ebook img

Semiconductor physics and devices: basic principles [solutions manual] PDF

188 Pages·2003·1.708 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Semiconductor physics and devices: basic principles [solutions manual]

Semiconductor Physics and Devices: Basic Principles, 3rd edition Chapter 1 Solutions Manual Problem Solutions Chapter 1 F I Problem Solutions G4πr3J 4 atoms per cell, so atom vol. =4H K 3 1.1 (a) fcc: 8 corner atoms × 1/8 = 1 atom Then F I 6 face atoms × ‰ = 3 atoms G4πr3J 4H K Total of 4 atoms per unit cell 3 Ratio= ×100% ⇒ Ratio =74% (b) bcc: 8 corner atoms × 1/8 = 1 atom 16 2r3 1 enclosed atom = 1 atom (c) Body-centered cubic lattice Total of 2 atoms per unit cell 4 d =4r =a 3 ⇒a = r (c) Diamond: 8 corner atoms × 1/8 = 1 atom 3 6 face atoms × ‰ = 3 atoms F I 4 3 4 enclosed atoms = 4 atoms Unit cell vol. =a3 =H rK Total of 8 atoms per unit cell 3 F I G4πr3J 1.2 2 atoms per cell, so atom vol. =2H K 3 (a) 4 Ga atoms per unit cell Then 4 F I Density = b5.65x10−8g3 ⇒ 2HG4πr3KJ 3 Density of Ga =2.22x1022 cm−3 Ratio= F I ×100% ⇒ Ratio =68% 4r 3 H K 4 As atoms per unit cell, so that 3 Density of As =2.22x1022 cm−3 (d) Diamond lattice (b) 8 8 Ge atoms per unit cell Body diagonal =d =8r = a 3 ⇒a = r 3 8 Density = b g ⇒ F I 5.65x10−8 3 Unit cell vol. =a3 =H 8r K3 3 Density of Ge =4.44x1022 cm−3 F I G4πr3J 8 atoms per cell, so atom vol. 8H K 3 1.3 (a) Simple cubic lattice; a =2r Then F I Unit cell vol =a3 =(2r)3 =8r3 G4πr3J F I 8H K 1 atom per cell, so atom vol. =(1)HG4πr3KJ Ratio= F 3I ×100% ⇒ Ratio =34% 3 H 8r K3 Then 3 F I G4πr3J H K 1.4 3 Ratio= ×100% ⇒ Ratio=52.4% From Problem 1.3, percent volume of fcc atoms 8r3 is 74%; Therefore after coffee is ground, (b) Face-centered cubic lattice Volume =0.74cm3 d d =4r =a 2 ⇒ a = =2 2r 2 c h Unit cell vol =a3 = 2 2r 3 =16 2r3 3 Semiconductor Physics and Devices: Basic Principles, 3rd edition Chapter 1 Solutions Manual Problem Solutions Then mass density is 1.5 4.85x10−23 8 ρ= b g ⇒ (a) a =5.43 A° From 1.3d, a = r 2.8x10−8 3 3 ( ) ρ=2.21gm/cm3 a 3 5.43 3 so that r = = =1.18 A° 8 8 1.8 Center of one silicon atom to center of nearest neighbor =2r ⇒ 2.36 A° (a) a 3 =2(2.2)+2(1.8)=8 A° so that (b) Number density a =4.62 A° 8 = b g ⇒ Density =5x1022 cm−3 5.43x10−8 3 Density of A = b 1 g ⇒ 1.01x1022 cm−3 (c) Mass density 4.62x10−8 3 b g N(At.Wt.) 5x1022 (28.09) 1 = ρ= = ⇒ Density of B = b g ⇒ 1.01x1022 cm−3 N 6.02x1023 4.62x10−8 A ρ=2.33grams/cm3 (b) Same as (a) (c) Same material 1.6 1.9 (a) a =2r =2(1.02)=2.04 A° (a) Surface density A Now 1 1 = = b g ⇒ 2r +2r =a 3 ⇒2r =2.04 3−2.04 a2 2 4.62x10−8 2 2 A B B so that rB =0.747 A° 3.31x1014 cm−2 (b) A-type; 1 atom per unit cell Same for A atoms and B atoms 1 Density = b g ⇒ (b) Same as (a) 2.04x10−8 3 (c) Same material Density(A) =1.18x1023 cm−3 1.10 B-type: 1 atom per unit cell, so 1 (a) Vol density = Density(B) =1.18x1023 cm−3 a3 o 1 Surface density = 1.7 a2 2 (b) o (b) Same as (a) a =1.8+1.0⇒ a =2.8 A° (c) 1.11 1 2 Sketch Na: Density = b g =2.28x1022 cm−3 2.8x10−8 3 1.12 Cl: Density (same as Na) =2.28x1022 cm−3 (a) F I 1 1 1 (d) H , , K ⇒ (313) Na: At.Wt. = 22.99 1 3 1 Cl: At. Wt. = 35.45 (b) F I So, mass per unit cell 1 1 1 1 1 H , , K⇒ (121) (22.99)+ (35.45) 4 2 4 = 2 2 =4.85x10−23 6.02x1023 4 Semiconductor Physics and Devices: Basic Principles, 3rd edition Chapter 1 Solutions Manual Problem Solutions 1.13 2atoms (a) Distance between nearest (100) planes is: = b g ⇒ 9.88x1014 cm−2 4.50x10−8 2 d =a =5.63 A° (ii) (110) plane, surface density, (b)Distance between nearest (110) planes is: 2atoms 1 a 5.63 = b g ⇒ 6.99x1014 cm−2 d = a 2 = = 2 4.50x10−8 2 2 2 2 or (iii) (111) plane, surface density, F I d =3.98 A° H3⋅1+3⋅1K (c) Distance between nearest (111) planes is: = 6 2 = b 4 g 1 a 5.63 3 3 4.50x10−8 2 d = a 3 = = a2 3 3 3 2 or or 1.14x1015 cm−2 d =3.25 A° 1.15 1.14 (a) (a) (100) plane of silicon (cid:150) similar to a fcc, Simple cubic: a =4.50 A° surface density = b 2atomsg ⇒ (i) (100) plane, surface density, 5.43x10−8 2 1atom = b g ⇒ 4.94x1014 cm−2 6.78x1014 cm−2 4.50x10−8 2 (b) (ii) (110) plane, surface density, (110) plane, surface density, 1atom 4atoms = b g ⇒ 3.49x1014 cm−2 = b g ⇒ 9.59x1014 cm−2 2 4.50x10−8 2 2 5.43x10−8 2 (iii) (111) plane, surface density, (c) F I H1K 1 (111) plane, surface density, 3 atoms = 6 = 2 = 1 = b4atoms g ⇒ 7.83x1014 cm−2 1c h( ) 1 a 3 3a2 3 5.43x10−8 2 a 2 x ⋅a 2⋅ 2 2 2 1.16 1 = b g ⇒ 2.85x1014 cm−2 d =4r =a 2 3 4.50x10−8 2 then (b) ( ) 4r 4 2.25 Body-centered cubic a = = =6.364 A° (i) (100) plane, surface density, 2 2 (a) Same as (a),(i); surface density 4.94x1014 cm−2 4atoms (ii) (110) plane, surface density, Volume Density = b g ⇒ 2atoms 6.364x10−8 3 = b g ⇒ 6.99x1014 cm−2 2 4.50x10−8 2 1.55x1022 cm−3 (iii) (111) plane, surface density, (b) Distance between (110) planes, Same as (a),(iii), surface density 2.85x1014 cm−2 1 a 6.364 (c) = a 2 = = ⇒ Face centered cubic 2 2 2 (i) (100) plane, surface density or 5 Semiconductor Physics and Devices: Basic Principles, 3rd edition Chapter 1 Solutions Manual Problem Solutions 4.50 A° 1.20 b g (c) 5x1016 (30.98) Surface density (a) Fraction by weight ≈ b g ⇒ 2atoms 2 5x1022 (28.06) = = b g 2a2 2 6.364x10−8 2 1.10x10−6 or (b) Fraction by wbeightg 3.49x1014 cm−2 1018 (10.82) ≈ b g b g ⇒ 5x1016 (30.98)+ 5x1022 (28.06) 1.17 7.71x10−6 Density of silicon atoms =5x1022 cm−3 and 4 valence electrons per atom, so 1.21 Density of valence electrons 2x1023 cm−3 1 Volume density = =2x1015 cm−3 d3 1.18 So Density of GaAs atoms d =7.94x10−6 cm=794 A° 8atoms = b g =4.44x1022 cm−3 We have a =5.43 A° 5.65x10−8 3 O So An average of 4 valence electrons per atom, d 794 d = ⇒ =146 Density of valence electrons 1.77x1023 cm−3 a 5.43 a O O 1.19 2x1016 (a) Percentage = x100% ⇒ 5x1022 4x10−5% 1x1015 (b) Percentage = x100% ⇒ 5x1022 2x10−6% 6 Semiconductor Physics and Devices: Basic Principles, 3rd edition Chapter 2 Solutions Manual Problem Solutions Chapter 2 Problem Solutions p =5.4x10−25 kg−m/s h 6.625x10−34 2.1 Computer plot λ= = ⇒ p 5.4x10−25 2.2 Computer plot or λ=12.3 A° 2.3 Computer plot (ii) K.E. =T =100eV =1.6x10−17 J 2.4 p = 2mT ⇒ p =5.4x10−24 kg−m/s 2πx For problem 2.2; Phase = −ωt =constant h λ λ= ⇒ λ=1.23 A° Then p F I 2π⋅dx −ω=0 or dx =v = +ωH λK (b) Proton: K.E. =T =1eV =1.6x10−19 J λ dt dt p 2π b gb g p = 2mT = 2 1.67x10−27 1.6x10−19 2πx For problem 2.3; Phase = +ωt =constant or λ p =2.31x10−23 kg−m/s Then F I 2π dx dx λ h 6.625x10−34 ⋅ +ω=0 or =v = −ωH K λ= = ⇒ λ dt dt p 2π p 2.31x10−23 or 2.5 λ= 0.287 A° E =hν= hc ⇒λ= hc (c) Tungsten Atom: At. Wt. = 183.92 λ E For T =1eV =1.6x10−19 J b g Gold: E =4.90eV =(4.90) 1.6x10−19 J p = 2mT So b gb g b6.625x10−34gb3x1010g = 2(183.92) 1.66x10−27 1.6x10−19 λ= (4.90)b1.6x10−19g ⇒ 2.54x10−5 cm or p =3.13x10−22 kg =m/s or λ= 0.254 µm h 6.625x10−34 b g λ= = ⇒ Cesium: E =1.90eV =(1.90) 1.6x10−19 J p 3.13x10−22 or So b gb g 6.625x10−34 3x1010 λ=0.0212 A° λ= b g ⇒6.54x10−5 cm (1.90) 1.6x10−19 (d) A 2000 kg traveling at 20 m/s: p =mv =(2000)(20)⇒ or or λ= 0.654 µm p =4x104 kg−m/s 2.6 h 6.625x10−34 λ= = ⇒ (a) Electron: (i) K.E. =T =1eV =1.6x10−19 J p 4x104 b gb g or p = 2mT = 2 9.11x10−31 1.6x10−19 λ=1.66x10−28 A° or 9 Semiconductor Physics and Devices: Basic Principles, 3rd edition Chapter 2 Solutions Manual Problem Solutions 2.7 or E = 3kT = 3(0.0259)⇒ E =1.822x10−22 J ⇒ E =1.14x10−3 eV avg 2 2 Also b gb g or p=mv = 9.11x10−31 2x104 ⇒ E =0.01727eV avg p =1.822x10−26 kg−m/s Now Now p = 2mE avg avg h 6.625x10−34 b g b g λ= = ⇒ = 2 9.11x10−31 (0.01727) 1.6x10−19 p 1.822x10−26 or λ=364 A° p =7.1x10−26 kg−m/s (b) avg Now h 6.625x10−34 p = = ⇒ h 6.625x10−34 λ 125x10−10 λ= = ⇒ p 7.1x10−26 p =5.3x10−26 kg−m/s or Also λ=93.3 A° p 5.3x10−26 v = = =5.82x104 m/s m 9.11x10−31 2.8 or E =hν = hc v =5.82x106 cm/s p p λ Now p Now 1 1b gb g F I E = mv2 = 9.11x10−31 5.82x104 2 p2 h 1 G h J2 2 2 E = e and p = ⇒ E = H K or e 2m e λ e 2m λ e e E =1.54x10−21 J ⇒ E =9.64x10−3 eV Set E = E and λ =10λ p e p e Then F I F I 2.10 hc = 1 HG h KJ2 = 1 HG10hKJ2 hc b6.625x10−34gb3x108g λp 2m λe 2m λp (a) E =hν= λ = 1x10−10 which yields or λ = 100h E =1.99x10−15 J p 2mc Now b g hc hc 2mc2 E =e⋅V ⇒1.99x10−15 = 1.6x10−19 V E = E = = ⋅2mc= p λ 100h 100 so p b gb g V =12.4x103V =12.4 kV 2 9.11x10−31 3x108 2 = ⇒ b gb g 100 (b) p = 2mE = 2 9.11x10−31 1.99x10−15 So =6.02x10−23 kg−m/s E =1.64x10−15 J =10.3keV Then h 6.625x10−34 2.9 λ= = ⇒ λ=0.11 A° p 6.02x10−23 1 1b gb g (a) E = mv2 = 9.11x10−31 2x104 2 2 2 10 Semiconductor Physics and Devices: Basic Principles, 3rd edition Chapter 2 Solutions Manual Problem Solutions 2.11 (a) ∆p = h = 1.054x10−34 ⇒ (b) ∆t = 1.0b54x10−34g ⇒ ∆x 10−6 (1) 1.6x10−19 ∆p =1.054x10−28 kg−m/s or (b) ∆t =6.6x10−16 s F I hc p E = =hcH K = pc λ h 2.16 So (a) If Ψ(x,t) and Ψ (x,t) are solutions to b gb g 1 2 ∆E =c(∆p)= 3x108 1.054x10−28 ⇒ Schrodinger(cid:146)s wave equation, then or ∆E =3.16x10−20 J ⇒ ∆E =0.198eV −h2 ⋅∂2Ψ1(x,t)+V(x)Ψ(x,t)= jh∂Ψ1(x,t) 2m ∂x2 1 ∂t and 2.12 (a) ∆p = h = 1.054x10−34 ⇒ −2hm2 ⋅∂2Ψ∂2x(2x,t)+V(x)Ψ2(x,t)= jh∂Ψ2∂(tx,t) ∆x 12x10−10 Adding the two equations, we obtain ∆p =8.78x10−26 kg−m/s − 2 ∂2 h ⋅ Ψ(x,t)+Ψ (x,t) (b) b g 2m ∂x2 1 2 1 (∆p)2 1 8.78x10−26 2 +V(x) Ψ(x,t)+Ψ (x,t) ∆E = ⋅ = ⋅ ⇒ 1 2 2 m 2 5x10−29 ∂ ∆E =7.71x10−23 J ⇒ ∆E =4.82x10−4 eV = jh∂t Ψ1(x,t)+Ψ2(x,t) which is Schrodinger(cid:146)s wave equation. So Ψ(x,t)+Ψ (x,t) is also a solution. 2.13 1 2 (a) Same as 2.12 (a), ∆p =8.78x10−26 kg−m/s (b) If Ψ ⋅Ψ were a solution to Schrodinger(cid:146)s wave (b) 1 2 b g equation, then we could write 1 (∆p)2 1 8.78x10−26 2 − 2 ∂2 a f a f ∆E = ⋅ = ⋅ ⇒ h Ψ ⋅Ψ +V(x) Ψ ⋅Ψ 2 m 2 5x10−26 2m ∂x2 1 2 1 2 ∆E =7.71x10−26 J ⇒ ∆E =4.82x10−7 eV ∂ a f = jh Ψ ⋅Ψ ∂t 1 2 2.14 which can be written as L O ∆p = h = 1.054x10−34 =1.054x10−32 −h2 NMΨ ∂2Ψ2 +Ψ ∂2Ψ1 +2∂Ψ1 ⋅∂Ψ2QP ∆x 10−2 2m 1 ∂x2 2 ∂x2 ∂x ∂x L O ∆p 1.054x10−32 ∂Ψ ∂Ψ p =mv⇒ ∆v = = ⇒ +V(x)Ψ ⋅Ψ = jhNMΨ 2 +Ψ 1QP m 1500 1 2 1 ∂t 2 ∂t or Dividing by Ψ ⋅Ψ we find ∆v =7x10−36 m/s L 1 2 O −h2 NM 1 ⋅∂2Ψ2 + 1 ⋅∂2Ψ1 + 1 ∂Ψ1 ∂Ψ2QP 2m Ψ ∂x2 Ψ ∂x2 ΨΨ ∂x ∂x 2.15 2 1 L 1 2 O (a) ∆p = h = 1.054x10−34 ⇒ +V(x)= jhNM 1 ∂Ψ2 + 1 ∂Ψ1QP ∆x 10−10 Ψ ∂t Ψ ∂x 2 1 ∆p =1.054x10−24 kg−m/s 11 Semiconductor Physics and Devices: Basic Principles, 3rd edition Chapter 2 Solutions Manual Problem Solutions Since Ψ is a solution, then 2.19 1 z ∞ −h2 ⋅ 1 ⋅∂2Ψ1 +V(x)= jh⋅ 1 ⋅∂Ψ1 Note that Ψ⋅Ψ*dx =1 2m Ψ ∂x2 Ψ ∂t 0 1 1 Function has been normalized Subtracting these last two equations, we are left (a) Now w i−thh 2 LNM 1 ∂2Ψ2 + 2 ∂Ψ1 ∂Ψ2OQP P = aoz4LNM 2 expFHG−xIKJOQP2dx 2m Ψ ∂x2 ΨΨ ∂x ∂x a a 2 1 2 0 o F Io z = jh 1 ∂Ψ2 = 2 ao 4expHG−2xKJdx Ψ ∂t a a 2 o 0 o S i n−c2ehm 2ΨΨ21 is∂ ∂a2xlΨs2o2 a+ sVo(luxt)io=n, jwheΨ1 ma∂y∂Ψ tw2 r ite o r = a2o FH−2aoIKexpFHG−a2oxIKJ0ao 4 2 2 L F I O F I S u b−trha2ct⋅ing2 the⋅se∂ Ψla1s⋅t ∂twΨo2 e−qVua(txio)n=s,0 w e obtain P = −1NMexpHG−42aaoKJ −1QP =1−expH−21K o 2m ΨΨ ∂x ∂x which yields 1 2 This equation is not necessarily valid, which P =0.393 means that ΨΨ is, in general, not a solution to (b) 1 2 F F II Schrodinger(cid:146)s wave equation. aoz2G 2 G−xJJ2 P = H expH KK dx a a 2.17 ao 4 o F Io Ψ(x,t)= A sin(πx) exp(−jωt) 2 aoz2 G−2xJ = expH Kdx z z +1 +1 a a Ψ(x,t)2dx =1= A2 sin2(πx)dx o Fao 4 I oF I −1 −1 = 2 H−aoKexpHG−2xKJao 2 or L O a 2 a A2 ⋅NM1 x− 1 sin(2πx)QP+1 =1 or o o ao 4 L F IO which yie2lds 4π −1 P = −1NMexp(−1)−expH−1KQP 2 A2 =1 or A= +1,−1,+ j,− j which yields P =0.239 (c) 2.18 F F II Ψ(x,t)= A sin(nπx) exp(−jωt) azoG 2 G−xJJ2 z z P = H expH KK dx +1 +1 a a Ψ(x,t)2dx =1= A2 sin2(nπx)dx 0 o o or 0 0 = 2 azoexpFHG−2xIKJdx = 2 FH−aoIKexpFHG−2xIKJao L O a a a 2 a A2⋅NM1 x− 1 sin(2nπx)QP+1 =1 or o 0 o o o 0 2 4nπ 0 P = −1exp(−2)−1 which yields which yields A2 =2 or P =0.865 A= + 2 ,− 2,+ j 2,− j 2 12 Semiconductor Physics and Devices: Basic Principles, 3rd edition Chapter 2 Solutions Manual Problem Solutions 2.20 (a) kx−ωt =constant 2.22 b g Thend x dx ω E = h2n2π2 = b 1.054x10gb−34 2π2n2 g k dt −ω=0⇒ dt =vp = + k 2ma2 2 9.11x10−31 100x10−10 2 or so 1.5x1013 E =6.018x10−22n2 (J) v = =104 m/s p 1.5x109 or v =106 cm/s E =3.76x10−3n2 (eV) p Then (b) n=1⇒ E =3.76x10−3 eV 2π 2π 2π 1 k = λ ⇒λ= k = 1.5x109 n =2⇒ E2 =1.50x10−2 eV or n=3⇒ E =3.38x10−2 eV λ=41.9 A° 3 Also 2.23 p = h = 6.625x10−34 ⇒ (a) E = h2n2π2 λ 41.9x10−10 2ma2 or b g 1.054x10−34 2π2n2 p =1.58x10−25 kg−m/s = b gb g Now 2 9.11x10−31 12x10−10 2 b gb g hc 6.625x10−34 3x108 =4.81x10−20n2 (J) E =hν= = λ 41.9x10−10 So or E =4.18x10−20 J ⇒ E =0.261eV 1 1 E =4.74x10−17 J ⇒ E =2.96x102 eV E =1.67x10−19 J ⇒ E =1.04eV 2 2 (b) 2.21 b g hc hc ψ(x)= Aexp −j kx+ωt E −E =hν= ⇒λ= 2 1 λ ∆E where or b gb g 2mE 6.625x10−34 3x108 k = λ= ⇒ h 1.67x10−19 −4.18x10−20 b g b g 2 9.11x10−31 (0.015) 1.6x10−19 λ=1.59x10−6 m = or 1.054x10−34 λ=1.59µm or k =6.27x108 m−1 2.24 Now b g (a) For the infinite potential well ω= E = (0.015) 1.6x10−19 E = h2n2π2 ⇒n2 = 2ma2E h 1.054x10−34 2ma2 h2π2 or so b gb g b g ω=2.28x1013 rad /s 2 10−5 10−2 2 10−2 n2 = b g =1.82x1056 1.054x10−34 2π2 or 13 Semiconductor Physics and Devices: Basic Principles, 3rd edition Chapter 2 Solutions Manual Problem Solutions n =1.35x1028 2mE where K = (b) 2 h 2π2 ∆E = h (n+1)2 −n2 Boundary conditions: 2ma2 ψ(x)=0 at x = +a , x = −a 2π2 2 2 = h (2n+1) So, first mode: 2ma2 ψ (x)= AcosKx or 1 b g b g ∆E = 1.054x10b−34 2πgb2(2)g1.35x1028 where K = π so E = π2h2 2 10−5 10−2 2 a 1 2ma2 Second mode: ∆E =1.48x10−30 J ψ (x)= BsinKx 2 lEanrgeregr yth iann t h1e0 (mn+J.1 ) state is 1.48x10−30 Joules where K = 2π so E = 4π2h2 (c) a 2 2ma2 Quantum effects would not be observable. Third mode: ψ (x)= AcosKx 3 2.25 For a neutron and n b= 1: g where K = 3π so E = 9π2h2 2π2 1.054x10−34 π2 a 3 2ma2 E = h = b gb g 1 2ma2 2 1.66x10−27 10−14 2 F o uψrth( xm)o=deB: sinKx or 4 E =2.06x106 eV where K = 4π so E = 16π2h2 1 a 4 2ma2 For an electron in the same potential well: b g 1.054x10−34 2π2 E = b gb g 2.27 1 2 9.11x10−31 10−14 2 The 3-D wave equation in cartesian coordinates, for V(x,y,z) = 0 or ∂2ψ(x,y,z) ∂2ψ(x,y,z) ∂2ψ(x,y,z) E =3.76x109 eV + + 1 ∂x2 ∂y2 ∂z2 2mE 2.26 + ψ(x,y,z)=0 Schrodinger(cid:146)s wave equation 2 h ∂2ψ(x) 2m Use separation of variables, so let + (E −V(x))ψ(x)=0 ψ(x,y,z)= X(x)Y(y)Z(z) ∂x2 h2 Substituting into the wave equation, we get We know that a −a ψ(x)=0 for x ≥ and x ≤ ∂2X ∂2Y ∂2Z 2mE 2 2 YZ + XZ + XY + XYZ = 0 −a +a ∂x2 ∂y2 ∂z2 h2 V(x)=0 for ≤ x ≤ 2mE 2 2 Dividing by XYZ and letting k2 = , we so in this region 2 h ∂2ψ(x) 2mE obtain ∂x2 + h2 ψ(x)=0 (1) 1 ⋅∂2X + 1⋅∂2Y + 1 ⋅∂2Z +k2 =0 Solution is of the form X ∂x2 Y ∂y2 Z ∂z2 ψ(x)= AcosKx+BsinKx We may set 14

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.