ebook img

semi-active smart-dampers and resetable actuators for multi PDF

210 Pages·2008·1.68 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview semi-active smart-dampers and resetable actuators for multi

SEMI-ACTIVE SMART-DAMPERS AND RESETABLE ACTUATORS FOR MULTI- LEVEL SEISMIC HAZARD MITIGATION OF STEEL MOMENT RESISTING FRAMES __________________________________________________________ A thesis submitted in fulfilment of the requirements of the Degree of Master of Mechanical Engineering in the University of Canterbury by S. J. Hunt _______________ University of Canterbury 2002 ABSTRACT This thesis explores the creation and assessment of semi-active control algorithms for both squat shear buildings and tall flexible structures. If cost-effective, practicable, semi-active structural control systems can be developed, the potential reduction in loss of both property and lives due to seismic events is significant. Semi-active controllers offer many of the benefits of active systems, but have power requirements orders of magnitude smaller, and do not introduce energy to the structural system. Previous research into semi-active controllers has shown their potential in linear simulations with single earthquake excitations. The distinguishing feature of this investigation is the use of appropriate non-linear modelling techniques and realistic suites of seismic excitations in the statistical assessment of the semi- active control systems developed. Finite element time-history analysis techniques are used in the performance assessment of the control algorithms developed for three and nine story structural models. The models include non-linear effects due to structural plasticity, yielding, hysteretic behaviour, and P-delta effects. Realistic suites of earthquake records, representing seismic excitations with specific return period probability, are utilised, with lognormal statistical analysis used to represent the response distribution. In addition to displacement focused control laws, acceleration and jerk regulation control methods are developed, showing that potential damage reduction benefits can be obtained from these new control approaches. A statistical assessment of control architecture is developed and undertaken, examining the distribution of constant maximum actuator authority for both squat shear buildings, and tall slender structures, highlighting the need to consider non-linear structural response characteristics when implementing semi-active control systems. Finally, statistical analysis of all results and normalised values shows the efficacy of each control law and actuator type relative to different magnitude seismic events. As a result, this research clearly presents, for the first time, explicit tradeoffs between control law, architecture type, non-linear structural effects, and seismic input characteristics for the semi- active control of civil structures. ACKNOWLEDGMENTS I would like to sincerely thank Dr Geoff Chase, my principal advisor, for his guidance and patience during the development of this work. His constant enthusiasm and commitment were an inspiration to me, and without his willingness to share his experience, knowledge, and appreciation of good coffee, this research may never have flown. I also wish to thank my external advisor, Assistant Professor Luciana Barroso, from Texas A&M University, whose friendly support and willingness to help during the hard times were invaluable. The steep learning curve required in this research was aided with guidance and encouragement from Professor John Mander and Dr Bruce Deam from the University of Canterbury Department of Civil Engineering, and Associate Professor Greg MacRae from the University of Washington College of Engineering. I would like to thank the University of Canterbury Research Office for the summer research scholarship that helped kick this research into life. In addition, thanks are extended to Dr Geoff Shaw and the Christchurch Hospital ICU Research Trust, who provided me with an opportunity to broaden my research horizons, as well as pay the rent! I would like to thank my fellow post-grads, Dean Kirk, Mark Carey, Manda Batchelor, Blair Liddell, Chris Pretty, Bram Smith, and Zhu Hui Lam, whose encouragement and suggestions have been invaluable. Particular thanks to Jonathan Harrington for the late night cups of tea and company when everyone else was smart enough to be home in bed, and Dave Arnold for taking an active interest in my research and being willing to wade through my drafts. Thanks also to my two best mates, Nick (Nanna) Thompson and Andy Gibbs, whose close friendship make living life more special. The mission of producing this thesis has been made easier through the support and constant encouragement of my family. Mum and Dad, I appreciate your guidance and wisdom, and the faith you have given me that I can succeed, with God’s help, at whatever I put my heart into. Maree, your friendship is something I cherish, and I thank you for your down-to-earth words of reassurance that always remind me that life is bigger than school. Matt, the chats about our coming adventures have helped me see the light at the end of the tunnel, and even though you are on the other side of the world, I am always aware that my big brother is looking out for me. Finally, I would like to dedicate this thesis to my fiancé Kate, who throughout my University career has had a level of dedication and patience greater than I’d have thought humanly possible. Kate, you have constantly lightened the burden with your unconditional love and support, and I hope that in our life together I can in some way give you back a little of what you have given me. Let the good times roll! J CONTENTS ABSTRACT............................................................................................................................................................I ACKNOWLEDGMENTS...................................................................................................................................II LIST OF FIGURES..........................................................................................................................................VII LIST OF TABLES..............................................................................................................................................IX 1. INTRODUCTION........................................................................................................................................1 1.1 MOTIVATION..........................................................................................................................................1 1.2 OBJECTIVES AND SCOPE.........................................................................................................................4 1.3 LITERATURE SURVEY ON SEMI-ACTIVE STRUCTURAL CONTROL...........................................................5 1.4 OVERVIEW...........................................................................................................................................10 1.5 CHAPTER SUMMARY............................................................................................................................11 2. BUILDINGS AND EARTHQUAKE SUITES.........................................................................................13 2.1 SAC3 STRUCTURAL SYSTEM...............................................................................................................13 2.2 SAC9 STRUCTURAL SYSTEM...............................................................................................................14 2.3 EARTHQUAKE SUITES...........................................................................................................................16 2.4 CHAPTER SUMMARY............................................................................................................................19 3. MODELS AND CONTROL SIMULATION...........................................................................................21 3.1 STRUCTURAL MODELS.........................................................................................................................21 3.1.1 Finite Element Formulation............................................................................................................21 3.1.2 Non-linear Modelling Techniques...................................................................................................24 3.1.3 Assembled Non-linear Structural Model.........................................................................................31 3.2 SIMULATION IMPLEMENTATION...........................................................................................................32 3.3 CHAPTER SUMMARY............................................................................................................................34 4. ACTUATOR ARCHITECTURE & CONTROL DESIGN....................................................................35 4.1 INTRODUCTION.....................................................................................................................................35 4.2 ACTUATOR ARCHITECTURE..................................................................................................................36 4.2.1 SAC3 Actuator Architecture............................................................................................................37 4.2.2 SAC9 Actuator Architecture............................................................................................................38 4.3 MR DAMPER CLIPPED QUASI-BANG-BANG CONTROLLER....................................................................41 4.3.1 Introduction.....................................................................................................................................41 4.3.2 Moving-Zero Definition...................................................................................................................42 4.3.3 Dead-band Definition......................................................................................................................44 4.3.4 Control Law Description.................................................................................................................45 4.4 LQR CLIPPED OPTIMAL CONTROLLER.................................................................................................48 4.5 LQRY CLIPPED OPTIMAL CONTROLLER...............................................................................................51 4.6 RESETABLE ACTUATOR CONTROLLER.................................................................................................52 4.6.1 Introduction.....................................................................................................................................52 4.6.2 Control Law Description.................................................................................................................54 4.7 JQR CLIPPED OPTIMAL CONTROLLER..................................................................................................56 4.8 BASE ISOLATION HYBRID CONTROLLER..............................................................................................59 4.9 CHAPTER SUMMARY............................................................................................................................61 5. SAC3 SIMULATION RESULTS..............................................................................................................67 5.1 INTRODUCTION.....................................................................................................................................67 5.2 STATISTICAL TOOLS.............................................................................................................................68 5.3 SAC3 UNCONTROLLED RESPONSE.......................................................................................................72 5.4 SINGLE FLOOR ACTUATOR ARCHITECTURE – SAC3-A1......................................................................74 5.4.1 Clipped Quasi-bang-bang Control..................................................................................................75 5.4.2 LQR Clipped Optimal Control........................................................................................................77 5.4.3 LQRy Clipped Optimal Control......................................................................................................80 5.4.4 Clipped Resetable Control..............................................................................................................82 5.4.5 JQR Clipped Optimal Control.........................................................................................................84 5.5 MULTI-FLOOR ACTUATOR ARCHITECTURES – SAC3-A2 & SAC3-A3...............................................86 5.5.1 Initial Actuator Architecture Assessment........................................................................................88 5.5.2 SAC3-A2-1 (7:3:0) Architecture......................................................................................................91 5.5.3 SAC3-A3-1 (6:3:1) Architecture......................................................................................................95 5.6 HYBRID CONTROL..............................................................................................................................101 5.7 CHAPTER SUMMARY..........................................................................................................................103 6. SAC9 SIMULATION RESULTS............................................................................................................107 6.1 INTRODUCTION...................................................................................................................................107 6.2 SAC9 UNCONTROLLED RESPONSE.....................................................................................................108 6.3 PRELIMINARY INVESTIGATION...........................................................................................................109 6.3.1 Actuator-Actuator Interaction.......................................................................................................110 6.3.2 Actuator Placement.......................................................................................................................114 6.4 SAC9-A3 ACTUATOR ARCHITECTURE...............................................................................................115 6.4.1 LQR Clipped Optimal Control......................................................................................................116 6.4.2 LQRy Clipped Optimal Control....................................................................................................118 6.4.3 Clipped Resetable Control............................................................................................................121 6.5 SAC9-A8 ACTUATOR ARCHITECTURE...............................................................................................123 6.5.1 LQR Clipped Optimal Control......................................................................................................124 6.5.2 LQRy Clipped Optimal Control....................................................................................................126 6.5.3 Clipped Resetable Control............................................................................................................128 6.6 CHAPTER SUMMARY..........................................................................................................................129 6.7 SAC9 RESULT TABLES......................................................................................................................133 6.7.1 SAC9 Uncontrolled Result Tables.................................................................................................133 6.7.2 SAC9-A3 Result Tables.................................................................................................................135 6.7.3 SAC9-A8 Result Tables.................................................................................................................140 7. PERFORMANCE NORMALISATION & COMPARISON................................................................145 7.1 INTRODUCTION...................................................................................................................................145 7.2 NORMALISED RESULTS & COMPARISONS..........................................................................................148 7.2.1 Hysteretic Energy Performance Normalisation: SAC3 & SAC9...................................................148 7.2.2 Control Energy Performance Normalisation: SAC9.....................................................................160 7.3 PASSIVE CONTROL COMPARISON.......................................................................................................164 7.4 EXTREME EARTHQUAKE CONTRIBUTION...........................................................................................169 7.5 IMPACT OF TRACKING PERMANENT DEFLECTIONS.............................................................................170 7.6 JERK DISTRIBUTION GRAPHICAL PERFORMANCE ASSESSMENT..........................................................175 7.7 CHAPTER SUMMARY..........................................................................................................................177 8. SUMMARY & CONCLUSIONS............................................................................................................183 9. FUTURE WORK.....................................................................................................................................191 10. REFERENCES.....................................................................................................................................193 LIST OF FIGURES Figure 1.1: Devastating effects of 2002 Afyon Earthquake (M=6.2) on a residential concrete building...............................................................................................................................3 Figure 1.2: 20-ton MR damper developed by the Lord Corporation.........................................8 Figure 2.1: SAC3 structural system showing centreline dimensions and member sections....14 Figure 2.2: SAC9 structural system showing centreline dimensions and beam sections.........15 Figure 2.3: Spectral acceleration plots for full and odd half earthquake suite (1 DOF system with 2% critical damping) [Breneman 2000]...................................................................18 Figure 3.1: Lumped plasticity model for beam-column elements............................................23 Figure 3.2: Stiffness definitions for hysteretic torsional spring-damper model.......................27 Figure 3.3: Schematic of Bouc-Wen hysteretic relation..........................................................28 Figure 3.4: Schematic of the Bouc-Wen hysteresis loop.........................................................29 Figure 3.5: P-delta effects on a cantilever column...................................................................30 Figure 4.1: SAC3 actuator architectures: (a) SAC3-A1 (b) SAC3-A2 (c) SAC3-A3..............37 Figure 4.2: SAC9 actuator architectures: (a) SAC9-A3 (b) SAC9-A8....................................40 Figure 4.3: Schematic showing possible combinations of structural displacement and velocity used for MR damper quasi-bang-bang controller.............................................................42 Figure 4.4: Example of time-varying equilibrium tracking for the SAC3 LQRy controlled floor 1 drift – Elysian Park earthquake.............................................................................44 Figure 4.5: Schematic of MR damper quasi-bang-bang control law for a single actuator.......46 Figure 4.6: Schematic of a resetable actuator attached to a 1 DOF system.............................53 Figure 4.7: Schematic of base isolation and structural system.................................................61 Figure 5.1: Maximum drift distribution for SAC3 floor 1 - uncontrolled and resetable controller...........................................................................................................................70 Figure 5.2: SAC3 actuator architectures: (a) SAC3-A2 (b) SAC3-A3....................................87 Figure 6.1: SAC9 uncontrolled yielded response. (a) Permanent drifts. (b) Permanently deformed shape...............................................................................................................111 Figure 6.2: First four modes for SAC9 uncontrolled response..............................................112 Figure 6.3: Schematic of actuator-actuator interaction for resetable controller.....................114 Figure 6.4: Schematic of SAC9-A3 actuator architecture......................................................116 Figure 6.5: Schematic of SAC9-A8 actuator architecture......................................................124 Figure 7.1: SAC3-A1 average drifts across earthquake suites: (a) Peak drifts, (b) Permanent drifts................................................................................................................................150 Figure 7.2: SAC3-A1 tracking comparison. (a) Uncontrolled floor 1 drift. (b) LQRy controlled floor 1 drift with and without tracking..........................................................172 Figure 7.3: Floor 1 total structural jerk distribution for SAC3 linear model – Kobe Earthquake (high suite)......................................................................................................................176 Figure 7.4: Effect of actuator force clipping on total structural jerk, during strong motion..177 LIST OF TABLES Table 1.1: General structural performance level definitions and indicative drifts for steel moment frames [BSSC 1997].............................................................................................9 Table 2.1: Spliced column sections for SAC9 structure (refer to Figure 2.2 for column names)...............................................................................................................................15 Table 2.2: Names of earthquakes scaled within suites.............................................................17 Table 3.1: Distribution of SAC3 structural weight..................................................................21 Table 3.2: Distribution of SAC9 structural weight..................................................................22 Table 3.3: Modal properties of SAC3 and SAC9 structural models........................................24 Table 3.4: Modal Contribution for linear and non-linear SAC9 structural uncontrolled responses...........................................................................................................................25 Table 4.1: SAC3 distributions of maximum actuator forces....................................................38 Table 4.2: SAC9 distributions of maximum actuator forces....................................................40 Table 5.1: SAC3 uncontrolled results for high suite................................................................73 Table 5.2: SAC3 uncontrolled results for medium suite..........................................................73 Table 5.3: SAC3 uncontrolled results for low suite.................................................................74 Table 5.4: SAC3-A1-1 results for high suite with quasi-bang-bang controller.......................76 Table 5.5: SAC3-A1-1 results for medium suite with quasi-bang-bang controller.................76 Table 5.6: SAC3-A1-1 Results for low suite with quasi-bang-bang controller.......................77 Table 5.7: SAC 3-A1-1 results for high suite with LQR controller.........................................78 Table 5.8: SAC3-A1-1 results for med suite with LQR controller..........................................79 Table 5.9: SAC3-A1-1 results for low suite with LQR controller...........................................80 Table 5.10: SAC3-A1-1 results for high suite with LQRy controller......................................81 Table 5.11: SAC3-A1-1 Results for medium suite with LQRy controller...............................81

Description:
This thesis explores the creation and assessment of semi-active control algorithms for both squat shear buildings and tall flexible structures. If cost-effective, practicable, semi-active structural control systems can be developed, the potential reduction in loss of both property and lives due to
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.