Self-limitedself-assembly ofchiral filaments Yasheng Yang, Robert B. Meyer, and Michael F. Hagan Department of Physics, Brandeis University, Waltham, MA, 02454∗ (Dated:January26,2010) Theassemblyoffilamentousbundleswithcontrolleddiametersiscommoninbiologicalsystemsanddesir- ableforthedevelopmentofnanomaterials. Wediscussdynamicalsimulationsandfreeenergycalculationson patchysphereswithchiralpairinteractionsthatspontaneouslyassembleintofilamentousbundles.Thechirality frustrateslong-rangecrystalorderbyintroducingtwistbetweeninteractingsubunits.Forsomerangesofsystem parameters thisconstraint leads tobundles with afinitediameter asthe equilibrium state, and inother cases frustrationisrelievedbytheformationofdefects.Whilesomeself-limitedstructurescanbemodeledastwisted 0 filamentsarrangedwithlocalhexagonalsymmetry,otherstructuresaresurprisingintheircomplexity. 1 0 2 Filamentous bundles assembled from protein subunits are writethefreeenergyforatwistedbundlecomprisedofn fil- f n essentialstructuralandregulatorycomponentsofcellsandtis- amentsandnsubunitsasG(n,n)=n(g (n)−G(1,1))+ f rod f a sues. Forexample,filamentousactin,microtubules,andinter- G (n,n) with g the subunit chemical potential in the J cap f rod mediatefilamentsassembleanddisassembletocreateastrong cylindrical‘body’ofthebundleandGcaptheexcesschemical 6 butdynamiccytoskeleton,fibrogensubunitsassembleintofib- potentialofthesubunitsinthe‘caps’ateitherend. G and 2 cap rin fibers and networks to form blood clots (e.g. [1, 2]) and g are independent of length for long bundles, but depend rod ] sicklehemoglobinassemblesintofibersthatimpairredblood onthebundlediameter,ornf,sincesubunitsatdifferentradii t cell function (e.g. [3–8]). In vivo and in vitro studies sug- experiencedifferentenvironments. For a solutionwith fixed f o gestthatfiberswithfinitediametersarethestablemorphology total subunitdensity c , minimizingthe solution free energy T s forfibrin[1,2]underavarietyofconditions,while7-double- densityG = ρ(n,n)G(n,n)−TSwiththemixing mat. bsturtanthdebfourncdelsesthoaftlsiimckitlefilhaemmeongtlgorboiwntahreremmeatiansutanbclleea[r5.,T7h,e8o]-, eunntirtospizyeSgtoi=tve−sPkthBenP,lnafnw,noffρnm,fnafslsna(ρct(inof,nnrfe)sσu3l)t fwoirtheqσutihliebrsiuubm- reticalcalculations[5,9–12]havesuggestedthatfinitebundle bundledensities - d diametersarethethermodynamicallyfavoredstatefortwisted n bundlesassembled from chiral subunits. These calculations, ρ(n,n)=exp[β(µn−G(n,n))] (1) f f o however,assume specificpackingsofprotofilamentswithout c defects, which could relieve strain and thereby enable un- with β = 1/kBT and the monomer chemical potential µ = [ boundedgrowth. Theobjectiveofthisarticleistodetermine, G(1,1)+ kBT ln(ρ(1,1)σ3). The onset of spontaneous as- 1 withoutassumptionsaboutassemblypathwaysorassemblage sembly is identified with the concentration at which half of v geometries,ifchiralitycanresultinstablebundleswithfinite the subunits are assembled into bundles with the other half 0 diameters. We construct a model subunit with simple pair- freeinsolution,whichisgivenbyby[18]ccsc ≈exp[β(grod− 8 wise chiral interactions that drive assembly into filamentous G(1,1))]. ByminimizingGtotwithrespecttonandnfweob- 7 bundles, and combine umbrella sampling [13] and forward tain that bundlesfollow an exponentialdistribution of mass- 4 . fluxsampling[14]toexplorethestructuresthatspontaneously averagedlengthsP(l)∼le−l/hli,withl=n/nfandthemean 1 assemble for varying degrees of chirality. The simulations length hli ≃ [cTexp(Gcap)]1/2. However, if there is a bun- 00 demonstrate that chirality can result in regular self-limited dlediameter(n∗f)thatminimizesgrod,thedistributionwillbe 1 bundlesforarangeofinteractionstrengths,butthatstronger sharply peaked aboutn∗f when hli ≫ 1, and growth will be : interactions enable defects which give rise to branched net- self-limited. Thus, webeginbymeasuringgrod as afunction v worksorirregularbundles. ofnf. Xi Drawingconclusionsaboutself-limitedgrowthinamacro- We note that in Ref. [15] filamentous bundle formation is described in terms of the theory of linear polymerization r scopic system fromsimulationswith a finite numberof sub- a [19,20]andbundlingoflinearpolymers.Thatanalysiswould units is challenging–one must distinguish between simula- be complicated for our modelsince the subunit binding free tions in which growth terminates due to physicalconstraints energydependscruciallyonthenumberofbundledfilaments fromthoseinwhichthesystemrunsoutofsubunits[15]. To duetothetwistimposedbychirality. overcomethislimitation,wesimulatethegrandcanonicalen- SubunitModel. Weconsidersphericalsubunitsofdiame- semble(µVT),inwhichgrowthcannotterminatebecauseof ter σ that are endowedwith a polarorientationunit vectorpˆ subunitdepletion,sincethesystemiscoupledtoanunlimited andhave azimuthalsymmetry,( Fig. 1). Subunitshavepair- bath of free subunits. Before discussing the simulations, we wiseinteractionsthatdrivenorth-to-southpolealignmentinto considertheconditionsforself-limitedfilamentousassembly filamentsandweakequator-to-equatorinteractionsthatdrive atfixedtotalsubunitconcentration(theNVT ensemble). bundlingoffilaments.Theinteractionbetweentwosubunitsi We build onthe theoryfor cylindricalmicelles[16–18] to andj isgivenby V(i,j)=V (r )+V (cosθ,d ) h ij p ij ∗Electronicaddress:[email protected] +Vp(cosθ,dji)+Ve(~rij,pˆi,pˆj) (2) 2 where~r = ~r −~r is the interparticledisplacement, r = ij j i ij |~r |, cosθ = pˆ ·pˆ gives the angle between the two polar ij i j directions, and d = |(~r −σpˆ /2)−(~r +σpˆ/2)| is the ij j j i i distance between poles. Excluded volume is imposed by a hard-sphereinteraction ∞ r <σ V (r)= . (3) h (cid:26)0 r ≥σ Thepole-poleinteractionisgivenby V (cosθ,d)=−ǫ H(d −d)f(θ,θ ) (4) p p p max FIG.1: Subunit model. (left)Thepole-poleinteraction. d isthe ij distance between the corresponding poles, and θ is the angle be- withH(x)theHeavisidestepfunction,ǫ thepole-poleinter- p tween pˆi and pˆj. (right) The equatorial interaction. ϕ is the di- actionstrength, d the distance tolerance,and θ the angle p max hedralanglebetweentheplane(~rij,pˆi)andtheplane(~rij,pˆj). For tolerance.Parallelalignmentisdrivenby all simulations reported inthis work, the polar interaction strength f(y,y )= exp(−y2/ym2ax) y <ymax (5) iasndǫpth=e 1d4isktaBnTc0e, tahnedlaatnegrlaelitnotleerraacntcioenpsatrraemngettherissaǫree=dp2.=95k0B.1Tσ0,, max (cid:26) 0 y ≥ymax de = 0.1σ, βmax = 1, φmax = θmax = 0.25 with angles in ra- dians. The temperature is T = T0, except for the simulation of Theequatorialinteractionisgivenby ϕskew = 0,forwhichT =1.05T0. TheGCbathchemicalpotential isµ = k Tln0.01. ForthismodelG(1,1) = k Tln8π2 dueto b B B V (~r ,pˆ,pˆ )=−ǫ H(d −r )H(β −β ) rotationalentropy. e ij i j e e ij max ij H(β −β )f(ϕ−ϕ ,ϕ ) (6) max ji skew max whereǫ istheequatorialinteractionstrength,d istheequa- rapidriseinfreeenergyatsmallnduringwhichshortstruc- e e torialdistancetolerance,andthewidthoftheequatorialinter- tureswithnf =3,4,and5filamentsappearsuccessively,fol- action bandis set by βmax with cosβij = |~rij ·pˆi|/rij. The lowedbythecriticalnucleuswithnf =7andn≈25subunits final factor in Eq. 6 measures the degree of twist, with ϕ as (Fig. 2A. The free energy is unfavorable below this size be- the dihedral angle between the plane (~r ,pˆ) and the plane causethe majorityofsubunitshaveunsatisfiedlateraland/or ij i (~r ,pˆ )(Fig.1),whichcanbecalculatedfromthefollowing polar contacts (see Cap Free Energybelow). After reaching ij j relations,with~q =~r ×pˆ thecriticalnucleus,thebundlegrowslengthwiseinbothdirec- ij ij i tions, while maintainingthe same structure, and the free en- sinϕ= (~qij ×~qji)·~rij, cosϕ= ~qij ·~qji (7) ergydecreaseslinearly.Asshownbelow,thenf =7structure correspondstotheoptimalbundlestructureforϕ = 0.38 |~q ||~q ||r | |~q ||~q | skew ij ji ij ij ji and thus further lateral growth is unfavorable. The slope of The degreeof chirality is dictated by the preferredskew an- thefreeenergyinthisregioncorrespondstothechemicalpo- gle ϕskew, with ϕmax as the tolerance for deviationsfrom the tentialgrod(nf =7). preferredskew. While the exponential distribution of filament lengths is Simulations. WeexploreassemblywithMonteCarlo,with derived above for the NVT ensemble, in the µVT ensemble random translations and rigid body rotations of subunits ac- thebundlewillcontinuetogrowlengthwiseindefinitely(pro- cepted according to the Metropolis criterion[13]. We focus videdthatgrod < −µb). Toevaluatethefreeenergyoflateral on parameters for which nucleation is a rare event and bun- growth,weimposedhardsphericalboundaryconditionswith dles grow by addition of monomers, and thus we use only adiameterD =44σ,whichislargeenoughthatbundleprop- single particle moves. To ensure that self-limited growth is ertiesareindependentofD. Uponreachingtheboundary,the notaresultofsubunitdepletion,wesamplethegrandcanon- bundlegrowsbyincreasingitsdiameter,whichresultsinthe ical ensemble by coupling the system to a subunit bath at increasingfreeenergyatlargeninFig.2. chemical potential µ with subunit insertion/deletion moves Cap free energy. The cap free energyis calculated using b [13]. Since there are large nucleation barriers, we employ Gcap(n,nf)=G(n,nf)−n(grod(nf)−g1),withgrodobtained umbrella sampling simulations[13] to calculate the free en- fromtheslopeofthelinearregimeinthefreeenergy(orfrom ergy. We use the total bundle size n as the reaction coor- Fig. 3 below). As shown in Fig. 2, G rises rapidly un- cap dinate, and measure the probability p(n,n) that a particu- til saturating at the critical nucleus with G ≈ 37k T for f cap B lar subunit is in a bundle of size n, using a series of win- ϕ = 0.38. Thisvalueissimilartocapenergiesmeasured skew dowsinwhichhardwallsconstrainthesizeofthatclusterto forcylindricalmicelles[18] andcorrespondstoa largeaver- a range of n. The free energy is then obtained from Eq. 1 agebundlelengthinthe canonicalensemble; usingthemea- withG(n,n) = −k T ln[ρ(n,n)σ3]+µ ,withρ(n,n) = suredg andG (n,n)we solvedEq.1 to obtaina mass- f B f b f rod cap f p(n,n)/n[21,22]. averaged bundle size of about 108 subunits at the CSC. Al- f The free energyfor ϕ = 0.38 and snapshotsof repre- thoughthemagnitudeofG dependsonthestrengthofthe skew cap sentativebundleconfigurationsareshowninFig.2. Weseea polarbonds(ǫ = 14k T),wefindthatrobustbundleforma- p B 3 40 -3 A Cap energy 30 -4 ϕ =0.38 skew 20 n)f 10 G(n,nf)-nµbath g(rod -5 ϕskew=0.32 0 B C -6 ϕskew=0.26 -10 -7 0 100 200 300 400 3451+1+1+2+3+3+4+1+1+1+1+1+ 566889156666 Bundle size n + 0+++++ 1 19111 0 222 ++ 47 FIG.2: . (left)FreeenergyGandcapfreeenergyGcap asfunctions Bundle structures ofthenumber ofsubunitsnwithϕ = 0.38obtainedfromum- skew brellasampling. Theriseinfreeenergyatlargenoccurswhenthe FIG. 3: (left) Subunit free energy as a function of filament struc- bundlereachesthehardsystemboundaryandbeginstogrowathird turefor threeskew angles fromthe constrained umbrella sampling layer.(right)Structurescorrespondingtotheindicatedpointsonthe (CFNUS). Structures are labeled with the number of filaments in freeenergyplot. eachlayer startingfromthecenter. Resultsareshownonlyfor the lowestfreeenergymorphologyateachvalueofn.(right)Snapshots f fromCFNUSsimulations,shownincross-sectionview,illustrateop- tion requires ǫp ≫ ǫe, implying that large cap free energies timalbundlemorphologiesforsomevaluesofnf. andhencelargeaveragefilamentlengthsaregeneral. Similar results were obtained for lower skew angles ϕ = 0.32 and ϕ = 0.25 at low n, but convergence to the central filament; tilt increases with layer number for skew skew inthefreeenergycalculationwasquestionablebecausetran- preferred skew angles ϕ above a critical value. Due to skew sitionsbetweendifferentvaluesofn wererareatlargen. We tilt, filaments trace a curved path around the bundle, which f overcamethislimitationasfollows. requires unfavorable bending of polar bonds. Furthermore, Self-limited bundle diameters depend on preferred completeformationoflateralbondsbetweenlayers, requires skew. Intheumbrellasamplingsimulationsthesystemadopts thattheexteriorfilamentsstretchwhiletheinteriorfilaments thenumberoffilamentsn∗thatminimizesGforagivenn. To compress. With each additional layer, the degree of exten- f determine the dependenceof the subunit free energy g on sionandcompressionincreases.Theseeffectsoverwhelmthe rod n, we performed additional sets of ‘constant filament num- energeticbenefitofaddinganadditionallayer attheoptimal f ber’umbrellasampling(CFNUS)simulationsinwhichn and bundlediametern∗. Sincethemagnitudeofthetiltincreases f f n are constrained. A small structurewith nf filamentsis ex- with ϕskew, n∗f decreases with increasing ϕskew (Fig. 3). In tractedfromanumbrellasamplingsimulation,andsubjected agreement with this explanation, the chemical potential for toasimulationinwhichanymovethatchangesnfisrejected. ϕskew = 0 (correspondingto achiral interactions) does NOT Specifically,moveswhichcausethenumberofsubunitsinany showaminimum,andasshownbelow(Fig.4b)bundleswith filament to differ by more than 3 are rejected and the mean ϕ = 0 have unboundedlateral growth. This observation skew of each filament along the bundle axis must remain within confirms that chirality is the reason for self-limited bundle 2σ of the bundle center. These additionalrequirementscon- sizesinthismodel. straintheconfigurationsofthecapandhenceaffectG ,but Interestingly, the optimal bundle morphology for a given cap do notaffectg in long bundles, which is determinedfrom numberoffilamentschangeswithn.AsshowninFig.3b,the rod f g (n) = (∂G(n,n)/∂n) at largen (wheng becomes centrallayerofthebundlecanvarybetween1and4protofil- rod f f nf rod independent of n). This procedure is repeated for all com- aments, and usually corresponds to the structure that maxi- monlyobservedmorphologieswithagivenn. mizes rotational symmetry. While these are the lowest free f The chemical potential grod calculated from the CFNUS energystructuresateachvalueofnf amongthosetakenfrom simulations is shown as a function of bundle size for three unrestrainedumbrella simulations, we cannotrule out lower preferredskewanglesinFig.3. Ineachcase,thereisanopti- freeenergymorphologiesthatwedidnottest. malbundlediameter,ornumberoffilamentsn∗. Althoughthe Dynamics. Having shown that self-limited bundles are f minimaappearshallow,thelargeaveragebundlelengthscal- the equilibrium state for our model chiral subunits, we now culatedaboveensure thatthe free energiesfor differentbun- demonstrate that they are also the kinetically selected state. dle morphologies differ by many k T. Note that n∗ = 7 Since bundle formation is not accessible by straightforward B f for ϕ = 0.38, in agreement with the unrestrained um- dynamical simulations due to the large nucleation barrier skew brella sampling. Furthermore, the slope of the free energy (Fig.2),we usedforwardfluxsampling(FFS)[14]toobtain inthelinearregionofFig.2givesg = −4.75(viaEq.1), an unbiased ensembleof assembly trajectories. We used the rod whichmatchesthechemicalpotentialdeterminedfornf = 7 bundlesizenastheorderparameterandperformedFFSuntil inFig.3,showingthatthetwoprotocolsagree. bundlesreachedasizelargerthanthecriticalnucleus(itisnot Theexistenceofanoptimaldiametercanbeunderstoodas necessarythattheorderparameterbeagoodreactioncoordi- follows.Addinglayersdecreasesenergy,sincesubunitsinthe nate,althoughabadorderparametercaninhibitconvergence). outermost layer have unsatisfied lateral contacts. However, Atthispoint,FFSwasnolongerneeded,andwecontinuedthe the preferredskew ϕ causes filamentsto tilt with respect simulations with straightforward dynamic Monte Carlo; nu- skew 4 104 independentofnf,inagreementwiththefreeenergycalcula- tions. Although the bundle grows with hexagonalorder, we Ne 103 note that pentagonal defects become trapped within the as- z Si semblage,particularlyduringrapidgrowththatoccursunder e undl102 strongerinteractions. B N ∝ t2 Stronginteractionsleadtobranchednetworks. Bundles 101106 107 108 withnf >n∗f tendtoformdefectsthatrelievestrain. Insome t [sweeps] cases these defects serve as nucleation points for branching, whichenablesfurthergrowthuntilthebranchreachesitsop- FIG.4: (a)BundlesizeasafunctionofMonteCarlo(MC)sweeps timal diameter and a system boundary. As shown in Fig. 5, forthreetrajectorieswithϕskew = 0andT = 1.05T0. Trajectories each branch maintains a finite radius. Additional branching wereinitiatedusingforwardfluxsampling(FFS)asdescribedinthe andbundlegrowthleadtoabranchednetwork(seeRef.[19] text,dynamicsareshownafterFFSended. Thesolidlineindicates forfurtherdiscussionofbranchedbundles). Wealsoobserve thescalingn(t)∼t2.(b)Asnapshotfromonetrajectoryin(a). branchinginthe canonicalensemblesimulationswith strong interactions. While thissimple modelisnotintendedtorep- resent a particular molecule and crowding affects assembly athighdensity[6],wenotethatfibrinclotsarecomposedof branchednetworksoffibrinbundleswithuniformbundleradii (e.g.[2]). Inconclusion,wesimulatedtheassemblyofsubunitswith a simple potential that drives the formation of filamentous bundles. For moderate interaction strengths, the local pack- FIG. 5: A branched bundle formed in a dynamical trajectory with ing constraints that arise due to chirality cause assembly to ϕ =0.32. terminate at a finite bundle diameter, while bundles propa- skew gate easily in length. Stronger interactions, however, lead to defectswhich enable the formationof multiply connected cleatedbundlesreadilygrowin lengthuntiltheyreachedthe branched networks. The optimal morphologies of assem- imposedboundary(D = 32σ), butlateralgrowthterminates bledbundleswithdifferentnumbersoffilamentshavediffer- at n = 7, in agreement with the equilibrium calculations. ent symmetries. The simulation results indicate that sponta- f ThedynamicnucleationpathwaysobservedwithFFSclosely neously assembled structures can deviate significantly from followtheminimumfreeenergypathwayobservedwithum- regularhexagonalbundles, and thus it is importantto evalu- brellasampling(Fig.2b),indicatingthatstructuresbelowthe ateassemblybehaviorwithdynamicalalgorithmsthatdonot nucleussizeachieverelativeequilibriumquicklyincompari- impose particular assembly pathways or morphologies. The sontothenucleationtime[23,24]. approachwehaveadoptedtoevaluateself-limitedgrowthina In contrast, assembly trajectories for ϕ = 0 (Fig. 4) finite-sizedsimulationcouldbeusedtounderstandspecificbi- skew demonstrate unbounded lateral growth, and after reaching a ologicalmolecules;forexample,apatchy-spheremodelcould size of n ≈ 100 scale as n(t) ∼ t2, with t the number of be constructed from atomic-resolution structures of sickle Monte Carlo sweeps. This scaling is consistent with growth hemoglobininordertounderstandtheeffectsofchiralityand dominated by subunit addition to the bundle body, and g sphere-packingonhemoglobinfilamentassembly[3–5]. rod [1] J. W. Weisel, C. Nagaswami, and L. Makowski, Proc. Natl. [9] G.M.GrasonandR.F.Bruinsma,Phys.Rev.Lett.99(2007). Acad.Sci.U.S.A.84,8991(1987). [10] G.M.Grason,PhysicalReviewE79(2009). [2] E.A.Ryan, L.F.Mockros, J.W.Weisel,andL.Lorand,Bio- [11] I.A.Nyrkova,A.N.Semenov,A.Aggeli,andN.Boden,Eur. phys.J.77,2813(1999). Phys.J.B17,481(2000). [3] L. Makowski and B. Magdofffairchild, Science 234, 1228 [12] A. Aggeli, I. A. Nyrkova, M. Bell, R. Harding, L. Carrick, (1986). T. C.B.McLeish, A.N.Semenov, and N.Boden, Proc.Natl. [4] W.A. McDade and R. Josephs, Journal of Structural Biology Acad.Sci.U.S.A.98,11857(2001). 110,90(1993). [13] D.FrenkelandB.Smit,Understandingmolecularsimulation: [5] M.S.Turner,R.W.Briehl,F.A.Ferrone,andR.Josephs,Phys. fromalgorithmstoapplications(Academic,SanDiego,Calif.; Rev.Lett.90(2003). London,2002),2nded. [6] T. L. Madden and J. Herzfeld, Biophysical Journal 65, 1147 [14] R.J.Allen,P.B.Warren,andP.R.tenWolde,Phys.Rev.Lett. (1993). 94(2005). [7] I.CretegnyandS.J.Edelstein,J.Mol.Biol.230,733(1993). [15] B. A. H. Huisman, P. G. Bolhuis, and A. Fasolino, Physical [8] S.J.Watowich,L.J.Gross, andR.Josephs, JournalofStruc- ReviewLetters100(2008). turalBiology111,161(1993). [16] S.Safran,StatisticalThermodynamics ofSurfaces, Interfaces, 5 andMembranes(Addison-WesleyPub.,1994). [21] L.Maibaum,Phys.Rev.Lett.101,019601(2008). [17] A.Ben-ShaulandI.Szleifer,J.Chem.Phys.83,3597(1985). [22] P. R. ten Wolde and D. Frenkel, J. Chem. Phys. 109, 9901 [18] W.M. Gelbart and A.Ben-Shaul, J. Phys.Chem. 100, 13169 (1998). (1996). [23] D.EndresandA.Zlotnick,Biophys.J.83,1217(2002). [19] J.F.Douglas,Langmuir25,8386(2009). [24] M.F.HaganandO.M.Elrad,Biophys.J.inpress(2010). [20] F.Sciortino,E.Bianchi,J.F.Douglas,andP.Tartaglia,J.Chem. Phys.126(2007).