ebook img

Semiconductor Physics: An Introduction PDF

534 Pages·1999·11.465 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Semiconductor Physics: An Introduction

Semiconductor Physics Springer-Verlag Berlin Heidelberg GmbH Karlheinz Seeger Semiconductor Physics An Introduction Seventh Edition With 321 Figures , Springer Professor Karlheinz Seeger Am Modenapark 13/5 A-1030 Vienna, Austria and Institut für Materialphysik der Universität Boltzmanngasse 5 A-1090 Vienna, Austria The sixth edition appeared in Springer Series in Solid-State Sciences, Vol. 40 Library of Congress Cataloging-in-Publication Data applied for. Die Deutsche Bibliothek - CIP Einheitsaufnahme Seeger, Karlheinz: Semiconductor physics: an introduction/Karlheinz Seeger. - 7. ed. - Berlin; Heidelberg; New York; Barcelona; Hong Kong; London; Milan; Paris; Singapore; Tokyo: Springer This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broad casting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are liable for prosecution under the German Copyright Law. ISBN 978-3-662-03799-7 ISBN 978-3-662-03797-3 (eBook) DOI 10.1007/978-3-662-03797-3 © Springer-Verlag Berlin Heidelberg 1973, 1982, 1985, 1989, 1991, 1997, and 1999 Original1y published by Springer-Verlag Berlin Heide1berg New York in 1999. Softcover reprint of the hardcover 7th edition 1999 The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant pro tective laws and regulations and therefore free for general use. Typesetting: Scientific Publishing Services (P) Ud, Madras Cover design: design & production GmbH, Heidelberg SPIN: 10724363 57/3144/tr -5 4 3 2 1 0 - Printed on acid-free paper To Lotte and to Julia and Monika Preface This book is the seventh edition of an introductory text on semiconductor physics for senior undergraduate and beginning graduate students of physical science and electrical engineering. It is an updated and improved version of the previous editions, which appeared both in English and in many translations, and includes recent developments in the field, in particular, new insight into the fractional quantum Hall effect, the discoverers of which have been honored by the 1998 Nobel Prize for Physics. In addition, the section on the optical properties of superlattices has been rewritten featuring the compositional type which has an advantage over the doping type because of the reduced scattering by impurities. The experimental technique of four-wave mixing of laser ra diation applied to a superlattice is discussed extensively. In the chapter on quantum transport, the section on the theory of the Bloch oscillation and the Wannier-Stark ladder of energy levels in a strong electric field has been en riched by a simplified calculation of the density-of-states function. Last but not least, the recently invented gallium-nitride-type laser emitting violet light has been included in the section concerning semiconductor lasers. This laser might revolutionize the CD player, which, in terms of sales, is the most prominent laser application at present. The reader will probably be aware that the recent development of devices on a nanometer scale requires a theoretical treatment that can no longer be based on the semiclassical Boltzmann transport equation, which relies on the assumption that the distribution function of carriers varies little over the de Broglie wavelength. Advanced theoretical treatments of the subject apply second quantization, the Kubo formalism, for nonequilibrium phenomena the Green's function technique, and for ultrafast dynamics, the density-matrix theory. These advanced quantum-mechanical approaches may be studied e.g. in the book by G.D. Mahan: Many-Particle Physics, Plenum, New York 1983 (1003 pages!). They are applied to semiconductor nanostructures e.g. in a compilation of articles by E. Schöll: Theory 0/ Transport Properties 0/ Semi conductor Nanostructures, Chapman and Hall, London 1997, wh ich is re commended as "further reading", whereas here the experimental results on nanostructure devices including quantum wires and dots are in the foreground of the presentation. The nearly nine-hundred references, mostly to journal publications, will be particularly appreciated by researchers in the field. VIII Preface A final word about the system of units and the syntax is in order. For an experimentalist, only the SI system of units is useful. Therefore the CGS Gaussian notation preferred by theoreticians has not been used. Vectors are characterized by boldface types. The notation (5.7.7,8) refers to both equation (5.7.7) and equation (5.7.8) while the notation [5.7] refers to the reference [5.7]. Corrections and suggestions will be gratefully received and may be ad dressed to the author at "Am Modenapark 13/5, A-I030 Vienna, Austria". A basic prerequisite for the existence of this book is (and always was) the excellent co operation with Hofrat Dr. Wolfgang Kerber and his team at the "Zentralbibliothek für Physik" located at our Physics Department. They, as well as Dr. Claus Ascheron of Springer-Verlag, deserve my heartfelt thanks. Vienna, Austria K. Seeger May 1999 To Instructors who have adopted the text for classroom use, a solutions manual is available free of charge by request on departmental letterhead to Dr. C. Ascheron, Springer-Verlag, Tiergartenstr. 17, D-69121 Heidelberg, Germany. Contents 1. Elementary Properties of Semiconductors ................. . 1.1 Insulator - Semiconductor - Semimetal - Metal ........ 1 1.2 The Positive Hole . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 Conduction Processes, Compensation, Law of Mass Action 4 Problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2. Energy Band Structure ............................... 10 2.1 Single and Periodically Repeated Potential Weil ........ 10 2.2 Energy Bands by Tight Binding of Electrons to Atoms ... 17 2.3 The Brillouin Zone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.4 Constant Energy Surfaces. . . . . . . . . . . . . . . . . . . . . . . . . 32 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3. Semiconductor Statistics .............................. 34 3.1 Fermi Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.2 Occupation Probabilities of Impurity Levels. . . . . . . . . . . . 40 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 4. Charge and Energy Transport in a Nondegenerate Electron Gas 47 4.1 Electrical Conductivity and Its Temperature Dependence 47 4.2 HaH Effect in a Transverse Magnetic Field ............ 53 4.3 HaH Techniques ............................... 63 4.4 Magnetoresistance.............................. 65 4.5 Corbino Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 4.6 Transport in Inhomogeneous Samples . . . . . . . . . . . . . . . . 72 4.7 Planar Hall Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 4.8 Thermal Conductivity, Lorenz Number, Comparison with Metals . . . . . . . . . . . . . . . . . . . . . . . . . 77 4.9 Thermoelectric (Seebeck) Effect .................... 82 4.10 Thomson and Peltier Effects ...................... 89 4.11 Thermomagnetic Effects . . . . . . . . . . . . . . . . . . . . . . . . . . 94 4.12 Piezoresistance ................................ 10 1 4.13 Hot Electrons and Energy Relaxation Time ........... 105 X Contents 4.14 High-Frequency Conductivity . . . . . . . . . . . . . . . . . . . . . . 111 4.15 Noise....................................... 115 Problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 5. Carrier Diffusion Processes ............................ 120 5.1 Injection and Recombination . . . . . . . . . . . . . . . . . . . . . . 120 5.2 Diffusion and the Einstein Relation. . . . . . . . . . . . . . . . . . 122 5.3 The p-n Junction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 5.4 Quasi-Fermi Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 5.5 The Bipolar Transistor. . . . . . . . . . . . . . . . . . . . . . . . . . . 140 5.6 The Metal-Semiconductor Contact . . . . . . . . . . . . . . . . . . 145 5.7 Various Types of Transistors Including MOSFET . . . . . . . 147 5.8 Dember Effect and PEM Effect. . . . . . . . . . . . . . . . . . . . . 153 5.9 Photovoltaic Effect ............................. 156 Problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 6. Scattering Processes in a Spherical One-Valley Model ......... 161 6.1 Neutral Impurity Scattering . . . . . . . . . . . . . . . . . . . . . . . 161 6.2 Elastic Scattering Processes ....................... 165 6.3 Ionized Impurity Scattering . . . . . . . . . . . . . . . . . . . . . . . 168 6.4 Acoustic Deformation Potential Scattering of Thermal Carriers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 6.5 Acoustic Deformation Potential Scattering of Hot Carriers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 6.6 Combined Ionized Impurity and Acoustic Deformation Potential Scattering ..... . . . . 183 6.7 Piezoelectric Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . 187 6.8 The Phonon Spectrum of a Crystal . . . . . . . . . . . . . . . . . . 190 6.9 Inelastic Scattering Processes ...... . . . . . . . . . . . . . . . . 195 6.10 The Momentum Balance Equation and the Shifted Maxwellian . . . . . . . . . . . . . . . . . . . . . . . 199 6.11 Optical Deformation Potential Scattering . . . . . . . . . . . . .. 203 6.12 Polar Optical Scattering . . . . . . . . . . . . . . . . . . . . . . . . .. 208 6.13 Carrier-Carrier Scattering . . . . . . . . . . . . . . . . . . . . . . . . . 217 6.14 Impurity Conduction and Hopping Processes . . . . . . . . . .. 218 6.15 Dislocation Scattering . . . . . . . . . . . . . . . . . . . . . . . . . .. 221 Problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224 7. Charge Transport and Scattering Processes in the Many-V alley Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226 7.1 The Deformation Potential Tensor . . . . . . . . . . . . . . . . .. 226 7.2 Electrical Conductivity . . . . . . . . . . . . . . . . . . . . . . . . . .. 230 7.3 Hall Effect in a Weak Magnetic Field . . . . . . . . . . . . . . .. 234 7.4 The W eak- Field Magnetoresistance . . . . . . . . . . . . . . . . . . 236

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.