ebook img

Self-Exciting Fluid Dynamos PDF

540 Pages·2019·81.068 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Self-Exciting Fluid Dynamos

Self-ExcitingFluidDynamos Exploringtheoriginsandevolutionofmagneticfieldsinplanets,starsandgalaxies, this book gives a basic introduction to magnetohydrodynamics, and surveys the observational data with particular focus on geomagnetism and solar magnetism. Pioneering laboratory experiments thatseek toreplicate particular aspects offluid dynamo action are also described. The authors provide a complete treatment of laminar dynamo theory and of the mean-field electrodynamics that incorporates the effects of random waves and turbulence. Both dynamo theory and its coun- terpart, the theory of magnetic relaxation, are covered. Topological constraints associated with conservation of magnetic helicity are thoroughly explored, and majorchallengesareaddressedinareassuchasfast-dynamotheory,accretion-disc dynamo theory and the theory of magnetostrophic turbulence. The book is aimed atgraduate-levelstudentsinmathematics,physics,earthsciencesandastrophysics, andwillbeavaluableresourceforresearchersatalllevels. KEITH MOFFATT FRS is Emeritus Professor of Mathematical Physics at the University of Cambridge. He has served as Head of the Department of Applied MathematicsandTheoreticalPhysicsandasDirectoroftheIsaacNewtonInstitute for Mathematical Sciences in Cambridge. A former editor of the Journal of Fluid Mechanics,hehaspublishedpapersinfluiddynamicsandmagnetohydrodynamics andwasapioneerinthedevelopmentoftopologicalfluiddynamics.HeisaFellow of the Royal Society, a member of Academia Europæa, and a Foreign Member of theAcademiesofFrance,Italy,theNetherlandsandtheUSA.Hehasbeenawarded numerous prizes, most recently the 2018 Fluid Dynamics Prize of the American PhysicalSociety. EMMANUEL DORMY is a CNRS Directeur de Recherche in the Department of Mathematics and its Applications at the Ecole Normale Supe´rieure (ENS) in Paris. He is also Professor at the ENS and at the Ecole Polytechnique, where he teaches different aspects of fluid dynamics. Convinced of the need to embrace all aspects of the dynamo problem, in 2006 he started a research group at the ENS which promotes an interdisciplinary approach and jointly studies all geophysical and astrophysical aspects of dynamo theory. He also founded and directed the Dynamo-GDRE, which promotes exchanges among researchers working on all aspectsofdynamotheorythroughoutEuropeandbeyond,andheorganiseswidely attendedmeetings. CambridgeTextsinAppliedMathematics EDITORIALBOARD ProfessorM.J.AblowitzUniversityofColoradoBoulder ProfessorS.DavisNorthwesternUniversity,Illinois ProfessorE.J.HinchUniversityofCambridge ProfessorA.IserlesUniversityofCambridge DrJ.OckendonUniversityofOxford ProfessorP.J.OlverUniversityofMinnesota Theaimofthisseriesistoprovideafocusforpublishingtextbooksinappliedmathematicsatthe advancedundergraduateandbeginninggraduatelevel.Thebooksaredevotedtocoveringcertain mathematicaltechniquesandtheoriesandexploringtheirapplications. AlltitleslistedbelowcanbeobtainedfromgoodbooksellersorfromCambridge UniversityPress.Foracompleteserieslisting,visitwww.cambridge.org/mathematics. GeometricandTopologicalInference JEAN-DANIELBOISSONNAT,FRE´DE´RICCHAZAL&MARIETTEYVINEC IntroductiontoMagnetohydrodynamics(2ndEdition) P.A.DAVIDSON AnIntroductiontoStochasticDynamics JINQIAODUAN Singularities:Formation,StructureandPropagation J.EGGERS&M.A.FONTELOS Microhydrodynamics,BrownianMotionandComplexFluids MICHAELD.GRAHAM DiscreteSystemsandIntegrability J.HIETARINTA,N.JOSHI&F.W.NIJHOFF AnIntroductiontoPolynomialandSemi-AlgebraicOptimization JEANBERNARDLASSERRE NumericalLinearAlgebra HOLGERWENDLAND Self-Exciting Fluid Dynamos KEITH MOFFATT UniversityofCambridge EMMANUEL DORMY EcoleNormaleSupe´rieure,Paris UniversityPrintingHouse,CambridgeCB28BS,UnitedKingdom OneLibertyPlaza,20thFloor,NewYork,NY10006,USA 477WilliamstownRoad,PortMelbourne,VIC3207,Australia 314–321,3rdFloor,Plot3,SplendorForum,JasolaDistrictCentre, NewDelhi–110025,India 79AnsonRoad,#06–04/06,Singapore079906 CambridgeUniversityPressispartoftheUniversityofCambridge. ItfurtherstheUniversity’smissionbydisseminatingknowledgeinthepursuitof education,learning,andresearchatthehighestinternationallevelsofexcellence. www.cambridge.org Informationonthistitle:www.cambridge.org/9781107065871 DOI:10.1017/9781107588691 ©KeithMoffattandEmmanuelDormy2019 Thispublicationisincopyright.Subjecttostatutoryexception andtotheprovisionsofrelevantcollectivelicensingagreements, noreproductionofanypartmaytakeplacewithoutthewritten permissionofCambridgeUniversityPress. Firstpublished2019 PrintedintheUnitedKingdombyTJInternationalLtd.Padstow,Cornwall AcataloguerecordforthispublicationisavailablefromtheBritishLibrary. LibraryofCongressCataloging-in-PublicationData Names:Moffatt,H.K.(HenryKeith),author.|Dormy,Emmanuel,author. Title:Self-excitingfluiddynamos/KeithMoffatt(UniversityofCambridge), EmmanuelDormy(EcoleNormaleSupe´rieure,Paris). Description:Cambridge;NewYork,NY:CambridgeUniversityPress,2019.| Series:Cambridgetextsinappliedmathematics|Includesbibliographicalreferencesandindexes. Identifiers:LCCN2018047454|ISBN9781107065871(hardback:alk.paper) Subjects:LCSH:Fluiddynamics.|Magnetohydrodynamics.| Dynamotheory(Cosmicphysics)|Geophysics. Classification:LCCQA912.M652019|DDC523.01/886–dc23 LCrecordavailableathttps://lccn.loc.gov/2018047454 ISBN978-1-107-06587-1Hardback ISBN978-1-108-71705-2Paperback CambridgeUniversityPresshasnoresponsibilityforthepersistenceoraccuracy ofURLsforexternalorthird-partyinternetwebsitesreferredtointhispublication anddoesnotguaranteethatanycontentonsuchwebsitesis,orwillremain, accurateorappropriate. Dedicatedtothememoryof GeorgeKeithBatchelor 1920–2000 Contents Preface pagexvii PARTI BASICTHEORYANDOBSERVATIONS 1 1 Introduction 3 1.1 Whatisdynamotheory? 3 1.2 Historicalbackground 4 1.2.1 Thegeodynamo 4 1.2.2 Thesolardynamo 8 1.3 Thehomopolardiscdynamo 10 1.4 Axisymmetricandnon-axisymmetricsystems 12 2 MagnetokinematicPreliminaries 20 2.1 StructuralpropertiesoftheB-field 20 2.1.1 Solenoidality 20 2.1.2 TheBiot–Savartintegral 21 2.1.3 Linesofforce(‘B-lines’) 21 2.1.4 Helicityandfluxtubelinkage 22 2.2 Chirality 25 2.2.1 Therattleback:aprototypeofdynamicchirality 26 2.2.2 Meanresponseprovokedbychiralexcitation 28 2.3 Magneticfieldrepresentations 30 2.3.1 Sphericalpolarcoordinates 30 2.3.2 Toroidal/poloidaldecomposition 32 2.3.3 Axisymmetricfields 34 2.3.4 Two-dimensionalfields 34 2.4 Relationsbetweenelectriccurrentandmagneticfield 36 2.4.1 Ampe`re’slaw 36 viii Contents 2.4.2 Multipoleexpansionofthemagneticfield 37 2.4.3 Axisymmetricfields 38 2.5 Force-freefields 39 2.5.1 Force-freefieldsinsphericalgeometry 41 2.6 Lagrangianvariablesandmagneticfieldevolution 43 2.6.1 Changeoffluxthroughamovingcircuit 44 2.6.2 Faraday’slawofinduction 45 2.6.3 Galileaninvarianceofthepre-Maxwellequations 45 2.6.4 Ohm’slawinamovingconductor 46 2.7 Kinematicallypossiblevelocityfields 47 2.8 Freedecaymodes 48 2.8.1 Toroidaldecaymodes 49 2.8.2 Poloidaldecaymodes 50 2.8.3 Behaviourofthedipolemoment 51 2.9 FieldsexhibitingLagrangianchaos 53 2.10 Knottedfluxtubes 54 2.10.1 Twistsurgery 54 2.10.2 Helicityofaknottedfluxtube 56 3 Advection,DistortionandDiffusion 59 3.1 Alfve´n’stheoremandrelatedresults 59 3.1.1 Conservationofmagnetichelicity 60 3.2 Theanalogywithvorticity 62 3.3 Theanalogywithscalartransport 64 3.4 Maintenanceofafluxropebyuniformirrotationalstrain 64 3.5 Astretchedfluxtubewithhelicity 66 3.6 Anexampleofacceleratedohmicdiffusion 67 3.7 Equationforvectorpotentialandflux-functionunder particularsymmetries 68 3.7.1 Two-dimensionalcase 69 3.7.2 Axisymmetriccase 69 3.8 Shearingofaspace-periodicmagneticfield 70 3.9 Oscillatingshearflow 73 3.9.1 Thecaseofsteadyrotationoftheshearingdirection 75 3.10 Fielddistortionbydifferentialrotation 76 3.11 Effect of plane differential rotation on an initially uniform field:fluxexpulsion 77 3.11.1 Theinitialphase 78 3.11.2 Theultimatesteadystate 79 3.11.3 Flowdistortionbytheflowduetoalinevortex 81 Contents ix 3.11.4 Theintermediatephase 82 3.11.5 Fluxexpulsionwithdynamicback-reaction 84 3.11.6 FluxexpulsionbyGaussianangularvelocity distribution 84 3.12 Fluxexpulsionforgeneralflowswithclosedstreamlines 86 3.13 Expulsionofpoloidalfieldbymeridionalcirculation 88 3.14 Generationoftoroidalfieldbydifferentialrotation 89 3.14.1 Theinitialphase 90 3.14.2 Theultimatesteadystate 90 3.15 Topologicalpumpingofmagneticflux 93 4 TheMagneticFieldoftheEarthandPlanets 99 4.1 Planetarymagneticfieldsingeneral 99 4.2 Satellitemagneticfields 104 4.3 SphericalharmonicanalysisoftheEarth’sfield 106 4.4 Variationofthedipolefieldoverlongtime-scales 113 4.5 Parametersandphysicalstateofthelowermantleandcore 116 4.6 TheneedforadynamotheoryfortheEarth 117 4.7 Thecore–mantleboundaryandinteractions 118 4.8 PrecessionoftheEarth’sangularvelocity 119 5 AstrophysicalMagneticFields 121 5.1 Thesolarmagneticfield 121 5.2 VelocityfieldintheSun 122 5.2.1 Surfaceobservations 122 5.2.2 Helioseismology 124 5.3 Sunspotsandthesolarcycle 126 5.4 ThegeneralpoloidalmagneticfieldoftheSun 131 5.5 Magneticstars 132 5.6 Magneticinteractionbetweenstarsandplanets 134 5.7 Galacticmagneticfields 136 5.8 Neutronstars 140 PARTII FOUNDATIONSOFDYNAMOTHEORY 143 6 LaminarDynamoTheory 145 6.1 Formalstatementofthekinematicdynamoproblem 145 6.2 Rate-of-straincriterion 146 6.3 Rateofchangeofdipolemoment 148 6.4 Theimpossibilityofaxisymmetricdynamoaction 149 6.4.1 Ultimatedecayofthetoroidalfield 150

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.