SpringerSeriesin materials science 99 SpringerSeriesin materials science Editors: R.Hull R.M.Osgood,Jr. J.Parisi H.Warlimont The Springer Series in Materials Science covers the complete spectrum of materials physics, includingfundamentalprinciples,physicalproperties,materialstheoryanddesign.Recognizing theincreasingimportanceofmaterialsscienceinfuturedevicetechnologies,thebooktitlesinthis seriesreflectthestate-of-the-artinunderstandingandcontrollingthestructureandproperties ofallimportantclassesofmaterials. 88 Introduction 96 GaNElectronics toWaveScattering,Localization ByR.Quay andMesoscopicPhenomena 97 MultifunctionalBarriers ByP.Sheng forFlexibleStructure 89 Magneto-Science Textile,LeatherandPaper MagneticFieldEffectsonMaterials: Editors:S.Duquesne,C.Magniez, FundamentalsandApplications andG.Camino Editors:M.YamaguchiandY.Tanimoto 98 PhysicsofNegativeRefraction 90 InternalFrictioninMetallicMaterials andNegativeIndexMaterials AReferenceBook OpticalandElectronicAspects ByM.S.Blanter,I.S.Golovin, andDiversifiedApproaches H.Neuha¨user,andH.-R.Sinning Editors:C.M.KrowneandY.Zhang 91 Time-dependentMechanicalProperties 99 Self-OrganizedMorphology ofSolidBodies inNanostructuredMaterials ByW.Gra¨fe Editors:K.Al-ShameryandJ.Parisi 92 SolderJointTechnology 100 SelfHealingMaterials Materials,Properties,andReliability AnAlternativeApproach ByK.-N.Tu to20CenturiesofMaterialsScience Editor:S.vanderZwaag 93 MaterialsforTomorrow Theory,ExperimentsandModelling 101 NewOrganicNanostructures Editors:S.Gemming,M.Schreiber forNextGenerationDevices andJ.-B.Suck Editors:K.Al-Shamery,H.-G.Rubahn, andH.Sitter 94 MagneticNanostructures Editors:B.Aktas,L.Tagirov, 102 PhotonicCrystalFibers andF.Mikailov PropertiesandApplications ByF.Poli,A.Cucinotta, 95 Nanocrystals andS.Selleri andTheirMesoscopicOrganization ByC.N.R.Rao,P.J.Thomas 103 PolaronsinAdvancedMaterials andG.U.Kulkarni Editor:A.S.Alexandrov Volumes40–87arelistedattheendofthebook. K. Al-Shamery J. Parisi (Eds.) Self-Organized Morphology in Nanostructured Materials With84 Figures 123 ProfessorDr.Katharina Al-Shamery Universita¨tOldenburg,Fakutlta¨tV and Center of Interface Science Carl-von-Ossietzky-Str.9–11,26129Oldenburg,Germany E-mail:[email protected] ProfessorJu¨rgenParisi Universita¨tOldenburg,FachbereichPhysik,AbteilungEnergie-undHalbleiterforschung Carl-von-Ossietzky-Str.9–11,26129Oldenburg,Germany E-mail:[email protected] SeriesEditors: ProfessorRobertHull ProfessorJu¨rgenParisi UniversityofVirginia Universita¨tOldenburg,FachbereichPhysik Dept.ofMaterialsScienceandEngineering Abt.Energie-undHalbleiterforschung ThorntonHall Carl-von-Ossietzky-Strasse9–11 Charlottesville,VA22903-2442,USA 26129Oldenburg,Germany ProfessorR.M.Osgood,Jr. ProfessorHansWarlimont MicroelectronicsScienceLaboratory Institutfu¨rFestko¨rper- DepartmentofElectricalEngineering undWerkstofforschung, ColumbiaUniversity Helmholtzstrasse20 SeeleyW.MuddBuilding 01069Dresden,Germany NewYork,NY10027,USA ISSN0933-033X ISBN978-3-540-72674-6SpringerBerlinHeidelbergNewYork LibraryofCongressControlNumber:2007929993 Allrightsreserved. Nopartofthisbookmaybereproducedinanyform,byphotostat,microfilm,retrievalsystem,oranyother means,withoutthewrittenpermissionofKodanshaLtd.(exceptinthecaseofbriefquotationforcriticismor review.) This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation,broadcasting, reproductiononmicrofilmorinanyotherway,andstorageindatabanks.Duplicationofthispublicationor partsthereofispermittedonlyundertheprovisionsoftheGermanCopyrightLawofSeptember9,1965,in itscurrentversion,andpermissionforusemustalwaysbeobtainedfromSpringer.Violationsareliableto prosecutionundertheGermanCopyrightLaw. SpringerisapartofSpringerScience+BusinessMedia. springer.com ©Springer-VerlagBerlinHeidelberg2008 Theuseofgeneraldescriptivenames,registerednames,trademarks,etc.inthispublicationdoesnotimply, evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevantprotectivelawsand regulationsandthereforefreeforgeneraluse. Typesetting:DatapreparedbySPIKolamusingaSpringerTEXmacropackage Coverconcept:eStudioCalamarSteinen Coverproduction:WMXDesignGmbH,Heidelberg Printedonacid-freepaper SPIN:12067794 57/3180/SPI 543210 To Uschi Preface Whilescientistsstillmarvelabouttheeconomicalpotentialoftheomnipresent nanomaterials promising a billion dollar market, nature is still miles ahead of usinnanotechnology.Already500millionyearsago,co-developmentofpreda- tor and prey coloration as well as the development of visual systems were a consequenceofdiversificationoflifeformsandwereproducedfrommesoscop- ically ordered nanostructures. For example, arm ossicles from light-sensitive speciesofbrittlestarconsistofarraysofcalcitemicrolenseswitheachlensmin- imizing spherical aberration and birefringence when focussing light towards nerve bundles. Spectacular are iridescent colors of certain insects, birds, and flowers to make them visible on ultra-long ranges. The metallic blue of the wings of the tropical butterfly called “morpho rhetenor” is produced when light is diffracted at regularly ramified nanorods ordered with defined dis- tances. However, there are many other complex examples basing on the same principles:natureusesthepropertiesofso-calledphotonicbandgapmaterials, consisting of dielectric media with periodical index modulation that inhibit propagation of light with certain colors over a range of scattering angles. People, therefore, have started to produce materials consisting of mesoscopi- cally ordered molecules or nanoparticles, exhibiting intriguing new properties as compared with the single building blocks. The latter is also known as a novel “bottom-up” approach for nanolithography. First examples on how knowledge of the fabrication of such new materials is transferred to commer- cialproductswithinafewyearsexist.Butalso,fromthebasicresearchaspect, these materials rise a lot of new questions to be dealt with in the future. The influence of morphological changes developing at a nanometer scale on the optical near field with implications on the far field is by far well understood. Artificial materials not known to nature, such as metamaterials with a nega- tiverefractiveindex,maybeproducedbybottomupmethodssoon.Theywill allowtobuildtheperfectlensallowingtolookatobjectswithlightatatomic resolution or to make material invisible within a certain wavelength regime. Inthisvolume,thequestionwillbeaddressed,howtomanufacturemesoscop- ically ordered materials. Special emphasis will be put on to compare ordering VIII Preface phenomena under nonequilibrium situations, usually called self-organized structures, with those arising under situations close to equilibrium via self- assembly. Analogies are pointed out, differences are characterized, and efforts will be made to find common features in the mechanistic description of those phenomena. Of major importance is the question concerning the role of spa- tial and temporal order, in particular, the application of concepts developed on macroscopic and microscopic scales to structure formation occurring on nanoscales, which stands in the focus of interest on the frontiers of science. How optical properties of materials can be tuned is demonstrated in a first example on the formation of one-dimensional waveguides from nanoaggre- gates of single organic building blocks. The formation of highly ordered two- and three-dimensional supramolecular structures is related to the chemical propertiesofthesinglebuildingblocksinasecondchapter.Furthermore,self- assemblyofsurfactantsisusedtoproducenanomaterialsofhighmonodisper- sity, enabling the self-organization of hexagonal networks of “supra” crystals, rings, tubes, dots, and labyrinths (Chaps.2.5 and 4). Properties of the so formed mesoscopical materials can be tuned also by changing the size of the nanoscopic building blocks. The volume finally ends with treating how spa- tiallyperiodic,temporallystationaryturningpatternscanbeconstructedout of nanodroplets, thus, combining elements of self-assembly with aspects of self-organization in the nonequilibrium pattern formation, arising out of the interplay between reaction and diffusion embedded in the self-assembled pat- tern. In a second example, it is shown how honeycomb carbon networks can beformedwhenapplyingtheproperknowledgeontransportandstructuring. Finally, the book ends with a description how waves are transported in living systems. The editors would like to thank all authors for constructive efforts to pre- paretheirmanuscriptsandtocontributetotherichvarietyoftopicsincluded in this volume. Special thanks are due to Claus Ascheron and others from SpringerHeidelbergforcontinuouscommitment,efficientsupport,andskillful technical assistance. The editors would like to thank our colleague Stefan C. Mu¨ller (University of Magdeburg) for fruitful collaboration throughout draft- ingtheconceptofthebook,forvaluablediscussions,inputandsupport.With- outhimtherealisationofthebookwouldnothavebeenpossible.Furthermore the editors are grateful to all authors for constructive efforts. Oldenburg Katharina Al-Shamery July 2007 Ju¨rgen Parisi Contents 1 Organic Crystalline Nanofibers 1.1 Introduction ................................................. 1 1.2 Growth of Ultrathin Films: Molecular Orientation Control......... 2 1.3 Needle Films on Dedicated Templates: Mutual Orientation and Morphology Control of Nanoaggregates...................... 6 1.3.1Plain Mica.............................................. 6 1.3.2Au-Modified Mica ....................................... 8 1.3.3Water-Treated Mica...................................... 9 1.4 Selected Applications in Nano- and Microoptics .................. 9 1.5 Summary and Outlook: Future Devices From Organic Nanofibers... 14 References ...................................................... 15 2 Titanium-Based Molecular Architectures Formed by Self-Assembled Reactions 2.1 Introduction ................................................. 17 2.1.1Results and Discussion ................................... 19 2.2 Formation of Molecular Architectures ........................... 19 2.3 Molecular Architectures Accompanied by Radical Induced C–C Coupling Reactions..................... 33 2.4 Molecular Architectures Based on C–C Coupling Reactions Initiated by C–H Bond Activation Reactions..................... 38 2.5 Conclusion and Future Directions .............................. 42 References ...................................................... 43 3 Self-Assemblies of Organic and Inorganic Materials 3.1 Introduction ................................................. 47 3.2 Structure of Colloidal Self-Assemblies Made of Surfactants and Used as Templates........................................ 49 3.3 Production of Nanocrystals by Using Colloidal Solutions as Templates and Their Limitations ............................ 51 3.4 Self-Organization of Nanocrystals .............................. 55 X Contents 3.5 Colloidal Nanolithography by Using Nanocrystals Organized in a Given Structure as Masks [83].............................. 61 3.6 Conclusion .................................................. 64 References ...................................................... 64 4 Self-Assembled Nanoparticle Rings 4.1 Introduction ................................................. 67 4.2 Experimental Formation of Nanoparticle Rings................... 68 4.2.1Spreading of Polymer Solution on Water Surface............. 68 4.2.2HDA Pancake Structures ................................. 69 4.2.3CoPt3 Nanoparticle Rings ................................ 72 4.3 Model for the Formation of HDA Pancakes ...................... 74 4.3.1Phase Separation of Binary Solution ....................... 74 4.3.2Rupture of Thin HDA Film into Micrometer-Size Pancakes ... 78 4.4 Formation of a Nanoparticle Ring at the Edge of an HDA Pancake........................................... 81 4.4.1Pinning of an HDA Micrometer-Size Pancake................ 81 4.4.2Forces Acting on the Nanoparticle Located in the Interior of Pancake................................. 82 4.4.3Forces Acting on the Nanoparticle Located at the Edge of Pancake ................................... 84 4.5 Summary and Conclusions..................................... 85 References ...................................................... 86 5 Patterns of Nanodroplets: The Belousov–Zhabotinsky- Aerosol OT-Microemulsion System 5.1 Introduction ................................................. 89 5.2 The BZ-AOT System ......................................... 90 5.2.1The BZ Reaction ........................................ 90 5.2.2AOT Microemulsions..................................... 91 5.2.3The BZ-AOT System .................................... 93 5.3 Experimental Results ......................................... 94 5.3.1Experimental Configuration............................... 94 5.3.2Turing Patterns ......................................... 95 5.3.3Patterns Associated with a Fast-Diffusing Activator.......... 97 5.3.4Complex Patterns – Dashes and Segments ..................100 5.3.5Localized Patterns .......................................101 5.4 Theoretical Considerations ....................................103 5.5 Constructing a Model.........................................104 5.5.1Linear Stability Analysis and Types of Bifurcations ..........106 5.5.2Results of Numerical Simulations ..........................108 5.6 Conclusion and Future Directions ..............................109 References ......................................................112 Contents XI 6 Honeycomb Carbon Networks: Preparation, Structure, and Transport 6.1 Introduction .................................................115 6.2 Experimental Formation of Polymer Honeycomb Structures........118 6.2.1Spreading of One Liquid on Another .......................118 6.2.2Production of Polymer Networks...........................119 6.2.3Structural Forms of Nitrocellulose Networks.................120 6.2.4Structural Forms of Poly(p-phenylenevinylene) and Poly (3-octylthiophene) Networks ......................123 6.3 Model for the Formation of Honeycomb Structures in Polymer Films.............................................125 6.3.1Water Droplet on the Fluid Polymer Layer..................125 6.4 Nitrocellulose Networks as Precursor for Carbon Networks.........132 6.4.1Temperature Dependence of Hopping Transport in Carbon Networks......................................133 6.4.2Electrical Field Dependence of Hopping Transport in Carbon Networks......................................142 6.5 Summary and Conclusions.....................................150 References ......................................................151 7 Chemical Waves in Living Cells 7.1 Introduction .................................................155 7.2 Waves of Metabolic Activity ...................................156 7.3 Calcium Signaling Waves......................................160 7.4 Conclusions..................................................164 References ......................................................166 Index..........................................................169