ebook img

Semi-annihilation of Dark Matter PDF

0.52 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Semi-annihilation of Dark Matter

Semi-annihilation of Dark Matter 1 1 0 2 Francesco D’ERAMO ∗ n MassachusettsInstituteofTechnology a J E-mail: [email protected] 7 2 ] Thesemi-annihilationreactiontakestheschematicformψiψj →ψkφ, whereψi arestabledark h matter particles and φ is an unstable state. Such reactions are allowed when dark matter is sta- p bilized by a larger symmetry than just Z . They lead to non-trivial dark matter dynamics in the 2 - p earlyuniverse,andthethermalproductionoftherelicparticlescanbecompletelycontrolledby e h semi-annihilations. This process might also take place today in the Milky Way, enriching the [ (semi-)annihilationfinalstatespectrumobservedinindirectdetectionexperiments. 1 v 3 1 4 5 . 1 0 1 1 : v i X r a IdentificationofDarkMatter2010 July26-302010 UniversityofMontpellier2,Montpellier,France Speaker. ∗ (cid:13)c Copyrightownedbytheauthor(s)underthetermsoftheCreativeCommonsAttribution-NonCommercial-ShareAlikeLicence. http://pos.sissa.it/ Semi-annihilationofDarkMatter FrancescoD’ERAMO 1. Introducingsemi-annihilation The evidence for dark matter is one of the best motivations for physics beyond the Standard Model(SM)[1]. Awell-motivateddarkmattercandidateareso-calledWeaklyInteractingMassive Particles(WIMPs),whoseproductionintheearlyuniverseisthermal[2,3]. Thethermalfreeze-out isverypredictive,thusitisimportanttoknowhowtocorrectlycomputetherelicdensity,especially whenthereliccomputationcannotbereducedtothestandardcase(seee.g. [4]). Thethermalabundancecanbedramaticallyaffectedbythepresenceofthe“semi-annihilation” reaction. Ifthedarkmatteriscomposedofmorethanonestablecomponentψ,ittakestheform i ψψ ψ φ, (1.1) i j k → where φ is a SM state or a new particle which decays to the SM. We see that unlike ordinary annihilation where the total dark matter number changes by two units, in semi-annihilation the total dark matter number changes by only one unit, as shown in figure 1. As long as the triangle inequalitym <m +m issatisfied(aswellasitscrossedversions),thesemi-annihilationreaction k i j ψψ ψ φ can take place without making any relic particle unstable. Such reactions take place i j k → oncewerelaxsomeassumptionsaboutthesymmetrystructureofWIMPinteractions. Forexample the dark matter can be stabilized by a Z symmetry [5], composed of non-Abelian gauge bosons 3 [6],ormoregenerallystabilizedby“baryon”and/or“flavor”symmetries,asinQCD-liketheories. Westudytwoexplicittoyexamplesofsuchmodels[7]. Wefindthattocorrectlycomputetherelic abundance,semi-annihilationmustbeincluded,anditcandominateoverstandardannihilation. We alsoexploretheeffectsofsemi-annihilationsonindirectdetectionexperiments. We introduce semi-annihilation with a simple case. We assume dark matter to be composed of a complex scalar χ, which is stabilized by a Z symmetry. The χ particle interacts with a real 3 scalarφ,whicheventuallydecaystoSMstates. The χ particlesarekeptinthermalequilibriumin theearlyuniversebythereactions χχ¯ φφ and χχ χ¯φ. Whilewefocusonthecaseofafield → → φ “portal”totheSM[8],inmoregeneraldarkmatterscenariosφ couldbeaSMfielditself[9]. Single-component dark matter with a Z symmetry is not representative of models in which 3 semi-annihilation is relevant. The second model we consider is a minimal multi-component dark matter model having semi-annihilations among its allowed reactions.1 In this toy system, dark matter is composed of two stable components, a complex scalar field χ and a vector-like fermion bandbc. WeimposeaU(1)globalsymmetryunderwhichb,bc,and χ havecharges+1, 1,and − 2, respectively. Wealsointroducearealscalarportalφ field, whichweassumetobeinthermal − equilibrium in our calculation and decays to SM states. Fermion number conservation always guarantees that b is stable, whereas stability for χ requires the triangle inequality rule m 2m χ b ≤ (isoscelestriangle). Themodelanditssymmetriesaresummarizedintable1. The remainder is structured as follows. In Section 2 we present a study of the relic density in the two toy models we consider. In Section 3 we explore the effects of semi-annihilations on indirectdetectionexperiments,andconcludeinSection4. 1Amorerealisticconstruction,whereasupersymmetricgaugetheorywithNf =Nc+1isconsidered,canbefound in[7].Here,weprefertofocusonasimplermodelavoidingunnecessarycomplicationscausedbyhavingsuperpartners. 2 Semi-annihilationofDarkMatter FrancescoD’ERAMO ψ φ ψ φ DM SM DM SM ψ φ ψ ψ DM SM DM DM (a) (b) Figure 1: Reactions that keep the dark matter particles in thermal equilibrium in the early universe: (a) annihilation;(b)semi-annihilation. Thefieldφ decaystoSMstates. SM Fields Spin U(1)charge b Weylleft +1 bc Weylleft 1 − χ complexscalar 2 − φ realscalar 0 Table1: Fieldcontentandsymmetriesofaminimalmulti-componentmodelwithsemi-annihilation. 2. Implicationsfortherelicdensity Thenumberdensityevolutionofχ inthemodelwithZ symmetryisdescribedby2 3 dn (cid:104) (cid:105) 1 (cid:104) (cid:105) χ +3Hn = σv n2 neq2 σv n2 n neq . (2.1) dt χ −(cid:104) (cid:105)χχ¯→φφ χ− χ −2(cid:104) (cid:105)χχ→χ¯φ χ− χ χ In the σv =0 limit we recover the standard case. The above Boltzmann equation can be χχ χ¯φ (cid:104) (cid:105) → solvedsemi-analyticallyinanalogywiththemethodin[3],bysolvingtheequationintworegimes, early and late times, and then matching the two solutions at the freeze-out point. The freeze-out temperaturex ,wherewedefinex=m /T,isfoundbysolvingtheequation f χ (cid:20) (cid:21) (cid:20) (cid:21) g m M 1 c+1 σv χ χ Pl χχ χ¯φ xf =log 0.038c(c+2) σv χχ¯ φφ +log 1+ (cid:104) (cid:105) → , (2.2) (cid:104) (cid:105) → √g xf 2 c+2 σv χχ¯ φφ ∗ (cid:104) (cid:105) → where c = √2 1 for s-wave amplitudes [3]. The first term on the right-hand side of (2.2) is − the solution we usually have in the Lee-Weinberg scenario. Thus we see that the effect of semi- annihilation is to shift the freeze-out temperature by only a small logarithmic amount. The mass densityoftheχ particletodayisgivenby 1.07 109GeV 1 (cid:90) ∞dx(cid:20) 1 (cid:21) Ωχh2=2× √g×MPlJ(xf)− , J(xf)= xf x2 (cid:104)σv(cid:105)χχ¯→φφ+2(cid:104)σv(cid:105)χχ→χ¯φ . (2.3) ∗ In single component dark matter models, the conventional assumption is that we have only an- nihilation (namely σv =0), thus once we fix the dark matter mass m the cross section χχ χ¯φ χ (cid:104) (cid:105) → 2WecorrecttheBoltzmannequationin[7]withthe1/2factorinthesemi-annihilationterm.WethankBrianBatell. 3 Semi-annihilationofDarkMatter FrancescoD’ERAMO Κ(cid:61)0, Ε(cid:61)0, (cid:87)h2(cid:62)100 Κ(cid:61)4Π, Ε(cid:61)0, (cid:87)h2(cid:62)100 Κ(cid:61)0, Ε(cid:61)5, (cid:87)h2(cid:62)0.1 10(cid:45)7 10(cid:45)7 10(cid:45)7 10(cid:45)9 10(cid:45)9 10(cid:45)9 Y10(cid:45)11 Y10(cid:45)11 Y10(cid:45)11 10(cid:45)13 10(cid:45)13 10(cid:45)13 10(cid:45)15 10(cid:45)15 10(cid:45)15 15 20 30 50 70 15 20 30 50 70 15 20 30 50 70 x x x (a) (b) (c) Figure 2: Y vs. x evolution in the bbχ model for the b (blue lines) and the χ (green lines). We define Y =n/s,wherei=b,χ andsistheentropydensity. Weplottheequilibriumvalues(dashedlines)andthe i i numericalsolutions(solidlines). Wefixm =0.8TeV,m = 1TeV,α =2andβ =0.01. Thevaluesofκ, χ b ε andΩ h2 areshownineachplot. Here, χ particleswouldbeoverproduced(a), butbecauseofphase DM space suppression κ (b χ conversion) is ineffective (b). However, ε (semi-annihilation) is never phase ↔ spacesuppressedandcanrestorethedesiredrelicdensity(c). σv is uniquely determined by the relic density measurement. However, if we allow also χχ¯ φφ (cid:104) (cid:105) → semi-annihilations,awiderregionofparameterspacegivesthecorrectrelicdensity,thusthether- malproductionoftherelicparticlescanalsobecompletelycontrolledbysemi-annihilations. In models which involve more than one stable dark matter component a semi-analytical so- lution for the relic density is simply not possible, and one must resort to numerically solving the complete set of coupled Boltzmann equations. In particular, the simplifying assumptions made whenanalyzingco-annihilatingmodels[4]arenotapplicableforsemi-annihilation[7]. Asacon- sequence, the dark matter dynamics in the presence of semi-annihilation are far more varied than indecoupledmulti-componentscenarios. In our second example model, the relic abundance of b and χ is described by a system of twocoupledBoltzmannequations. WecannowwritedownandsolvenumericallytheBoltzmann equationsfortherelicabundanceofbandχ andseehowsemi-annihilationsaffectthedarkmatter relicdensity. Oncewefixthedarkmattermassesandlimitourconsiderationtos-waveannihilation, therearefourfreeparameters,whichwechoosetobethefollowings-wavematrixelements M =α, M =β, M =κ, M =ε. (2.4) bb¯ φφ χχ¯ φφ bb¯ χχ¯ χb φb¯ → → → → Thefirsttwoamplitudescomefromthestandardannihilationtolightparticlesinthefinalstate,the thirdfromtheprocesswheretwodarkmatterparticlesofonespeciesareentirelyconvertedtotwo darkmatterparticlesoftheotherspecies. Thisprocessisphasespacesuppressedfortypicalkinetic energiesatfreeze-out. Thelastcorrespondstothesemi-annihilationprocess,andweareinterested toseehowtherelicabundancechangeswiththeparameterε. In our numerical study we fix the dark matter masses to be m = 0.8TeV and m = 1TeV χ b for concreteness, and we vary the matrix elements amplitudes. We fix the values of α and β (annihilationamplitudes)andstudyhowtherelicdensityisaffectedonceweturnontheparameters κ (b χ conversion)orε (semi-annihilation). Themaindifferencebetweensemi-annihilationand ↔ speciesconversionisthattheformerisneverphasespacesuppressed. Thisisbeautifullyillustrated in the case when pure annihilations would give a lot of χ and very few b, as shown in figure 2(a) forα =2andβ =0.01. Thesemi-annihilationprocessχb b¯φ isstillabletodestroyχ particles → 4 Semi-annihilationofDarkMatter FrancescoD’ERAMO e+ e+ φ e ψ SM − φ e DM ψ SM − DM e+ ψDM φSM ψ ψ DM DM e − (a) (b) Figure3: Twodifferentcontributionstoindirectdetectionspectra: (a)annihilation; (b)semi-annihilation. Thefieldφ isaportalfield,butinmoregeneraldarkmatterscenariosφ couldbeaSMfielditself. SM andbringtherelicdensitybacktotheobservedvalue,figure2(c)forε =5. However,thereaction χχ¯ bb¯ is powerless, even if we badly break perturbation theory for κ =4π as in figure 2(b). → Thisreactionisforbiddenatzerokineticenergy,andatfreeze-outthethermalenergyisverysmall compared with the mass splitting between the two particles. Thus, semi-annihilation is a truly uniquespecieschanginginteractionthataffectsearlyuniversecosmology. 3. Implicationsforindirectdetection Wenowexploretheimplicationsofsemi-annihilationsfordarkmatterdetectionexperiments. Sincesemi-annihilationdoesnotgiveanynewcontributionstodirectdetectionrates,wefocuson indirect detection only. There has been much recent interest on indirect detection of dark matter, motivated by observations suggesting the presence of a new primary source of galactic electrons andpositrons[10]. Theseanomaliesmightbeevidencefordarkmatterannihilationordecayinour galaxy. Ingeneral,semi-annihilationdoesnotleadtothe“boostfactor”necessarytoexplainthemag- nitude of these candidate dark matter indirect signals. However the presence of such a reaction can still have considerable implications for indirect searches. Semi-annihilations are additional channels to produce light particles in dark matter interactions in our galaxy, as shown in figure 3, which have no analog in standard multi-component scenarios. Thus the predicted spectrum is enrichedwithrespecttothestandardscenarios. Inaddition,ourexamplesmodelscanaccountfor the fact that dark matter (semi-)annihilates preferably into leptons; if we assume a portal φ field massm 2GeVthedecayofφ toantiprotonsiskinematicallyforbidden[8]. φ ≤ We present here the results for the bbχ model.3 In this case, there are four reactions to pro- duceφ particlesinthefinalstate,theordinaryannihilationsofthetwocomponentsandtwosemi- annihilations. Thusthespectrumisthismulti-componentcaseisquiterich,sincethefourreactions yeld four monochromatic φ lines. We present numerical results for the φ spectrum for the same values of the dark matter masses chosen in Section 2, namely m =0.8TeV and m =1TeV. To χ b simplify the following discussion we perform our analysis for κ =0. Two example spectra are 3ForthespectraintheZ modelseereference[7]. 3 5 Semi-annihilationofDarkMatter FrancescoD’ERAMO Α(cid:61)1.5, Β(cid:61)0.75, Ε(cid:61)0.4 Α(cid:61)0.5, Β(cid:61)0.25, Ε(cid:61)2.1 1.0 1.0 0.8 0.8 0.6 0.6 al al n n g g si 0.4 si 0.4 0.2 0.2 0.0 0.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 E(cid:144)m E(cid:144)m b b (a) (b) Figure4: Spectraofφ particlesinthebbχ modelforthermalproductionmostlycontrolledby: (a)annihi- lations,(b)semi-annihilations. Thevaluesofthematrixelementamplitudesareshownineachplot. shown in figure 4, where two opposite cases are considered. In the first case, figure 4(a), the semi-annihilationcontributionistakentobeverysmall,thusthepureannihilationlinesdominate. When the thermal production is mostly controlled by semi-annihilations, as in figure 4(b), the semi-annihilationlinesoverwhelmthestandardcontributions. One expects the indirect detection spectra in models with more than two stable components to have an even richer structure of φ lines. Of course, once convolved with the φ decays, the spectrum is less distinct [7]. More detailed study is necessary to know whether such a spectrum canbemeasuredinγ raystelescopes. 4. Conclusions WerelaxedsomeassumptionsaboutthesymmetrystructureofWIMPinteractionsbyallowing relic particles to “semi-annihilate”. We studied two explicit examples where semi-annihilation is present: asinglespeciesdarkmattermodelwithaZ symmetryandamultiplespeciesdarkmatter 3 model with “baryon” and “flavor” symmetries. We saw that the semi-annihilation process can haveaconsiderableeffectonthedarkmatterrelicabundance,andthedarkmatterdynamicsinthe presenceofsemi-annihilationarefarmorevariedthanindecoupledmulti-componentscenarios. The inclusion of semi-annihilation has interesting implications for indirect detection experi- ments. The overall integrated flux is not very affected by semi-annihilation. However, the final statespectruminsemi-annihilatingmodelsisfarricherthaninstandardsscenariosbecauseofthe differingkinematicsbetweensemi-annihilationandordinaryannihilation. Inthelanguageof[4],semi-annihilationisinsomewaysthe“fourthexception”inthecalcu- lationofdarkmatterthermalrelicabundances. Wefinditintriguingthatunlikethetraditionalthree exceptions(co-annihilation,annihilationbelowamassthreshold,andannihilationnearapole),this fourth exception not only affects dark matter interactions in the early universe, but also leaves an imprinttodayviatheindirectdetectionspectrum. Weexpectthatthereareawidevarietyofmulti- component dark matter models with species changing interactions, motivating further studies of thesemi-annihilationprocess. 6 Semi-annihilationofDarkMatter FrancescoD’ERAMO Acknowledgments WethankJesseThalerforcollaboration. ThisworkissupportedbyU.S.DepartmentofEnergy (D.O.E.)undercooperativeresearchagreementDE-FG0205ER41360. References [1] G.Bertone,D.HooperandJ.Silk,Particledarkmatter: Evidence,candidatesandconstraints,Phys. Rept.405,279(2005)[arXiv:hep-ph/0404175]. [2] B.W.LeeandS.Weinberg,Cosmologicallowerboundonheavy-neutrinomasses,Phys.Rev.Lett. 39,165(1977). [3] E.W.KolbandM.S.Turner,TheEarlyuniverse,Front.Phys.69,1(1990). [4] K.GriestandD.Seckel,Threeexceptionsinthecalculationofrelicabundances,Phys.Rev.D43, 3191(1991). [5] K.AgasheandG.Servant,Warpedunification,protonstabilityanddarkmatter,Phys.Rev.Lett.93, 231805(2004)[arXiv:hep-ph/0403143];K.AgasheandG.Servant,Baryonnumberinwarped GUTs: Modelbuildingand(darkmatterrelated)phenomenology,JCAP0502,002(2005) [arXiv:hep-ph/0411254];E.Ma,Z DarkMatterandTwo-LoopNeutrinoMass,Phys.Lett.B 3 662,49(2008)[arXiv:0708.3371 [hep-ph]];B.Batell,DarkDiscreteGaugeSymmetries, [arXiv:1007.0045 [hep-ph]]. [6] T.Hambye,Hiddenvectordarkmatter,JHEP0901,028(2009)[arXiv:0811.0172 [hep-ph]];T.HambyeandM.H.G.Tytgat,Confinedhiddenvectordarkmatter,Phys.Lett.B683, 39(2010)[arXiv:0907.1007 [hep-ph]];C.Arina,T.Hambye,A.IbarraandC.Weniger, IntenseGamma-RayLinesfromHiddenVectorDarkMatterDecay,JCAP1003,024(2010)[ arXiv:0912.4496 [hep-ph]]. [7] F.D’EramoandJ.Thaler,Semi-annihilationofDarkMatter,JHEP1006,109(2010) [arXiv:1003.5912 [hep-ph]]. [8] M.Pospelov,A.RitzandM.B.Voloshin,SecludedWIMPDarkMatter,Phys.Lett.B662,53(2008) [arXiv:0711.4866 [hep-ph]];N.Arkani-Hamed,D.P.Finkbeiner,T.R.Slatyerand N.Weiner,ATheoryofDarkMatter,Phys.Rev.D79,015014(2009)[arXiv:0810.0713 [hep-ph]];Y.NomuraandJ.Thaler,DarkMatterthroughtheAxionPortal,Phys.Rev.D79(2009) 075008[arXiv:0810.5397 [hep-ph]]. [9] C.P.Burgess,M.PospelovandT.terVeldhuis,Theminimalmodelofnonbaryonicdarkmatter: A singletscalar,Nucl.Phys.B619,709(2001)[arXiv:hep-ph/0011335];B.PattandF.Wilczek, Higgs-fieldportalintohiddensectors,[arXiv:hep-ph/0605188];J.March-Russell,S.M.West, D.CumberbatchandD.Hooper,HeavyDarkMatterThroughtheHiggsPortal,JHEP0807,058 (2008)[arXiv:0801.3440 [hep-ph]]. [10] O.Adrianietal.[PAMELACollaboration],Ananomalouspositronabundanceincosmicrayswith energies1.5-100GeV,Nature458,607(2009)[arXiv:0810.4995 [astro-ph]];J.Changet al.,ExcessOfCosmicRayElectronsAtEnergiesOf300-800Gev,Nature456,362(2008); A.A.Abdoetal.[TheFermiLATCollaboration],MeasurementoftheCosmicRaye+pluse- spectrumfrom20GeVto1TeVwiththeFermiLargeAreaTelescope,Phys.Rev.Lett. 102,181101 (2009)[arXiv:0905.0025 [astro-ph.HE]]. 7

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.