ebook img

Selective electro-magnetic absorbers based on metal-dielectric-metal thin-film cavities PDF

142 Pages·2015·7.63 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Selective electro-magnetic absorbers based on metal-dielectric-metal thin-film cavities

SELECTIVEELECTRO-MAGNETICABSORBERSBASEDON METAL-DIELECTRIC-METALTHIN-FILMCAVITIES by JANARDANNATH M.S.UniversityofCentralFlorida,2011 Adissertationsubmittedinpartialfulfilmentoftherequirements forthedegreeofDoctorofPhilosophy intheDepartmentofPhysics intheCollegeofSciences attheUniversityofCentralFlorida Orlando,Florida SummerTerm 2015 MajorProfessor:RobertE.Peale (cid:13)c 2015JanardanNath ii ABSTRACT Efficientabsorptionoflightisrequiredforalargenumberofapplicationssuchasthermo-photovoltaics, thermalimaging,bio-sensing,thermalemitters,astronomy,andstealthtechnology. Stronglightab- sorbers found in nature with high intrinsic losses such as carbon black, metal-black, and carbon nano-tubesetc. arebulky,notdesign-tunableandarehardtopatternformicro-andnano-devices. We developed thin-film, high performance absorbers in the visible, near-, mid-, long-wave - and far-IRregionbasedona3layermetal-dielectric-metal(MDM)structure. Wefabricateda3-layerMDMabsorberwithlargeband-widthsinthevisibleandnearIR spectral range without any lithographic patterning. This was the first demonstration in the optical range of the Salisbury Screen, which was originally invented for radar absorption. A Fabry-Perot cavity model depending on the thickness of the dielectric, but also the effective permittivity of the semi-transparenttopmetalgivescalculatedspectrathatagreewellwithexperiment. Secondly, we fabricated long-wave IR and far-IR MDM absorbers comprising surface patternsofperiodicmetalsquaresonthedielectriclayer. Strongabsorptioninmultiplebandswere obtained, and these depended weakly on polarization and angle of incidence. Though such ab- sorbers had been extensively studied by electrodynamic simulations and experiment in the visible to far- R regions, there existed no analytic model that could accurately predict the wavelengths of the multiple resonances. We developed a theoretical model for these absorbers based on standing- waveresonances,whichaccuratelypredictsresonancewavelengthsforexperimentandsimulation for the first time. Unlike metamaterial theories our model does not depend on the periodicity of the squares but only on their lateral dimension and the thickness of the dielectric. This feature is confirmedbysynchrotron-basedIRspectralimagingmicroscopyofsingleisolatedsquares. iii Idedicatethisworktomyparents,mysisters,mynephewandmywife. iv ACKNOWLEDGMENTS First of all I acknowledge my supervisor Prof. Robert Peale for accepting me in his group and supporting me through out my PhD. He has given me a lot of freedom with my research. He believedinmyideasandguidedmewithvaluablesuggestions. Heworkedhardinfundingmeand my lab mates. He has maintained a wonderful environment in the lab by being kind and patient. I thankProf. RobertPealeforhiswonderfuladvisinginmyPhD. I would like to thank my committee Dr. Masahiro Ishigami, Prof. Leonid Chernyak, andProf. KonstantinL.Vodopyanovforacceptingtohelpandguidemeformydissertation. I acknowledge my lab-mates for their support, love and inspiration. Especially, I thank Mr. Farnood Rezaie, Dr. Deep Panjwani, Dr. Monas Shahzad, Mr. Pedro Figueiredo, Dr. Gau- tam Medhi, Mr. Imen Razadad, Ms. Javaneh Boroumand, Mr. Evan Smith, and Dr. Tatyana Brusentsova for their help with various projects. I thank Mr. Sushrut Modak for always help- ing me with FDTD simulations. I thank Dr. Ryuichi Tsuchikawa for assistance with the AFM measurements. I am very grateful to Mr. Douglas Maukonen for his help with the spectroscopic measurements. I thank Dr. Walter R Buchwald, Dr. Justin Cleary, Dr. Nima Nader, Dr. Josh HendricksonandDr. KurtG.EyinkofAirForceResearchLaboratory,Daytonforhelpinguswith various experiments. I would like to thank Prof. Leonid Chernyak, Dr. Elena Flitsiyan and Dr. CaseySchwarzforthehelpwiththecathodoluminescenceexperiments. I thank Dr. Mehmet Yeslitas for the measurements with synchrotron microscopy. I thank Mr. Chris Fedrickson, Dr. Isaiah Oladeji, Dr. A. V. Muravjov and Mr. Guy Zummo for the help and guidance with different instruments. I would also like to thank Physics department facultymembersandofficestaff,whohelpedmethroughoutmyacademicprogram. v I would like to thank Dr. J. David Musgraves, Mr. Pete Wachtel, and Ms. Jennifer McKinley of IRradiance Glass Inc., for the help with IR glass projects. Especially, I would like to thank Pete for his guidance with the glass melting and asking valuable questions in my research projects. I would like to thank my wife Vaahini Ganesan for her moral support and standing by methroughupsanddownsduringmyPhD.IthankallmyfriendsandUCFcommunitywhomade mylifeanenjoyableexperienceforthelast6years. Iwouldliketothankmyparentsandmysistersfortheirinvaluablesupport. vi TABLE OF CONTENTS LISTOFFIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi LISTOFTABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .xviii CHAPTER1: INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 PlasmonicAbsorbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 Fabry-PerotTypeAbsorbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 MetamaterialAbsorbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.4 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 CHAPTER2: THEORETICALBACKGROUND . . . . . . . . . . . . . . . . . . . . . . 10 2.1 EffectiveMediumTheory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.1.1 2-PhaseMedia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.1.2 Maxwell-GarnetTheory . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.1.3 BruggemanTheory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.2 MetamaterialAbsorbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.2.1 MagneticResonanceTheory . . . . . . . . . . . . . . . . . . . . . . . . . 15 vii 2.2.2 InterferenceTheory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.2.3 PlanarWave-guideTheory . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.2.4 Metal-dielectric-metal(MDM)CavityTheory . . . . . . . . . . . . . . . . 18 2.3 FiniteDifferenceTimeDomain(FDTD)Method . . . . . . . . . . . . . . . . . . 19 2.3.1 FiniteDifferenceMethod . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.3.2 DerivationofFDTDEquations . . . . . . . . . . . . . . . . . . . . . . . . 20 CHAPTER3: FAR INFRA-RED ABSORBER BASED ON STANDING-WAVE RESO- NANCESINMETAL-DIELECTRIC-METALCAVITY . . . . . . . . . . . 22 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.2 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.3 ExperimentalDetails . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.4.1 FDTDSimulationResults . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 CHAPTER4: OPTICALSALISBURYSCREENWITHDESIGN-TUNABLERESONANT ABSORPTIONBANDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 viii 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 4.2 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 4.3 ExperimentalDetails . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 4.4 ResultsandDiscussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 4.4.1 MetalNano-discs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 CHAPTER5: WIDE-BAND LONG-WAVE INFRA-RED (LWIR) METAL-DIELCTRIC- METALTHINFILMABSORBER . . . . . . . . . . . . . . . . . . . . . . 78 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 5.2 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 5.3 FDTDSimulationResults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 5.4 ExperimentalDetails . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 5.5 ResultsandDiscussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 CHAPTER6: SYNCHROTRON INFRA-RED SPECTRAL MICROSCOPY OF METAL- DIELECTRIC-METALCAVITYMETAMATERIALABSORBERS . . . . . 96 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 ix 6.2 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 6.3 ExperimentalDetails . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 6.4 ResultsandDiscussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 CHAPTER7: CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 LISTOFREFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 x

Description:
far-IR region based on a 3 layer metal-dielectric-metal (MDM) structure. We fabricated Casey Schwarz for the help with the cathodoluminescence experiments. I thank Dr. MPAs can be divided in to two categories on basis of commonly used for study of electrodynamics of metamaterial absorbers.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.