ebook img

Self-Propelled Rods near Surfaces PDF

0.2 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Self-Propelled Rods near Surfaces

epl draft Self-Propelled Rods near Surfaces Jens Elgeti(a)1 and Gerhard Gompper(b)1 9 0 1 Institut fu¨r Festko¨rperforschung, Forschungszentrum Ju¨lich, D-52425 Ju¨lich, Germany 0 2 n a PACS 82.70.-y–Disperse systems; complex fluids J PACS 45.50.-j–Dynamics and kinematics of a particle and a system of particles 4 PACS 05.40.-a–Fluctuation phenomena, random processes, noise, and Brownian motion 1 PACS 89.75.Da–Systemsobeying scaling laws ] Abstract. - We study the behavior of self-propelled nano- and micro-rods in three dimensions, h p confinedbetweentwoparallelwalls,bysimulationsandscalingarguments. Oursimulationsinclude - thermal fluctuations and hydrodynamic interactions, which are both relevant for the dynamical o behavior at nano- to micrometer length scales. In order to investigate the importance hydrody- i b namic interactions, we also perform Brownian-dynamics-like simulations. In both cases, we find . that self-propelled rods display a strong surface excess in confined geometries. An analogy with s c semi-flexiblepolymersisemployedtoderivescaling lawsforthedependenceonthewalldistance, i therod length, and thepropulsive force. Thesimulation data confirm thescaling predictions. s y h p [ 1 Introduction. – Both in soft matter and in biol- important role in determining their behavior. The long- v ogy, there are numerous examples of swimmers and self- range hydrodynamic interactions (at distances from the 1 propelled particles. With a typical size in the range of wallmuchlargerthantheparticlesize,sothattheparticle 4 0a few nano- to several micro-meters, both low-Reynolds- can be approximated by a force dipole) induce a parallel 2number hydrodynamics [1] and thermal fluctuations are orientationandeffective attractiontothe wall[13,14]. At .essential to determine their dynamics. Well-known bio- shortdistancesfromthewall,thedetailsofthepropulsion 1 0logical examples are sperm cells which are propelled by mechanism become relevant. For example, it has been 9a snake-like motion of their tail [2], bacteria like E. coli shown for E. coli that corkscrew motion of the flagella 0whichmoveforwardbyarotationalmotionoftheirspiral- leads to hydrodynamic attraction [15]. : vshapedflagella[3],andlisteriawhicharepropelledbylocal We study here the dynamics of self-propelled rod-like iactin polymerization at their surface [4,5]. In soft matter particlesconfinedbetweentwoplanarwalls. Suchparticles X systems, synthetic self-propelled particles have been de- capture the elongated geometry of most of the swimmers r asignedtoperformdirectedmotion. Examplesarebimetal- mentioned above. In the vicinity of a wall, the rod-like lic nanorods which are driven by different chemical reac- geometryofthe particlesis important,since itfavorspar- tionsatthetwotypesofsurfaces[6–8],orconnectedchains allel orientation — both with and without hydrodynamic of magnetic colloidal particles on which a snake-like mo- interactions. Weconsiderrodswhicharesmallenoughfor tion is imposed by an external magnetic field [9]. thermal fluctuations to play an important role. Thermal Both in soft matter and in biological systems, surfaces fluctuations induce a persistent-random-walk behavior of and walls are ubiquitous. For example, bacteria in wet thetrajectoriesinthebulk,andanentropicrepulsionnear soil, near surfaces or in microfluidic devices [10,11], or the wall. sperm in the female reproductive tract find themselves in In order to study these effects, we employ a particle- stronglyconfinedgeometries. Alreadyin1963,Rothschild based mesoscale hydrodynamics technique, in which hy- found that sperm accumulate at surfaces [12]. Thus sur- drodynamic interactions (HI) can be switched on and off faces strongly affect the dynamics of swimmers and self- easily. In the absence of hydrodynamic interactions, the propelled particles. Typically, these particles live in an effectofthefluidontheself-propelledparticlecorresponds aqueousenvironment. Therefore,hydrodynamicsplaysan to aStokesfrictionandthermalfluctuations,as described byBrowniandynamics(BD).Ourmainresultisthatself- (a)e-mail:[email protected] propelled rods accumulate at surfaces, both with Brow- (b)e-mail:[email protected] nian dynamics and full hydrodynamics. Note that this p-1 J. Elgeti and G. Gompper l (cid:0)(cid:0)(cid:1)(cid:1) l (cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1) (cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1) (cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1) (cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1) (cid:0)(cid:0)(cid:1)(cid:1) case,denotedrandomMPC,vcmisdrawnfromaMaxwell- c b Boltzmann distribution of variance k T/ρ, see Ref. [24]. B (cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1) Tdyhnisamalilcoweffseucstst.oseparateBrowniandynamicfromhydro- Propulsion is achieved by applying a forward thrust Figure 1: A rod is modeled by three filaments, interconnected byharmonic springs with spring lengths l and l =√2l . b c b F =f ˆr for i>1, (1) i t i,i−1 oneachmonomerioftherod,whereˆr istheunitvec- i,i−1 result is in contrastto rods pulled parallelto a surface by tor connecting monomers i and i 1, and f is the force t anexternalforce[16,17]. Theaggregationofself-propelled − strengthper monomer. Whenhydrodynamicsisincluded, rods is found to depend on the rod length and on the an appropriate reaction force is added to the fluid parti- strength of the propulsive force. We employ an analogy clesinthecollisioncellsoccupiedbymonomers,suchthat with semi-flexible polymers to derive scaling laws for the the total momentum is conserved locally. This is equiva- residence times near and far from the wall, and to distin- lenttoarodthatpushesthefluidatitssurfacetowardsits guish different dynamical regimes. rearend. Weemployaglobalthermostattokeepthetem- Model and Simulation Technique. – We model perature constant. For Brownian dynamics, the velocity v of the rod is proportional to f . For our choice of pa- the rod of length l as a crane-like structure (see Fig. 1) t rameters, random MPC gives v f /γ with monomer [18]. Three semi-flexible filaments, each consisting of N t 0 m | | ≃ frictioncoefficientγ 270 mk T/a2. This leadstothe monomers,arearrangedinatriangularcrosssection. The 0 B ≃ distances between the filaments and between monomers Peclet number p lv 6l2f within a filament are the same bond length l , so that Pe= = t, (2) b D k T l = (N 1)l . The rod length is kept nearly constant B m b − byharmonicpotentialsUb =K(|ri,i+1|−lb)2 forthebond with diffusion constant D = kBT/(6γ0l). For Pe ≫ 1, vectors r between neighboring monomers, and simi- propulsion dominates and the rod should have a persis- i,i+1 larlyfornext-nearestneighbors. SpringconstantsKl2 are tent directed motion, while for Pe 1 thermal noise b ≪ chosen to be much larger than the thermal energy k T, dominates and leads to a diffusive behavior. B so that length and bending fluctuations are irrelevant. The rods motion is confined by two parallel hard walls To describe hydrodynamic behavior, we employ multi- a distance d apart. In the MPC simulations with hydro- particlecollisiondynamics(MPC),aparticle-basedmeso- dynamics, no-slip boundary conditions on the walls are scopic simulation technique that naturally incorporates implemented by a bounce-back rule (inversion of the ve- both hydrodynamic interactions and thermal fluctuations locity at the wall) and virtual wall particles [21]. In the [19–22]. The MPC fluid consists of point-like fluid parti- directions parallel to the walls, we apply periodic bound- clesofmassmincontinuousspace. Thedynamicsevolves ary conditions. For random MPC, the bounce-back rule in two steps. During the streaming step, particles prop- is applied to the monomers which hit the wall. agate ballistically for a time interval h. In the collision Results. – The main resultofour simulationsis that steptheparticlesaresortedintothecellsofacubiclattice self-propelled rods accumulate at a wall, both with and with cell size a; they exchange momentum by a rotation withouthydrodynamicinteractions,incontrastto passive of their velocities relative to the center-of-mass velocity rods which are depleted near a wall due to entropic rea- v of each cell by an angle α around a randomly cho- cm sons. We begin our study with the Brownian-dynamics- sen coordinate axis. We employ the parameters m = 1, type random MPC. The rod accumulation at a wall is k T = 1, a = 1, h = 0.05, α = 130◦, and ρa3 = 10 fluid B illustrated in Fig. 2, which shows the probability density particles per cell. This corresponds to measuring length P(z)tofindthecenterofmassofarodatdistancez from and time in units of the cell size a and (ma2/k T)1/2, B thewallforvariouspropulsiveforcesf . Passiverodsshow t respectively. Embedded particles can easily be coupled to a depletion layer of thickness l/2; however, with increas- the MPC fluid through inclusion of the monomers in the ing propulsion force f , a pronounced peak develops near t collisionstep. Thecrane-likestructureofFig.1withbond thewall. Notethatthisbehavioremergessolelyfromself- length l = 0.5a and monomer mass M = 5m embedded b propulsion–i.e. evenwithouthydrodynamicinteractions. in a MPC fluid represents a good approximation to slen- Surface Excess. To quantify the surface localization, der rods in a Stokes fluid with an effective hydrodynamic we define the surface excess radius of r = 0.45a [18]. With the fluid parameters given above, the viscosity is η 17√mkBT/a2. This is large d/2 ≃ enough to keep the Reynolds number Re ρlv/η < 0.3 s= P(z) Pb dz (3) for all considered rod lengths l and rod vel≡ocities v. Z0 (cid:2) − (cid:3) An advantage of MPC is that hydrodynamic interac- where P is the bulk probability density. A homogeneous b tions can easily be switched off, while retaining similar distributioncorrespondsto s=0, while full absorptionat thermalfluctuationsandfrictionconstants[23,24]. Inthis the wall corresponds to s = 1. For a passive rod, P(z) p-2 Self-Propelled Rods near Surfaces 0.5 f=5 0.3 t f=0.5 0.4 t f=0.1 t f=0. 0.3 t ) 0.2 theory 0.2 ft (z s 10 P 0.1 5 2.5 0.1 0 0.5 0.25 0.1 -0.1 0.05 0.0 0 -0.2 0 5 10 15 20 25 5 10 15 20 25 z l/a Figure 2: (Color online) Probability density P(z) as function Figure3: (Coloronline)Surfaceexcesssasafunctionofscaled ofthedistancez fromthesurface,forvariouspropellingforces rod length l/a, for various propelling forces f , as indicated. t f . Simulations are performed with Brownian-dynamics-like Simulations are performed with Brownian-dynamics-like ran- t random MPC. The corresponding surfaces excesses are s = domMPC.The(black)dashed-dottedlineisthescalingresult 0.11, s=0.07, s=0.21, and s=0.33 for increasing f . The intheballisticregime(seeEq.(8)),the(gray)dashedlinesare t − rod length is l = 9.5a, the walls are located at z = 0a and scalingresultsinthediffusiveregime(seeEq.(10))forf =0.5 t z =50a. A solid gray line shows the density profile of passive and f =0.05. Wall distance is d=50a. t rods. of a rod is D k T/(ηl3), which implies a persistence r B ∼ increases linearly for 0<z <l/2, and s= 1/(2d/l 1). length − − To calculate the surface excess in the simulations, we de- ξ v/D ηvl3/k T (5) p r B l/2 ∼ ∼ terminethe probabilityp= P(z)dz to findthe center 0 ofthetrajectory. Theprobabilitytofindtheself-propelled of mass of the rod within haRlf the rod length from a wall. rod in a layer of thickness l/2 near the wall can be ex- This can easily be converted into the surface excess via pressed as p=τ /(τ +τ ), where τ is the time the rod w w b w remains within this layer and τ is the time it is located s=(dp l)/(d l) (4) b − − in the bulk (with l/2 < z < d l/2). The surface excess − is then obtained from Eq. (4). with the assumption P = P(z) , which is a b l/2<z<d/2 h i To estimate τ , we consider a rod, which at time t=0 good approximation since P(z) is nearly constant for w is oriented parallel to the wall, and located very close to l/2 < z < d/2, see Fig. 2. The surface excess is shown thewallwith0<z l/2. Astherodmovesforward,itis in Fig. 3 as a function of the rod length l for various ≪ reflected when is hits the wall, and is thereby constrained propulsive forces f . Passive rods with f = 0 show the t t to the positive half-space z >0, see Fig. 4. This situation expectednegativesurfaceexcessduetoentropicrepulsion, is very similar to a semi-flexible polymer, which is fixed in good agreement with the analytical equilibrium result. at one end near the wall with tangent vector parallel to Long propelled rods show a strong surface excess, which thewall;itsbendingrigidityκisdeterminedbythepersis- decreases for smaller rod lengths (l/a < 10). Short and tencelength,ξ =κ/k T. Inthiscase,thedistanceofthe weakly-propelledrods behave like passive rods (with neg- p B polymersfromthe wallincreasesas z (k T/κ)1/2x3/2 atives),butwithincreasinglength,theyshowacrossover B h i∼ and the orientationangle as θ (k T/κ)1/2x1/2, where to a positive surface excess, with a minimum of the sur- h i∼ B x=vt is the distance traveledparallelto the wall[25,26]. face excess at intermediate rod lengths. This minimum The condition z =l/2 at t=τ then implies occurs at a Peclet number Pe 10. It should be noticed, w h i ≃ however,that the dependence ofthe surfaceexcessonthe 1/3 rod-lengthl andthe propulsiveforcecannotbe combined τ 1 l2ξ 1/3 η l5/3v−2/3. (6) w p ∼ v ∼(cid:18)k T(cid:19) into a dependence on the Peclet number alone — for ex- (cid:0) (cid:1) B ample,because the curvesforlargef inFig.3 depend on t It is important to emphasize that there is no complete l but are essentially independent of f . t analogybetweensemi-flexiblepolymersandself-propelled Scaling Arguments. Inordertounderstandthe mech- rods. The main difference is that the equilibrium con- anism which is responsible for the effective surface ad- formations of long semi-flexible polymers touch a wall es- hesion of self-propelled rods, and to predict their behav- sentially tangentially – with a very small angle on both ior as a function of rod length, propulsive force, and wall sides determined by the bending rigidity. The trajectory separation, we exploit the analogy of the trajectories of of a self-propelledrod, onthe other hand, canapproacha self-propelledrodswiththe conformationsofsemi-flexible wall also almost perpendicularly, see Fig. 4. The rod will polymers. In the bulk, the rotational diffusion constant hit the wall and get stuck at first, but under the effect p-3 J. Elgeti and G. Gompper (cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1) 105 τ * b diffusive τ ballistic b τ b d 104 τ w l/2 103 τ * f=10 (cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1) w f=tf2t=.55 t f=0.5 Figure 4: (Color online) Schematic representation of the dif- 2 t 10 f=0.25 ferent regimes of rod motion, near a wall for time τ , and in t w the bulk for time τb, either in the ballistic or in the diffusive 2 5 10 15 20 25 regime. l/a of a small wall slip and thermal fluctuations, it will then Figure 5: (Color online) Rescaled wall time τ∗ = τ f2/3 and w w t slowly reorient itself parallel to the wall. Thus, it should bulk time τ∗ =τ f2/3/10 for different propulsive forces f , as b b t t be noticed that we employ the polymer analogy only for indicated. Dashed lines are scaling predictions τ l5/3 and w ∼ those parts of the trajectory at the wall after the rod has τb l2/3. The wall separation is d=50a. ∼ oriented itself parallel to the wall. For the time τ for the rod to stay in the bulk fluid, we b have to distinguish two regimes. In the ballistic regime, Inordertotestourscalingpredictions,weshowinFig.5 with ξp d, the rod travels essentially on a straight line thescaledtimesτwft2/3andτbft2/3,asdeterminedfromthe ≫ betweenthewalls,seeFig.4. Inthiscase,thebulktimeis simulations. Forsufficientlylongrods,l&5a,andnottoo givenby τb v−1d/sin(θ), whereθ isthe angleofthe rod small forces, ft & 0.5, the simulation results are found to ∼ with the surface when it leaves the wall layer of thickness agree very well with the scaling predictions (6), (7). We l/2. The polymer analogy explained above implies θ have also investigated numerically the d-dependence of τb h i ∼ (l/ξ )1/3 for θ 1, so that in the diffusive regime, and find good agreement with the p ≪ linear dependence predicted by Eq. (9). d ξ 1/3 η 1/3 τ p dl2/3v−2/3. (7) The scaling results (8), (10) can now be used together b ∼ v (cid:18) l (cid:19) ∼(cid:18)kBT(cid:19) withEq.(4)todeterminethesurfaceexcesss. Withasin- Thus,thescalingargumentspredictintheballisticregime gle set of numerical prefactors aB = 0.23 and aD = 2.48, the probability the l-dependence in Fig. 3 can be described very well for p=l/(l+aBd) (8) various propulsion forces ft. This allows for the follow- ing interpretation. Simulations with strong propulsion, tofindtherodinthewalllayers,withaconstanta which B f >2.5, are in the ballistic regime. With weaker propul- has to be determined numerically. Note that this expres- t sion, short rods are in the diffusive regime. With increas- sion is independent of the velocity v, because both time ing rod length, the persistence length of the trajectory scales τ and τ depend on v in the same way. w b (ξ vl3) increases,leading to a crossoverto the ballistic Inthediffusiveregime,thepersistencelengthξp issmall repgi∼me. For long rods, l > 20a, this leads to a surface comparedto the slit width d. In this case,the calculation excess independent of f over more than two orders of ofτ is a meanfirst-passagetime problem[27]. The mean t b magnitude, in excellent agreement with Eq. (8). first-passage time for a one-dimensional random walker Fig. 6 shows the dependence of the surface excess on starting at position z to reach one of the walls is τ 0 1 z (d z )τ /ξ2,withthetimeunitτ ξ /v. Forz d∼, the propulsive force ft in more detail. For small ft, the 0 − 0 0 p 0 ∼ p 0 ≪ surface excess equals that of a passive rod. The surface this implies τ z d. We take z ξ sin(θ), becausethis b 0 0 p ∼ ∼ excess increases, when the propulsive force becomes rele- is the distance from the wall layer which the rod travels vantcomparedtothethermalmotion;itreachesaplateau before it forgets its orientation, and obtain when the persistence length becomes comparable to the 1/3 −1/3 d l η wall separation d. These simulations results are again in τ dl−2/3v−4/3. (9) b ∼ v (cid:18)ξ (cid:19) ∼(cid:18)k T(cid:19) good agreement with the scaling predictions. p B Thus,inthediffusiveregime,thescalingargumentsimply Hydrodynamic Interactions. In order to assess the ef- fect of hydrodynamic interactions, we compare in Figs. 6 l p= (10) and 7 results of simulations with Brownian-type dynam- l+a df−2/3l−4/3 D t ics (BD) and full hydrodynamics. We focus here on rod with a constant a , where we have used that v f . Al- lengths l 10a in order to obtain good statistical accu- D t ∼ ≤ thoughpdependsonf (orv)inthiscase,thisdependence racy. The simulations show that the qualitative behav- t decreases with increasing rod length l. ior is very similar as without hydrodynamic interactions. p-4 Self-Propelled Rods near Surfaces 0.4 0.4 d=50 d=20 d=20 0.3 d=20+HI 0.3 0.2 d=50 0.2 s s 0.1 0.1 0 f=0 0 t f=5 t f=0.5 t -0.1 -0.1 0.01 0.1 1 10 100 2 3 4 5 6 7 8 9 10 f t l/a Figure 6: (Color online) Surface excess s as a function of Figure7: (Coloronline)Surfaceexcesssasafunctionofscaled propulsiveforcef . Theparametersarel=4.5a,andd=20a rod length l/a. Symbolsshow simulation results with (dashed t or d = 50a as indicated. The solid lines show the predicted line) and without (solid line) HI for different propulsive forces asymptoticbehaviorsforsmallandlargepropulsiveforces. The f , as indicated. The dashed-dotted line shows the scaling re- t dashedlinesindicatethescaling resultsinthediffusiveregime sultintheballisticregime(seeEq.(8)),thedashedlineinthe (seeEq.(10)). Thedecreaseofsforf 4withHIisprobably diffusive regime (see Eq. (10)). Wall distance is d=20a. t ≃ a finite-Reynold-numbereffect (Re 0.3). ≃ thedecreasedsurfaceexcessisthatτ decreasesmorethan However,hydrodynamicinteractionsreducethesurfaceex- w τ , see Fig. 8. In order to better understand the behavior b cess. This effect is most pronounced for intermediate rod of these characteristic times, we show in Fig. 9 the distri- lengths, see Fig. 7, and persists over a wide parameter butionP ofτ andτ forthesameintermediatestrengthof w b range. the propulsiveforceas inFig.7. ForBrownian-dynamics- For a rod moving far from a wall, hydrodynamic inter- type simulations, the distribution shows an initial decay actionsincreasetherotationaldiffusioncoefficientandde- at small τ, followed by a second peak, both in τ and w creasethe translationalfriction coefficient logarithmically τ . The two peaks in P(τ ) are caused by two different b b as a function of the rod length [28], processes after the rod leaves the wall region, (i) reentry 3k T to the same wall after a short time under a flat angle, B D = [ln(l/2r) 0.66+ (r/l)] , (11) r πηl3 − O and (ii) crossing of the channel and reaching the other wall under a steeper angle. The same mechanisms are γ = 2πηl[ln(l/2r) 0.21+ (r/l)]−1 , (12) k − O also responsible for the peaks in P(τw), because a steeper where 2r is the rod diameter. Thus a rod with hydrody- entranceangleintothewalllayerimpliesadeeperpenetra- namic interactions (HI) should move faster than without tion andthereby a longer residencetime in the walllayer. at the same propulsion force, as it is indeed seen in our The secondpeak gets largerwhen the rodgets longerand simulations. However,the persistence length of its trajec- crossings are more likely than reentries due to the larger tory, ξ v/D f /(γ D ), does not change, since the persistence lengths. p r t k r ∼ ∼ logarithmic factors cancel out (to leading order for long For hydrodynamically interacting rods, Fig. 9 shows rods). When we insert these results in our scaling rela- that the probability for short residence times in the wall tions,wefindthatbothτ andτ arereducedinthepres- and the bulk regions is significantly enhanced. No second b w ence ofhydrodynamic interactionsby a factor1/ln(l/2r), peak is visible for rod length l/a = 7, but it develops for whiletheratioτ /τ remainsunaffectedinboththediffu- longer rods with l/a=9.5. w b sive and the ballistic scaling regimes (to leading order for Thereasonforthestrongerdecreaseofτ thanτ when w b large l/a.) HI are switched on must be the hydrodynamic interac- Fig. 8 shows our simulation results for the ratio tion with the wall. The far-field approximation of this τ (HI)/τ (BD) and τ (HI)/τ (BD) for systems with interaction [13,14] is certainly not quantitatively correct w w b b and without hydrodynamics. Clearly, hydrodynamic in- for the long rods and small wall separations we consider; teractions speed up both processes. The observed decay however, it could still apply qualitatively. For θ 1, ≪ withincreasingrodlengthisingoodqualitativeagreement it predicts a hydrodynamic torque proportional to pθ/z3, withthescalingpredictionofalogarithmicdependenceon with dipole moment p ηvl2, at a distance z from the ∼ the rod-length. wall [14]. This implies that as the rod moves towards the However,thelogarithmicfactorsinτ andτ cannotex- wall, it gets oriented parallel to the wall, and therefore w b plainthesmallersurfaceexcesswithHIobservedinFig.7, penetrates less deeply into the wall layer. The torque becausesonlydependsontheratioτ /τ . Thereasonfor can be expressed as an effective orientational potential w b p-5 J. Elgeti and G. Gompper 1 τ 0.9 τ b 1111....2222 22 w 0.7/ln(x) 11..55 0.8 1111 11 0.7 00..55 0000....8888 τ 0.6 PPPP 00 00 00..22 00..44 00..66 00..88 0000....6666 0.5 BBBBDDDD ττττ bbbb 0.4 0000....4444 BBBDDD τττ www HHII ττ bb 0.3 0000....2222 HI τ w 0.2 0000 2 3 4 5 6 7 8 9 10 0000 1111 2222 3333 4444 5555 l/a ττττ ((((kkkk TTTT////ηηηηllll3333)))) BBBB Figure 8: (Color online) Ratios τ (HI)/τ (BD) and w w Figure 9: (Color online) Probability distribution of residence τ (HI)/τ (BD) of residencetimes for simulations with hydro- b b timesτ andτ ,bothforsystemswithHIandBD.Thepropul- w b dynamic interaction and Brownian dynamics, as a function of siveforceisf =0.5,thewallseparationd=20a. Rodlengths t the rod-length l/a. The propulsive force is f = 0.5, the wall t are l/a=7 and l/a=9.5 (inset). distance is d=20a. The dashed-dotted line indicates the log- arithmic dependenceexpected from Eqs. (11) and (12). [10] DiLuzio W. R., Turner L., Mayer M., Garstecki W pθ2/z3. Thus, for small angles θ (and large dis- P., WeibelD. B.,Berg H.C.andWhitesidesG.M., r ∼ | | Nature , 435 (2005) 1271. tances z) where W < k T, orientational diffusion still r B [11] Galajda P., Keymer J., Chaikin P. and Austin R., dominates. The combination of hydrodynamic alignment J. Bacteriol. , 189 (2007) 8704. and small orientationalfluctuations is consistent with the [12] Rothschild, Nature , 198 (1963) 1221. increase of short residence times in the distributions of [13] Pedley T. J. and Kessler J. O., Annu. Rev. Fluid Fig. 9 when hydrodynamic interactions are switched on. Mech. , 24 (1992) 313. [14] Berke A. P., Turner L., Berg H. C. and Lauga E., Summary. – We have shownthat self-propelledrods Phys. Rev. Lett. , 101 (2008) 038102. in confined geometries show a strong surface excess. The [15] Lauga E., DiLuzio W. R., Whitesides G. M. and surface excess is negative for a passive rod; it increases Stone H. A., Biophys. J. , 90 (2006) 400. with the propulsive force, and saturates for large forces. [16] Russel W. B., Hinch E. J., Leal L. G. and Tieffen- Theanalogywithsemi-flexiblepolymersallowsthepredic- bruck G.,J. Fluid Mech. , 83 (1977) 273. tionofscalinglaws,whichareingoodagreementwiththe [17] Sendner C. and Netz R. R.,EPL , 79 (2007) 58004. simulationresults. Our results for the aggregationof self- [18] Elgeti J. and Gompper G., Hydrodynamics of ac- propelled rods at surfaces are relevant for many systems tive mesoscopic systems in NIC Symposium 2008, edited in biology and nanotechnology. by Mu¨nster G., Wolf D. and Kremer M., Vol. 39 of NIC series (Neumann Institute for Computing, Ju¨lich) 2008 pp. 53–61; http://www.fz-juelich.de/nic- References series/volume39/ . [19] Malevanets A. and Kapral R., J. Chem. Phys. , 110 [1] Purcell E. M., Am. J. Phys. , 45 (1977) 3. (1999) 8605. [2] Gray J., J. Exp. Biol. , 32 (1955) 775. [20] Ihle T. and Kroll D. M., Phys. Rev. E , 63 (2001) [3] BergH.C.,E.coliinMotion(Springer,NewYork)2004. 020201(R). [4] Bernheim-Groswasser A., Wiesner S., Golsteyn [21] Lamura A., Gompper G., Ihle T. and Kroll D. M., R. M., Carlier M.-F. and Sykes C., Nature , 417 Europhys. Lett. , 56 (2001) 319. (2002) 308. [22] Ripoll M., Mussawisade K., Winkler R. G. and [5] Boukellal H., Campa´s O., Joanny J.-F., Prost J. Gompper G., Europhys. Lett. , 68 (2004) 106. and Sykes C.,Phys. Rev. E , 69 (2004) 061906. [23] Kikuchi N., Gent A. and Yeomans J. M., Eur. Phys. [6] PaxtonW.F.,KistlerK.C.,OlmedaC.C.,SenA., J. E , 9 (2002) 63. St.AngeloS.K., CaoY., MalloukT.E., Lammert [24] Ripoll M., Winkler R. G. and Gompper G., Eur. P.E.andCrespiV.H.,J.Am.Chem.Soc.,126(2004) Phys. J. E , 23 (2007) 349. 13424. [25] Maggs A. C., Huse D. A. and Leibler S., Europhys. [7] Fournier-Bidoz A., Arsenault A. C., Manners I. Lett. , 8(1989) 615. and Ozin G. A.,Chem. Commun. , (2005) 441. [26] Burkhardt T. W.,J. Stat. Mech. , (2007) P07004. [8] Ru¨ckner G. and Kapral R., Phys. Rev. Lett. , 98 [27] Feller W.,An introduction to probability theory and its (2007) 150603. applications 3rd Edition Vol.1 (Wiley, New York) 1968. [9] DreyfusR.,BaudryJ., RoperM.L., FermigierM., [28] Tirado M. M. and Garcia de la Torre J., J. Chem. Stone H. A. and Bibette J., Nature , 437 (2005) 862. Phys. , 73 (1980) 1986. p-6

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.