ebook img

Self-limited self-assembly of chiral filaments PDF

0.49 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Self-limited self-assembly of chiral filaments

Self-limitedself-assembly ofchiral filaments Yasheng Yang, Robert B. Meyer, and Michael F. Hagan Department of Physics, Brandeis University, Waltham, MA, 02454∗ (Dated:January26,2010) Theassemblyoffilamentousbundleswithcontrolleddiametersiscommoninbiologicalsystemsanddesir- ableforthedevelopmentofnanomaterials. Wediscussdynamicalsimulationsandfreeenergycalculationson patchysphereswithchiralpairinteractionsthatspontaneouslyassembleintofilamentousbundles.Thechirality frustrateslong-rangecrystalorderbyintroducingtwistbetweeninteractingsubunits.Forsomerangesofsystem parameters thisconstraint leads tobundles with afinitediameter asthe equilibrium state, and inother cases frustrationisrelievedbytheformationofdefects.Whilesomeself-limitedstructurescanbemodeledastwisted 0 filamentsarrangedwithlocalhexagonalsymmetry,otherstructuresaresurprisingintheircomplexity. 1 0 2 Filamentous bundles assembled from protein subunits are writethefreeenergyforatwistedbundlecomprisedofn fil- f n essentialstructuralandregulatorycomponentsofcellsandtis- amentsandnsubunitsasG(n,n)=n(g (n)−G(1,1))+ f rod f a sues. Forexample,filamentousactin,microtubules,andinter- G (n,n) with g the subunit chemical potential in the J cap f rod mediatefilamentsassembleanddisassembletocreateastrong cylindrical‘body’ofthebundleandGcaptheexcesschemical 6 butdynamiccytoskeleton,fibrogensubunitsassembleintofib- potentialofthesubunitsinthe‘caps’ateitherend. G and 2 cap rin fibers and networks to form blood clots (e.g. [1, 2]) and g are independent of length for long bundles, but depend rod ] sicklehemoglobinassemblesintofibersthatimpairredblood onthebundlediameter,ornf,sincesubunitsatdifferentradii t cell function (e.g. [3–8]). In vivo and in vitro studies sug- experiencedifferentenvironments. For a solutionwith fixed f o gestthatfiberswithfinitediametersarethestablemorphology total subunitdensity c , minimizingthe solution free energy T s forfibrin[1,2]underavarietyofconditions,while7-double- densityG = ρ(n,n)G(n,n)−TSwiththemixing mat. bsturtanthdebfourncdelsesthoaftlsiimckitlefilhaemmeongtlgorboiwntahreremmeatiansutanbclleea[r5.,T7h,e8o]-, eunntirtospizyeSgtoi=tve−sPkthBenP,lnafnw,noffρnm,fnafslsna(ρct(inof,nnrfe)sσu3l)t fwoirtheqσutihliebrsiuubm- reticalcalculations[5,9–12]havesuggestedthatfinitebundle bundledensities - d diametersarethethermodynamicallyfavoredstatefortwisted n bundlesassembled from chiral subunits. These calculations, ρ(n,n)=exp[β(µn−G(n,n))] (1) f f o however,assume specificpackingsofprotofilamentswithout c defects, which could relieve strain and thereby enable un- with β = 1/kBT and the monomer chemical potential µ = [ boundedgrowth. Theobjectiveofthisarticleistodetermine, G(1,1)+ kBT ln(ρ(1,1)σ3). The onset of spontaneous as- 1 withoutassumptionsaboutassemblypathwaysorassemblage sembly is identified with the concentration at which half of v geometries,ifchiralitycanresultinstablebundleswithfinite the subunits are assembled into bundles with the other half 0 diameters. We construct a model subunit with simple pair- freeinsolution,whichisgivenbyby[18]ccsc ≈exp[β(grod− 8 wise chiral interactions that drive assembly into filamentous G(1,1))]. ByminimizingGtotwithrespecttonandnfweob- 7 bundles, and combine umbrella sampling [13] and forward tain that bundlesfollow an exponentialdistribution of mass- 4 . fluxsampling[14]toexplorethestructuresthatspontaneously averagedlengthsP(l)∼le−l/hli,withl=n/nfandthemean 1 assemble for varying degrees of chirality. The simulations length hli ≃ [cTexp(Gcap)]1/2. However, if there is a bun- 00 demonstrate that chirality can result in regular self-limited dlediameter(n∗f)thatminimizesgrod,thedistributionwillbe 1 bundlesforarangeofinteractionstrengths,butthatstronger sharply peaked aboutn∗f when hli ≫ 1, and growth will be : interactions enable defects which give rise to branched net- self-limited. Thus, webeginbymeasuringgrod as afunction v worksorirregularbundles. ofnf. Xi Drawingconclusionsaboutself-limitedgrowthinamacro- We note that in Ref. [15] filamentous bundle formation is described in terms of the theory of linear polymerization r scopic system fromsimulationswith a finite numberof sub- a [19,20]andbundlingoflinearpolymers.Thatanalysiswould units is challenging–one must distinguish between simula- be complicated for our modelsince the subunit binding free tions in which growth terminates due to physicalconstraints energydependscruciallyonthenumberofbundledfilaments fromthoseinwhichthesystemrunsoutofsubunits[15]. To duetothetwistimposedbychirality. overcomethislimitation,wesimulatethegrandcanonicalen- SubunitModel. Weconsidersphericalsubunitsofdiame- semble(µVT),inwhichgrowthcannotterminatebecauseof ter σ that are endowedwith a polarorientationunit vectorpˆ subunitdepletion,sincethesystemiscoupledtoanunlimited andhave azimuthalsymmetry,( Fig. 1). Subunitshavepair- bath of free subunits. Before discussing the simulations, we wiseinteractionsthatdrivenorth-to-southpolealignmentinto considertheconditionsforself-limitedfilamentousassembly filamentsandweakequator-to-equatorinteractionsthatdrive atfixedtotalsubunitconcentration(theNVT ensemble). bundlingoffilaments.Theinteractionbetweentwosubunitsi We build onthe theoryfor cylindricalmicelles[16–18] to andj isgivenby V(i,j)=V (r )+V (cosθ,d ) h ij p ij ∗Electronicaddress:[email protected] +Vp(cosθ,dji)+Ve(~rij,pˆi,pˆj) (2) 2 where~r = ~r −~r is the interparticledisplacement, r = ij j i ij |~r |, cosθ = pˆ ·pˆ gives the angle between the two polar ij i j directions, and d = |(~r −σpˆ /2)−(~r +σpˆ/2)| is the ij j j i i distance between poles. Excluded volume is imposed by a hard-sphereinteraction ∞ r <σ V (r)= . (3) h (cid:26)0 r ≥σ Thepole-poleinteractionisgivenby V (cosθ,d)=−ǫ H(d −d)f(θ,θ ) (4) p p p max FIG.1: Subunit model. (left)Thepole-poleinteraction. d isthe ij distance between the corresponding poles, and θ is the angle be- withH(x)theHeavisidestepfunction,ǫ thepole-poleinter- p tween pˆi and pˆj. (right) The equatorial interaction. ϕ is the di- actionstrength, d the distance tolerance,and θ the angle p max hedralanglebetweentheplane(~rij,pˆi)andtheplane(~rij,pˆj). For tolerance.Parallelalignmentisdrivenby all simulations reported inthis work, the polar interaction strength f(y,y )= exp(−y2/ym2ax) y <ymax (5) iasndǫpth=e 1d4isktaBnTc0e, tahnedlaatnegrlaelitnotleerraacntcioenpsatrraemngettherissaǫree=dp2.=95k0B.1Tσ0,, max (cid:26) 0 y ≥ymax de = 0.1σ, βmax = 1, φmax = θmax = 0.25 with angles in ra- dians. The temperature is T = T0, except for the simulation of Theequatorialinteractionisgivenby ϕskew = 0,forwhichT =1.05T0. TheGCbathchemicalpotential isµ = k Tln0.01. ForthismodelG(1,1) = k Tln8π2 dueto b B B V (~r ,pˆ,pˆ )=−ǫ H(d −r )H(β −β ) rotationalentropy. e ij i j e e ij max ij H(β −β )f(ϕ−ϕ ,ϕ ) (6) max ji skew max whereǫ istheequatorialinteractionstrength,d istheequa- rapidriseinfreeenergyatsmallnduringwhichshortstruc- e e torialdistancetolerance,andthewidthoftheequatorialinter- tureswithnf =3,4,and5filamentsappearsuccessively,fol- action bandis set by βmax with cosβij = |~rij ·pˆi|/rij. The lowedbythecriticalnucleuswithnf =7andn≈25subunits final factor in Eq. 6 measures the degree of twist, with ϕ as (Fig. 2A. The free energy is unfavorable below this size be- the dihedral angle between the plane (~r ,pˆ) and the plane causethe majorityofsubunitshaveunsatisfiedlateraland/or ij i (~r ,pˆ )(Fig.1),whichcanbecalculatedfromthefollowing polar contacts (see Cap Free Energybelow). After reaching ij j relations,with~q =~r ×pˆ thecriticalnucleus,thebundlegrowslengthwiseinbothdirec- ij ij i tions, while maintainingthe same structure, and the free en- sinϕ= (~qij ×~qji)·~rij, cosϕ= ~qij ·~qji (7) ergydecreaseslinearly.Asshownbelow,thenf =7structure correspondstotheoptimalbundlestructureforϕ = 0.38 |~q ||~q ||r | |~q ||~q | skew ij ji ij ij ji and thus further lateral growth is unfavorable. The slope of The degreeof chirality is dictated by the preferredskew an- thefreeenergyinthisregioncorrespondstothechemicalpo- gle ϕskew, with ϕmax as the tolerance for deviationsfrom the tentialgrod(nf =7). preferredskew. While the exponential distribution of filament lengths is Simulations. WeexploreassemblywithMonteCarlo,with derived above for the NVT ensemble, in the µVT ensemble random translations and rigid body rotations of subunits ac- thebundlewillcontinuetogrowlengthwiseindefinitely(pro- cepted according to the Metropolis criterion[13]. We focus videdthatgrod < −µb). Toevaluatethefreeenergyoflateral on parameters for which nucleation is a rare event and bun- growth,weimposedhardsphericalboundaryconditionswith dles grow by addition of monomers, and thus we use only adiameterD =44σ,whichislargeenoughthatbundleprop- single particle moves. To ensure that self-limited growth is ertiesareindependentofD. Uponreachingtheboundary,the notaresultofsubunitdepletion,wesamplethegrandcanon- bundlegrowsbyincreasingitsdiameter,whichresultsinthe ical ensemble by coupling the system to a subunit bath at increasingfreeenergyatlargeninFig.2. chemical potential µ with subunit insertion/deletion moves Cap free energy. The cap free energyis calculated using b [13]. Since there are large nucleation barriers, we employ Gcap(n,nf)=G(n,nf)−n(grod(nf)−g1),withgrodobtained umbrella sampling simulations[13] to calculate the free en- fromtheslopeofthelinearregimeinthefreeenergy(orfrom ergy. We use the total bundle size n as the reaction coor- Fig. 3 below). As shown in Fig. 2, G rises rapidly un- cap dinate, and measure the probability p(n,n) that a particu- til saturating at the critical nucleus with G ≈ 37k T for f cap B lar subunit is in a bundle of size n, using a series of win- ϕ = 0.38. Thisvalueissimilartocapenergiesmeasured skew dowsinwhichhardwallsconstrainthesizeofthatclusterto forcylindricalmicelles[18] andcorrespondstoa largeaver- a range of n. The free energy is then obtained from Eq. 1 agebundlelengthinthe canonicalensemble; usingthemea- withG(n,n) = −k T ln[ρ(n,n)σ3]+µ ,withρ(n,n) = suredg andG (n,n)we solvedEq.1 to obtaina mass- f B f b f rod cap f p(n,n)/n[21,22]. averaged bundle size of about 108 subunits at the CSC. Al- f The free energyfor ϕ = 0.38 and snapshotsof repre- thoughthemagnitudeofG dependsonthestrengthofthe skew cap sentativebundleconfigurationsareshowninFig.2. Weseea polarbonds(ǫ = 14k T),wefindthatrobustbundleforma- p B 3 40 -3 A Cap energy 30 -4 ϕ =0.38 skew 20 n)f 10 G(n,nf)-nµbath g(rod -5 ϕskew=0.32 0 B C -6 ϕskew=0.26 -10 -7 0 100 200 300 400 3451+1+1+2+3+3+4+1+1+1+1+1+ 566889156666 Bundle size n + 0+++++ 1 19111 0 222 ++ 47 FIG.2: . (left)FreeenergyGandcapfreeenergyGcap asfunctions Bundle structures ofthenumber ofsubunitsnwithϕ = 0.38obtainedfromum- skew brellasampling. Theriseinfreeenergyatlargenoccurswhenthe FIG. 3: (left) Subunit free energy as a function of filament struc- bundlereachesthehardsystemboundaryandbeginstogrowathird turefor threeskew angles fromthe constrained umbrella sampling layer.(right)Structurescorrespondingtotheindicatedpointsonthe (CFNUS). Structures are labeled with the number of filaments in freeenergyplot. eachlayer startingfromthecenter. Resultsareshownonlyfor the lowestfreeenergymorphologyateachvalueofn.(right)Snapshots f fromCFNUSsimulations,shownincross-sectionview,illustrateop- tion requires ǫp ≫ ǫe, implying that large cap free energies timalbundlemorphologiesforsomevaluesofnf. andhencelargeaveragefilamentlengthsaregeneral. Similar results were obtained for lower skew angles ϕ = 0.32 and ϕ = 0.25 at low n, but convergence to the central filament; tilt increases with layer number for skew skew inthefreeenergycalculationwasquestionablebecausetran- preferred skew angles ϕ above a critical value. Due to skew sitionsbetweendifferentvaluesofn wererareatlargen. We tilt, filaments trace a curved path around the bundle, which f overcamethislimitationasfollows. requires unfavorable bending of polar bonds. Furthermore, Self-limited bundle diameters depend on preferred completeformationoflateralbondsbetweenlayers, requires skew. Intheumbrellasamplingsimulationsthesystemadopts thattheexteriorfilamentsstretchwhiletheinteriorfilaments thenumberoffilamentsn∗thatminimizesGforagivenn. To compress. With each additional layer, the degree of exten- f determine the dependenceof the subunit free energy g on sionandcompressionincreases.Theseeffectsoverwhelmthe rod n, we performed additional sets of ‘constant filament num- energeticbenefitofaddinganadditionallayer attheoptimal f ber’umbrellasampling(CFNUS)simulationsinwhichn and bundlediametern∗. Sincethemagnitudeofthetiltincreases f f n are constrained. A small structurewith nf filamentsis ex- with ϕskew, n∗f decreases with increasing ϕskew (Fig. 3). In tractedfromanumbrellasamplingsimulation,andsubjected agreement with this explanation, the chemical potential for toasimulationinwhichanymovethatchangesnfisrejected. ϕskew = 0 (correspondingto achiral interactions) does NOT Specifically,moveswhichcausethenumberofsubunitsinany showaminimum,andasshownbelow(Fig.4b)bundleswith filament to differ by more than 3 are rejected and the mean ϕ = 0 have unboundedlateral growth. This observation skew of each filament along the bundle axis must remain within confirms that chirality is the reason for self-limited bundle 2σ of the bundle center. These additionalrequirementscon- sizesinthismodel. straintheconfigurationsofthecapandhenceaffectG ,but Interestingly, the optimal bundle morphology for a given cap do notaffectg in long bundles, which is determinedfrom numberoffilamentschangeswithn.AsshowninFig.3b,the rod f g (n) = (∂G(n,n)/∂n) at largen (wheng becomes centrallayerofthebundlecanvarybetween1and4protofil- rod f f nf rod independent of n). This procedure is repeated for all com- aments, and usually corresponds to the structure that maxi- monlyobservedmorphologieswithagivenn. mizes rotational symmetry. While these are the lowest free f The chemical potential grod calculated from the CFNUS energystructuresateachvalueofnf amongthosetakenfrom simulations is shown as a function of bundle size for three unrestrainedumbrella simulations, we cannotrule out lower preferredskewanglesinFig.3. Ineachcase,thereisanopti- freeenergymorphologiesthatwedidnottest. malbundlediameter,ornumberoffilamentsn∗. Althoughthe Dynamics. Having shown that self-limited bundles are f minimaappearshallow,thelargeaveragebundlelengthscal- the equilibrium state for our model chiral subunits, we now culatedaboveensure thatthe free energiesfor differentbun- demonstrate that they are also the kinetically selected state. dle morphologies differ by many k T. Note that n∗ = 7 Since bundle formation is not accessible by straightforward B f for ϕ = 0.38, in agreement with the unrestrained um- dynamical simulations due to the large nucleation barrier skew brella sampling. Furthermore, the slope of the free energy (Fig.2),we usedforwardfluxsampling(FFS)[14]toobtain inthelinearregionofFig.2givesg = −4.75(viaEq.1), an unbiased ensembleof assembly trajectories. We used the rod whichmatchesthechemicalpotentialdeterminedfornf = 7 bundlesizenastheorderparameterandperformedFFSuntil inFig.3,showingthatthetwoprotocolsagree. bundlesreachedasizelargerthanthecriticalnucleus(itisnot Theexistenceofanoptimaldiametercanbeunderstoodas necessarythattheorderparameterbeagoodreactioncoordi- follows.Addinglayersdecreasesenergy,sincesubunitsinthe nate,althoughabadorderparametercaninhibitconvergence). outermost layer have unsatisfied lateral contacts. However, Atthispoint,FFSwasnolongerneeded,andwecontinuedthe the preferredskew ϕ causes filamentsto tilt with respect simulations with straightforward dynamic Monte Carlo; nu- skew 4 104 independentofnf,inagreementwiththefreeenergycalcula- tions. Although the bundle grows with hexagonalorder, we Ne 103 note that pentagonal defects become trapped within the as- z Si semblage,particularlyduringrapidgrowththatoccursunder e undl102 strongerinteractions. B N ∝ t2 Stronginteractionsleadtobranchednetworks. Bundles 101106 107 108 withnf >n∗f tendtoformdefectsthatrelievestrain. Insome t [sweeps] cases these defects serve as nucleation points for branching, whichenablesfurthergrowthuntilthebranchreachesitsop- FIG.4: (a)BundlesizeasafunctionofMonteCarlo(MC)sweeps timal diameter and a system boundary. As shown in Fig. 5, forthreetrajectorieswithϕskew = 0andT = 1.05T0. Trajectories each branch maintains a finite radius. Additional branching wereinitiatedusingforwardfluxsampling(FFS)asdescribedinthe andbundlegrowthleadtoabranchednetwork(seeRef.[19] text,dynamicsareshownafterFFSended. Thesolidlineindicates forfurtherdiscussionofbranchedbundles). Wealsoobserve thescalingn(t)∼t2.(b)Asnapshotfromonetrajectoryin(a). branchinginthe canonicalensemblesimulationswith strong interactions. While thissimple modelisnotintendedtorep- resent a particular molecule and crowding affects assembly athighdensity[6],wenotethatfibrinclotsarecomposedof branchednetworksoffibrinbundleswithuniformbundleradii (e.g.[2]). Inconclusion,wesimulatedtheassemblyofsubunitswith a simple potential that drives the formation of filamentous bundles. For moderate interaction strengths, the local pack- FIG. 5: A branched bundle formed in a dynamical trajectory with ing constraints that arise due to chirality cause assembly to ϕ =0.32. terminate at a finite bundle diameter, while bundles propa- skew gate easily in length. Stronger interactions, however, lead to defectswhich enable the formationof multiply connected cleatedbundlesreadilygrowin lengthuntiltheyreachedthe branched networks. The optimal morphologies of assem- imposedboundary(D = 32σ), butlateralgrowthterminates bledbundleswithdifferentnumbersoffilamentshavediffer- at n = 7, in agreement with the equilibrium calculations. ent symmetries. The simulation results indicate that sponta- f ThedynamicnucleationpathwaysobservedwithFFSclosely neously assembled structures can deviate significantly from followtheminimumfreeenergypathwayobservedwithum- regularhexagonalbundles, and thus it is importantto evalu- brellasampling(Fig.2b),indicatingthatstructuresbelowthe ateassemblybehaviorwithdynamicalalgorithmsthatdonot nucleussizeachieverelativeequilibriumquicklyincompari- impose particular assembly pathways or morphologies. The sontothenucleationtime[23,24]. approachwehaveadoptedtoevaluateself-limitedgrowthina In contrast, assembly trajectories for ϕ = 0 (Fig. 4) finite-sizedsimulationcouldbeusedtounderstandspecificbi- skew demonstrate unbounded lateral growth, and after reaching a ologicalmolecules;forexample,apatchy-spheremodelcould size of n ≈ 100 scale as n(t) ∼ t2, with t the number of be constructed from atomic-resolution structures of sickle Monte Carlo sweeps. This scaling is consistent with growth hemoglobininordertounderstandtheeffectsofchiralityand dominated by subunit addition to the bundle body, and g sphere-packingonhemoglobinfilamentassembly[3–5]. rod [1] J. W. Weisel, C. Nagaswami, and L. Makowski, Proc. Natl. [9] G.M.GrasonandR.F.Bruinsma,Phys.Rev.Lett.99(2007). Acad.Sci.U.S.A.84,8991(1987). [10] G.M.Grason,PhysicalReviewE79(2009). [2] E.A.Ryan, L.F.Mockros, J.W.Weisel,andL.Lorand,Bio- [11] I.A.Nyrkova,A.N.Semenov,A.Aggeli,andN.Boden,Eur. phys.J.77,2813(1999). Phys.J.B17,481(2000). [3] L. Makowski and B. Magdofffairchild, Science 234, 1228 [12] A. Aggeli, I. A. Nyrkova, M. Bell, R. Harding, L. Carrick, (1986). T. C.B.McLeish, A.N.Semenov, and N.Boden, Proc.Natl. [4] W.A. McDade and R. Josephs, Journal of Structural Biology Acad.Sci.U.S.A.98,11857(2001). 110,90(1993). [13] D.FrenkelandB.Smit,Understandingmolecularsimulation: [5] M.S.Turner,R.W.Briehl,F.A.Ferrone,andR.Josephs,Phys. fromalgorithmstoapplications(Academic,SanDiego,Calif.; Rev.Lett.90(2003). London,2002),2nded. [6] T. L. Madden and J. Herzfeld, Biophysical Journal 65, 1147 [14] R.J.Allen,P.B.Warren,andP.R.tenWolde,Phys.Rev.Lett. (1993). 94(2005). [7] I.CretegnyandS.J.Edelstein,J.Mol.Biol.230,733(1993). [15] B. A. H. Huisman, P. G. Bolhuis, and A. Fasolino, Physical [8] S.J.Watowich,L.J.Gross, andR.Josephs, JournalofStruc- ReviewLetters100(2008). turalBiology111,161(1993). [16] S.Safran,StatisticalThermodynamics ofSurfaces, Interfaces, 5 andMembranes(Addison-WesleyPub.,1994). [21] L.Maibaum,Phys.Rev.Lett.101,019601(2008). [17] A.Ben-ShaulandI.Szleifer,J.Chem.Phys.83,3597(1985). [22] P. R. ten Wolde and D. Frenkel, J. Chem. Phys. 109, 9901 [18] W.M. Gelbart and A.Ben-Shaul, J. Phys.Chem. 100, 13169 (1998). (1996). [23] D.EndresandA.Zlotnick,Biophys.J.83,1217(2002). [19] J.F.Douglas,Langmuir25,8386(2009). [24] M.F.HaganandO.M.Elrad,Biophys.J.inpress(2010). [20] F.Sciortino,E.Bianchi,J.F.Douglas,andP.Tartaglia,J.Chem. Phys.126(2007).

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.