Semi-annihilation of Dark Matter 1 1 0 2 Francesco D’ERAMO ∗ n MassachusettsInstituteofTechnology a J E-mail: [email protected] 7 2 ] Thesemi-annihilationreactiontakestheschematicformψiψj →ψkφ, whereψi arestabledark h matter particles and φ is an unstable state. Such reactions are allowed when dark matter is sta- p bilized by a larger symmetry than just Z . They lead to non-trivial dark matter dynamics in the 2 - p earlyuniverse,andthethermalproductionoftherelicparticlescanbecompletelycontrolledby e h semi-annihilations. This process might also take place today in the Milky Way, enriching the [ (semi-)annihilationfinalstatespectrumobservedinindirectdetectionexperiments. 1 v 3 1 4 5 . 1 0 1 1 : v i X r a IdentificationofDarkMatter2010 July26-302010 UniversityofMontpellier2,Montpellier,France Speaker. ∗ (cid:13)c Copyrightownedbytheauthor(s)underthetermsoftheCreativeCommonsAttribution-NonCommercial-ShareAlikeLicence. http://pos.sissa.it/ Semi-annihilationofDarkMatter FrancescoD’ERAMO 1. Introducingsemi-annihilation The evidence for dark matter is one of the best motivations for physics beyond the Standard Model(SM)[1]. Awell-motivateddarkmattercandidateareso-calledWeaklyInteractingMassive Particles(WIMPs),whoseproductionintheearlyuniverseisthermal[2,3]. Thethermalfreeze-out isverypredictive,thusitisimportanttoknowhowtocorrectlycomputetherelicdensity,especially whenthereliccomputationcannotbereducedtothestandardcase(seee.g. [4]). Thethermalabundancecanbedramaticallyaffectedbythepresenceofthe“semi-annihilation” reaction. Ifthedarkmatteriscomposedofmorethanonestablecomponentψ,ittakestheform i ψψ ψ φ, (1.1) i j k → where φ is a SM state or a new particle which decays to the SM. We see that unlike ordinary annihilation where the total dark matter number changes by two units, in semi-annihilation the total dark matter number changes by only one unit, as shown in figure 1. As long as the triangle inequalitym <m +m issatisfied(aswellasitscrossedversions),thesemi-annihilationreaction k i j ψψ ψ φ can take place without making any relic particle unstable. Such reactions take place i j k → oncewerelaxsomeassumptionsaboutthesymmetrystructureofWIMPinteractions. Forexample the dark matter can be stabilized by a Z symmetry [5], composed of non-Abelian gauge bosons 3 [6],ormoregenerallystabilizedby“baryon”and/or“flavor”symmetries,asinQCD-liketheories. Westudytwoexplicittoyexamplesofsuchmodels[7]. Wefindthattocorrectlycomputetherelic abundance,semi-annihilationmustbeincluded,anditcandominateoverstandardannihilation. We alsoexploretheeffectsofsemi-annihilationsonindirectdetectionexperiments. We introduce semi-annihilation with a simple case. We assume dark matter to be composed of a complex scalar χ, which is stabilized by a Z symmetry. The χ particle interacts with a real 3 scalarφ,whicheventuallydecaystoSMstates. The χ particlesarekeptinthermalequilibriumin theearlyuniversebythereactions χχ¯ φφ and χχ χ¯φ. Whilewefocusonthecaseofafield → → φ “portal”totheSM[8],inmoregeneraldarkmatterscenariosφ couldbeaSMfielditself[9]. Single-component dark matter with a Z symmetry is not representative of models in which 3 semi-annihilation is relevant. The second model we consider is a minimal multi-component dark matter model having semi-annihilations among its allowed reactions.1 In this toy system, dark matter is composed of two stable components, a complex scalar field χ and a vector-like fermion bandbc. WeimposeaU(1)globalsymmetryunderwhichb,bc,and χ havecharges+1, 1,and − 2, respectively. Wealsointroducearealscalarportalφ field, whichweassumetobeinthermal − equilibrium in our calculation and decays to SM states. Fermion number conservation always guarantees that b is stable, whereas stability for χ requires the triangle inequality rule m 2m χ b ≤ (isoscelestriangle). Themodelanditssymmetriesaresummarizedintable1. The remainder is structured as follows. In Section 2 we present a study of the relic density in the two toy models we consider. In Section 3 we explore the effects of semi-annihilations on indirectdetectionexperiments,andconcludeinSection4. 1Amorerealisticconstruction,whereasupersymmetricgaugetheorywithNf =Nc+1isconsidered,canbefound in[7].Here,weprefertofocusonasimplermodelavoidingunnecessarycomplicationscausedbyhavingsuperpartners. 2 Semi-annihilationofDarkMatter FrancescoD’ERAMO ψ φ ψ φ DM SM DM SM ψ φ ψ ψ DM SM DM DM (a) (b) Figure 1: Reactions that keep the dark matter particles in thermal equilibrium in the early universe: (a) annihilation;(b)semi-annihilation. Thefieldφ decaystoSMstates. SM Fields Spin U(1)charge b Weylleft +1 bc Weylleft 1 − χ complexscalar 2 − φ realscalar 0 Table1: Fieldcontentandsymmetriesofaminimalmulti-componentmodelwithsemi-annihilation. 2. Implicationsfortherelicdensity Thenumberdensityevolutionofχ inthemodelwithZ symmetryisdescribedby2 3 dn (cid:104) (cid:105) 1 (cid:104) (cid:105) χ +3Hn = σv n2 neq2 σv n2 n neq . (2.1) dt χ −(cid:104) (cid:105)χχ¯→φφ χ− χ −2(cid:104) (cid:105)χχ→χ¯φ χ− χ χ In the σv =0 limit we recover the standard case. The above Boltzmann equation can be χχ χ¯φ (cid:104) (cid:105) → solvedsemi-analyticallyinanalogywiththemethodin[3],bysolvingtheequationintworegimes, early and late times, and then matching the two solutions at the freeze-out point. The freeze-out temperaturex ,wherewedefinex=m /T,isfoundbysolvingtheequation f χ (cid:20) (cid:21) (cid:20) (cid:21) g m M 1 c+1 σv χ χ Pl χχ χ¯φ xf =log 0.038c(c+2) σv χχ¯ φφ +log 1+ (cid:104) (cid:105) → , (2.2) (cid:104) (cid:105) → √g xf 2 c+2 σv χχ¯ φφ ∗ (cid:104) (cid:105) → where c = √2 1 for s-wave amplitudes [3]. The first term on the right-hand side of (2.2) is − the solution we usually have in the Lee-Weinberg scenario. Thus we see that the effect of semi- annihilation is to shift the freeze-out temperature by only a small logarithmic amount. The mass densityoftheχ particletodayisgivenby 1.07 109GeV 1 (cid:90) ∞dx(cid:20) 1 (cid:21) Ωχh2=2× √g×MPlJ(xf)− , J(xf)= xf x2 (cid:104)σv(cid:105)χχ¯→φφ+2(cid:104)σv(cid:105)χχ→χ¯φ . (2.3) ∗ In single component dark matter models, the conventional assumption is that we have only an- nihilation (namely σv =0), thus once we fix the dark matter mass m the cross section χχ χ¯φ χ (cid:104) (cid:105) → 2WecorrecttheBoltzmannequationin[7]withthe1/2factorinthesemi-annihilationterm.WethankBrianBatell. 3 Semi-annihilationofDarkMatter FrancescoD’ERAMO Κ(cid:61)0, Ε(cid:61)0, (cid:87)h2(cid:62)100 Κ(cid:61)4Π, Ε(cid:61)0, (cid:87)h2(cid:62)100 Κ(cid:61)0, Ε(cid:61)5, (cid:87)h2(cid:62)0.1 10(cid:45)7 10(cid:45)7 10(cid:45)7 10(cid:45)9 10(cid:45)9 10(cid:45)9 Y10(cid:45)11 Y10(cid:45)11 Y10(cid:45)11 10(cid:45)13 10(cid:45)13 10(cid:45)13 10(cid:45)15 10(cid:45)15 10(cid:45)15 15 20 30 50 70 15 20 30 50 70 15 20 30 50 70 x x x (a) (b) (c) Figure 2: Y vs. x evolution in the bbχ model for the b (blue lines) and the χ (green lines). We define Y =n/s,wherei=b,χ andsistheentropydensity. Weplottheequilibriumvalues(dashedlines)andthe i i numericalsolutions(solidlines). Wefixm =0.8TeV,m = 1TeV,α =2andβ =0.01. Thevaluesofκ, χ b ε andΩ h2 areshownineachplot. Here, χ particleswouldbeoverproduced(a), butbecauseofphase DM space suppression κ (b χ conversion) is ineffective (b). However, ε (semi-annihilation) is never phase ↔ spacesuppressedandcanrestorethedesiredrelicdensity(c). σv is uniquely determined by the relic density measurement. However, if we allow also χχ¯ φφ (cid:104) (cid:105) → semi-annihilations,awiderregionofparameterspacegivesthecorrectrelicdensity,thusthether- malproductionoftherelicparticlescanalsobecompletelycontrolledbysemi-annihilations. In models which involve more than one stable dark matter component a semi-analytical so- lution for the relic density is simply not possible, and one must resort to numerically solving the complete set of coupled Boltzmann equations. In particular, the simplifying assumptions made whenanalyzingco-annihilatingmodels[4]arenotapplicableforsemi-annihilation[7]. Asacon- sequence, the dark matter dynamics in the presence of semi-annihilation are far more varied than indecoupledmulti-componentscenarios. In our second example model, the relic abundance of b and χ is described by a system of twocoupledBoltzmannequations. WecannowwritedownandsolvenumericallytheBoltzmann equationsfortherelicabundanceofbandχ andseehowsemi-annihilationsaffectthedarkmatter relicdensity. Oncewefixthedarkmattermassesandlimitourconsiderationtos-waveannihilation, therearefourfreeparameters,whichwechoosetobethefollowings-wavematrixelements M =α, M =β, M =κ, M =ε. (2.4) bb¯ φφ χχ¯ φφ bb¯ χχ¯ χb φb¯ → → → → Thefirsttwoamplitudescomefromthestandardannihilationtolightparticlesinthefinalstate,the thirdfromtheprocesswheretwodarkmatterparticlesofonespeciesareentirelyconvertedtotwo darkmatterparticlesoftheotherspecies. Thisprocessisphasespacesuppressedfortypicalkinetic energiesatfreeze-out. Thelastcorrespondstothesemi-annihilationprocess,andweareinterested toseehowtherelicabundancechangeswiththeparameterε. In our numerical study we fix the dark matter masses to be m = 0.8TeV and m = 1TeV χ b for concreteness, and we vary the matrix elements amplitudes. We fix the values of α and β (annihilationamplitudes)andstudyhowtherelicdensityisaffectedonceweturnontheparameters κ (b χ conversion)orε (semi-annihilation). Themaindifferencebetweensemi-annihilationand ↔ speciesconversionisthattheformerisneverphasespacesuppressed. Thisisbeautifullyillustrated in the case when pure annihilations would give a lot of χ and very few b, as shown in figure 2(a) forα =2andβ =0.01. Thesemi-annihilationprocessχb b¯φ isstillabletodestroyχ particles → 4 Semi-annihilationofDarkMatter FrancescoD’ERAMO e+ e+ φ e ψ SM − φ e DM ψ SM − DM e+ ψDM φSM ψ ψ DM DM e − (a) (b) Figure3: Twodifferentcontributionstoindirectdetectionspectra: (a)annihilation; (b)semi-annihilation. Thefieldφ isaportalfield,butinmoregeneraldarkmatterscenariosφ couldbeaSMfielditself. SM andbringtherelicdensitybacktotheobservedvalue,figure2(c)forε =5. However,thereaction χχ¯ bb¯ is powerless, even if we badly break perturbation theory for κ =4π as in figure 2(b). → Thisreactionisforbiddenatzerokineticenergy,andatfreeze-outthethermalenergyisverysmall compared with the mass splitting between the two particles. Thus, semi-annihilation is a truly uniquespecieschanginginteractionthataffectsearlyuniversecosmology. 3. Implicationsforindirectdetection Wenowexploretheimplicationsofsemi-annihilationsfordarkmatterdetectionexperiments. Sincesemi-annihilationdoesnotgiveanynewcontributionstodirectdetectionrates,wefocuson indirect detection only. There has been much recent interest on indirect detection of dark matter, motivated by observations suggesting the presence of a new primary source of galactic electrons andpositrons[10]. Theseanomaliesmightbeevidencefordarkmatterannihilationordecayinour galaxy. Ingeneral,semi-annihilationdoesnotleadtothe“boostfactor”necessarytoexplainthemag- nitude of these candidate dark matter indirect signals. However the presence of such a reaction can still have considerable implications for indirect searches. Semi-annihilations are additional channels to produce light particles in dark matter interactions in our galaxy, as shown in figure 3, which have no analog in standard multi-component scenarios. Thus the predicted spectrum is enrichedwithrespecttothestandardscenarios. Inaddition,ourexamplesmodelscanaccountfor the fact that dark matter (semi-)annihilates preferably into leptons; if we assume a portal φ field massm 2GeVthedecayofφ toantiprotonsiskinematicallyforbidden[8]. φ ≤ We present here the results for the bbχ model.3 In this case, there are four reactions to pro- duceφ particlesinthefinalstate,theordinaryannihilationsofthetwocomponentsandtwosemi- annihilations. Thusthespectrumisthismulti-componentcaseisquiterich,sincethefourreactions yeld four monochromatic φ lines. We present numerical results for the φ spectrum for the same values of the dark matter masses chosen in Section 2, namely m =0.8TeV and m =1TeV. To χ b simplify the following discussion we perform our analysis for κ =0. Two example spectra are 3ForthespectraintheZ modelseereference[7]. 3 5 Semi-annihilationofDarkMatter FrancescoD’ERAMO Α(cid:61)1.5, Β(cid:61)0.75, Ε(cid:61)0.4 Α(cid:61)0.5, Β(cid:61)0.25, Ε(cid:61)2.1 1.0 1.0 0.8 0.8 0.6 0.6 al al n n g g si 0.4 si 0.4 0.2 0.2 0.0 0.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 E(cid:144)m E(cid:144)m b b (a) (b) Figure4: Spectraofφ particlesinthebbχ modelforthermalproductionmostlycontrolledby: (a)annihi- lations,(b)semi-annihilations. Thevaluesofthematrixelementamplitudesareshownineachplot. shown in figure 4, where two opposite cases are considered. In the first case, figure 4(a), the semi-annihilationcontributionistakentobeverysmall,thusthepureannihilationlinesdominate. When the thermal production is mostly controlled by semi-annihilations, as in figure 4(b), the semi-annihilationlinesoverwhelmthestandardcontributions. One expects the indirect detection spectra in models with more than two stable components to have an even richer structure of φ lines. Of course, once convolved with the φ decays, the spectrum is less distinct [7]. More detailed study is necessary to know whether such a spectrum canbemeasuredinγ raystelescopes. 4. Conclusions WerelaxedsomeassumptionsaboutthesymmetrystructureofWIMPinteractionsbyallowing relic particles to “semi-annihilate”. We studied two explicit examples where semi-annihilation is present: asinglespeciesdarkmattermodelwithaZ symmetryandamultiplespeciesdarkmatter 3 model with “baryon” and “flavor” symmetries. We saw that the semi-annihilation process can haveaconsiderableeffectonthedarkmatterrelicabundance,andthedarkmatterdynamicsinthe presenceofsemi-annihilationarefarmorevariedthanindecoupledmulti-componentscenarios. The inclusion of semi-annihilation has interesting implications for indirect detection experi- ments. The overall integrated flux is not very affected by semi-annihilation. However, the final statespectruminsemi-annihilatingmodelsisfarricherthaninstandardsscenariosbecauseofthe differingkinematicsbetweensemi-annihilationandordinaryannihilation. Inthelanguageof[4],semi-annihilationisinsomewaysthe“fourthexception”inthecalcu- lationofdarkmatterthermalrelicabundances. Wefinditintriguingthatunlikethetraditionalthree exceptions(co-annihilation,annihilationbelowamassthreshold,andannihilationnearapole),this fourth exception not only affects dark matter interactions in the early universe, but also leaves an imprinttodayviatheindirectdetectionspectrum. Weexpectthatthereareawidevarietyofmulti- component dark matter models with species changing interactions, motivating further studies of thesemi-annihilationprocess. 6 Semi-annihilationofDarkMatter FrancescoD’ERAMO Acknowledgments WethankJesseThalerforcollaboration. ThisworkissupportedbyU.S.DepartmentofEnergy (D.O.E.)undercooperativeresearchagreementDE-FG0205ER41360. References [1] G.Bertone,D.HooperandJ.Silk,Particledarkmatter: Evidence,candidatesandconstraints,Phys. Rept.405,279(2005)[arXiv:hep-ph/0404175]. [2] B.W.LeeandS.Weinberg,Cosmologicallowerboundonheavy-neutrinomasses,Phys.Rev.Lett. 39,165(1977). [3] E.W.KolbandM.S.Turner,TheEarlyuniverse,Front.Phys.69,1(1990). [4] K.GriestandD.Seckel,Threeexceptionsinthecalculationofrelicabundances,Phys.Rev.D43, 3191(1991). [5] K.AgasheandG.Servant,Warpedunification,protonstabilityanddarkmatter,Phys.Rev.Lett.93, 231805(2004)[arXiv:hep-ph/0403143];K.AgasheandG.Servant,Baryonnumberinwarped GUTs: Modelbuildingand(darkmatterrelated)phenomenology,JCAP0502,002(2005) [arXiv:hep-ph/0411254];E.Ma,Z DarkMatterandTwo-LoopNeutrinoMass,Phys.Lett.B 3 662,49(2008)[arXiv:0708.3371 [hep-ph]];B.Batell,DarkDiscreteGaugeSymmetries, [arXiv:1007.0045 [hep-ph]]. [6] T.Hambye,Hiddenvectordarkmatter,JHEP0901,028(2009)[arXiv:0811.0172 [hep-ph]];T.HambyeandM.H.G.Tytgat,Confinedhiddenvectordarkmatter,Phys.Lett.B683, 39(2010)[arXiv:0907.1007 [hep-ph]];C.Arina,T.Hambye,A.IbarraandC.Weniger, IntenseGamma-RayLinesfromHiddenVectorDarkMatterDecay,JCAP1003,024(2010)[ arXiv:0912.4496 [hep-ph]]. [7] F.D’EramoandJ.Thaler,Semi-annihilationofDarkMatter,JHEP1006,109(2010) [arXiv:1003.5912 [hep-ph]]. [8] M.Pospelov,A.RitzandM.B.Voloshin,SecludedWIMPDarkMatter,Phys.Lett.B662,53(2008) [arXiv:0711.4866 [hep-ph]];N.Arkani-Hamed,D.P.Finkbeiner,T.R.Slatyerand N.Weiner,ATheoryofDarkMatter,Phys.Rev.D79,015014(2009)[arXiv:0810.0713 [hep-ph]];Y.NomuraandJ.Thaler,DarkMatterthroughtheAxionPortal,Phys.Rev.D79(2009) 075008[arXiv:0810.5397 [hep-ph]]. [9] C.P.Burgess,M.PospelovandT.terVeldhuis,Theminimalmodelofnonbaryonicdarkmatter: A singletscalar,Nucl.Phys.B619,709(2001)[arXiv:hep-ph/0011335];B.PattandF.Wilczek, Higgs-fieldportalintohiddensectors,[arXiv:hep-ph/0605188];J.March-Russell,S.M.West, D.CumberbatchandD.Hooper,HeavyDarkMatterThroughtheHiggsPortal,JHEP0807,058 (2008)[arXiv:0801.3440 [hep-ph]]. [10] O.Adrianietal.[PAMELACollaboration],Ananomalouspositronabundanceincosmicrayswith energies1.5-100GeV,Nature458,607(2009)[arXiv:0810.4995 [astro-ph]];J.Changet al.,ExcessOfCosmicRayElectronsAtEnergiesOf300-800Gev,Nature456,362(2008); A.A.Abdoetal.[TheFermiLATCollaboration],MeasurementoftheCosmicRaye+pluse- spectrumfrom20GeVto1TeVwiththeFermiLargeAreaTelescope,Phys.Rev.Lett. 102,181101 (2009)[arXiv:0905.0025 [astro-ph.HE]]. 7