an A-free resolution of B , then $2(~) , the symmetric square of ~ , inherits the structure of a complex from F ~ F . The first few terms of $2(~ ) are as follows : .-. > / o / o F4 ~ A 2 F3 ~ A • 2 @ F A I > @ F A ~ S2(A) 7 ° , I °. • ~ 3 ~ F F] > 2 ~ F I F ^2F I A J o / ~ s2(F )2 ... The natural isomorphism F. ~ A ~ F. extends, uniquely up to homotopy, i l to a map of complexes $2(~ ) ~ , and this map, combined with the natural map : acts as the multiplication map for the algebra structure on ~ . What about the resolution of a module ? If M is an A-module annihilated by 1-that is, if M is a B = A/I -module- and if @ is a free resolution of M, then the natural map B ~A M M > extends, ~iquely up to homotopy, to a map : ~A ~ ..... > ~ which makes ~ into a homotopy associative, differential graded P-module. In [B-El we conjectured that the comparaison map $2(~ ) ~ ~ , above, could be chosen in such a way that the algebra structure on ~ is associative (not just up to homotopy). It seems reasonable to extend this and to conjecture that, with a suitable associative algebra structure on ~ , the resolution ~ can be made into an associative ~-module. Consider now the case in which I is generated by a regular sequence, so that • is the Koszul complex, which is naturally an (associative) differential graded commutative algebra (in fact the underlying algebra is an exterior algebra). In this case it is easy to say what an F-module structure on ~ looks like (see Proposition I), and in certain cases-for example when the module M resolved by ~ is just the residue class field-it is clear that one exists. Noreover, if one examines the construction, due to Tare, of a B-free resolution of the residue class field from an A-free resolution, one sees that the data required by Tare to make the construction is equivalent to the data involved in constructing an F-module structure on ~ One problem in extending Tate's idea to resolution ~ of an arbitrary B-module N is the possible non-associativity of ~ . In this paper we will show (Theorem 2) how an analogue of Tate's construction can be carried through, for arbitrary ~ , (but always under the assumption that ~ is a Koszul complex) by considering not only the algebra structure on ~ but also a sort of "higher homo- topy associatlvmty . . ), that ~ satisfies even if it is not associative (Theorem I). It would be interesting to know the right generalization of this "higher homotopy associativity" for more general (perhaps non-associative) ~[ , and to know how, in general, to derive resolutions over B from resolutions over A (The evidence in [LevJ and [ArJ seems to point to the introduction of matric Massey products for this purpose). From now on, suppose that I = (x I ,..., x n) where I x ,...) Xn form an A-sequence. The minimal free resolution of B = A/I is then the Koszul complex : _ft- 0 .~ ~ n A > ...__~ 3 n A =~ ~ A2 An $ > n A ~ A . . Choose a basis I£ ''''' ~ can so that ~: .~ ~ .x 6A . The following is n l l immediate from the definition of a differential graded module : Proposition 1 - If : "" ~> kG ~> ~k-1 @Z "" is a differential ~rade~ &-mo&~le , th~q an assoc&#t~v8 ~ifferential ~raded A-module structure on ~ is equivalent to ~ set pf n maps 9f graded A-modules f~_o degree + I : s 1 ,..., Sn : ~ ~ ~ satisfying : (1) S.~ + ~S. = x. o 1 1 1 1 2 (2) s. s =- s s. , s = o . m 0 j i m Now if ~ is an A-free resolution of a B-medule M , then multiplication by x. is 0 in M , so x..1 : ~ >~ is homotopie to 0 ; to say that i I s. : @---~ ~ is a homotopy for x..1 is exactly condition (I) of the proposition, l 1 so maps satisfying condition (I) do indeed exist (Alternatively, these maps could be constructed by choosing a map of complexes ~ ^ @___>@ and regarding the induced map An ~ ~ --9 ~ as giving n maps ~ ~ @ of degree I). Unfortuneatly there is no reason why an arbitrarily choosen set of maps s. should satisfy (2). l On the other hand, the homotepy-uniqueness of the s. implies that l s s. - s.s. is at least homotopic to 0 . Theorem I extends this remark and tells 13 31 us what we may expect from a random choice of homotopies. We first introduce some multi-index conventions. A multi-index (of length n) is a sequence : 4= <~I ''''' 4n ~ where each ~. is an integer ~ 0 . We write : 1 0 = <0 ,..., 0 The order of a multi-index is : n |~I = ..7 ,~,. i=I x The sum 4 + ~ is defined as <~I + ~I ..... 4n + ~n TM " Theorem I - Let A be a riu~ and let M ~ ~ which is ~hi]ate~ by elements I x ,..., Xn£ A . SuDnose the ideal (x I ,..., Xn) contains a non zero divisor. If ~ is a free resolution of M , then there are endomorohisms s~ of deeTee 2 ~| -I of ~ as a a~raded module, $or each multi-index ~ , satisfvin~ : i) s is the differential of ~ ; o th ii) f~__I ~ is the multi-inde x 0 < ,..., 0,1,0 ,..., 0 > I( in the D place) then the map SoS ~ + S~ ° S is multiplication by x : J iii) If ~ is a multi-index with J~J~1 , then Z s %=0 Proof of theorem I. Beginning with the definition s ='~ , we will construct the o s by induction on J~l • Condition ii) is the assertion that s~ , for ~=<0 ,..., 0,1,0 ,..., O~ (with I in the jth-place) is a hemotopy for multiplication by x.. Since x.N = O, 3 0

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.