Mon.Not.R.Astron.Soc.000,1–12(2016) Printed10January2017 (MNLATEXstylefilev2.2) Selection bias in dynamically-measured super-massive black hole samples: dynamical masses and dependence on Se´rsic index 1⋆ 2 2 Francesco Shankar , Mariangela Bernardi , Ravi K. Sheth 7 1 1DepartmentofPhysicsandAstronomy,UniversityofSouthampton,Highfield,SO171BJ,UK 0 2DepartmentofPhysicsandAstronomy,UniversityofPennsylvania,209South33rdSt,Philadelphia,PA19104 2 n a J 6 ABSTRACT ] We extend the comparison between the set of local galaxies having dynamically measured A black holes with galaxies in the Sloan Digital Sky Survey (SDSS). We first show that the G mostup-to-datelocalblackholesamplesofearly-typegalaxieswithmeasurementsofeffec- tiveradii,luminosities,andSe´rsicindicesofthebulgesoftheirhostgalaxies,havedynami- . h calmassandSe´rsicindexdistributionsconsistentwiththoseofSDSSearly-typegalaxiesof p similar bulgestellar mass. The hostgalaxiesoflocalblackholesamplesthusdonotappear - o structurally different from SDSS galaxies, sharing similar dynamical masses, light profiles r andlightdistributions.Analysisoftheresidualsrevealsthatvelocitydispersionismorefun- st damental than Se´rsic index nsph in the scaling relations between black holes and galaxies. a Indeed, residuals with n could be ascribed to the (weak) correlation with bulge mass or sph [ even velocity dispersion. Finally, targetted Monte Carlo simulations that include the effects 1 of the sphere of influence of the black hole, and tuned to reproduce the observed residuals v andscaling relationsin termsof velocitydispersionandstellar mass, show that, at leastfor 2 galaxieswithMbulge & 1010M⊙ andnsph & 5,theobservedmeanblackholemassatfixed 3 Se´rsicindexisbiasedsignificantlyhigherthantheintrinsicvalue. 7 1 Keywords: (galaxies:)quasars:supermassiveblackholes–galaxies:fundamentalparame- 0 ters–galaxies:nuclei–galaxies:structure–blackholephysics . 1 0 7 1 1 INTRODUCTION detectedanysignificantcorrelation,whilemorerecentlySavorgnan : v (2016),bycompilingalargergalaxysamplewithaccurateanduni- Thescalingrelationsbetweensupermassive blackholesand their i formphotometricdecompositions,hasclaimedasignificantcorre- X hostgalaxieshavebeenaveryhottopicinthelastthirtyyears(see, lationcharacterizedbyaslopeof3.39 0.15andanintrinsicscatter e.g.,Ferrarese&Ford2005;Shankar2009;Graham2016,forre- ± r of 0.25dex.Thescatteriscomparableto,orevensmallerthan, a views).Thisisbecausesuchscalingsmaybethesmokinggunof ∼ theoneinthescalingwithvelocitydispersion,pavingthewayfor a“co-evolution” between the twosystems (e.g., Silketal.2013), itsuseasablackholemassindicatoringalaxies(e.g.,Grahametal. although the physical processes involved arestill highly debated, 2007;MutluPakdiletal.2016). ranging from quasar feedback to black hole mergers, clumpy ac- Unveilingtheactualexistenceoftheblackhole-Se´rsicindex cretion,and/orgalaxy-scalegravitationaltorques(e.g.,Silk&Rees relationcouldbeakeypieceofevidenceforsomeimportantgalaxy 1998;Vittorinietal.2005;Jahnke&Maccio`2011;Bournaudetal. evolutionary patterns. For example, more or less violent disc in- 2011b; Angle´s-Alca´zaretal. 2015). Besides the well-known cor- stabilitiesingas-rich,high-redshiftdiscscouldfeedbothaninner relations with velocity dispersion σ (Ferrarese&Merritt 2000; bulgeandacentralblackhole(e.g.,Bournaudetal.2011a).Apro- Gebhardt&etal. 2000) and (bulge) stellar mass M (e.g., bulge gressively more prominent bulge component, possibly character- Marconi&Hunt 2003; Laueretal. 2007; Kormendy&Ho 2013; izedbyaproportionallyincreasinggalaxySe´rsicindex,maythen La¨skeretal. 2014; Sagliaetal. 2016), correlations with the light beabletohaltstarformationinthehostgalaxy(e.g.,Martigetal. concentration and Se´rsic index have also been measured (e.g., 2009;Dekel&Burkert2014).Aninitialcorrelationbetweenblack Grahametal.2001;Graham&Driver2007;Savorgnan2016,and hole mass and Se´rsic index could have thus been established by referencestherein). these high-redshift dissipative processes. If galaxy mergers have ThecorrelationbetweenblackholemassandSe´rsicindex,in been the actual drivers behind the origin of the large sizes and particular,hasbeenthesubjectofnumerousstudiesinrecentyears. highSe´rsicindicesinpresent-daymassivegalaxies(e.g.,Hilzetal. Somegroups (e.g.,Sanietal. 2011; Beifiorietal.2012) havenot 2013;Nipoti2015),thenblackholesshouldhavenecessarilyfol- lowedinsomedegreetheirhostgalaxymergerstopreserveacor- ⋆ E-mail:[email protected] relationwithSe´rsicindex. (cid:13)c 2016RAS 2 F.Shankaret al. On the other hand, both disc instabilities and repeated results are not affected by the removal of these sources. The er- black hole mergers should also induce the build-up of a rorsquotedbySavorgnanetal.(2016)onthephotometricparam- closer link between black hole mass and stellar mass (e.g., etersincludesystematics(e.g.,fromcomparisonwithdifferentau- Jahnke&Maccio` 2011), at variance with the recent results by thorsandanalysismethods).However,sincewewillbeinterested our group (Shankaretal. 2016, Paper I hereafter) and others inscalingrelations-theestimateofwhichincludesaccountingfor (Blucketal. 2016; vandenBosch 2016). In Paper Iwe showed errors - we do not include the systematic contribution to the er- that, following a number of previous claims (e.g., Bernardietal. roronn atthispoint.Specifically,weonlyaccountforrandom sph 2007;vandenBoschetal.2015),thelocalsampleofgalaxieswith errors when estimating the intrinsic slope, zero-point and scatter. dynamically-measured supermassive black holes is highly biased Weassesstheinfluenceofsystematicsasfollows.Whenadifferent withrespecttoanunbiasedlargesampleofgalaxiesofsimilarstel- analysis method is used to estimate the photometric parameters, larmass.Inparticular,blackholegalactichostsappeartohavesig- then we use these new values to estimate scaling relations in the nificantly higher velocity dispersion (and slightly lower sizes) at same way as before (i.e., accounting only for the random errors fixedstellarmass.PaperIusedMonteCarlosimulationsandresid- associatedwiththesenewvalues).Thedifferencesbetweenthein- ual analysis to show that such biases can result if the sample of ferredscalingrelationscontributetothesystematicerroronthein- local galaxies is preselected with the requirement that the black ferredscalingrelation.Inpractice,weusedasthe“othervalues”the hole sphere of influence must be resolved to measure black hole sampleof La¨skeretal.(2014),whichalsoincludes accuratepho- masses with spatially resolved kinematics. The same simulations tometricanalysisfromtheWIRcamimager attheCanadaFrance- and statistical analysis clearly point to velocity dispersion being HawaiiTelescope, with Se´rsic-based light profile fitting routines. more fundamental than stellar mass or effective radius, and pre- We retain 28 galaxies from their original sample, containing the dictsignificantlylowernormalizationsfortheintrinsicscalingre- most secure dynamical black hole mass measurements according lations.Thelatterpartlysolvesthesystematicdiscrepancybetween toKormendy&Ho(2013). dynamically-basedblackhole-galaxyscalingrelationsversusthose To represent the full galaxy sample, we use objects in the of active galaxies (e.g., Reines&Volonteri 2015), favouring pro- Sloan Digital Sky Survey (SDSS) DR7 spectroscopic sample portionallylowervirialcalibrationfactorsfvirforestimatingblack (Abazajianetal.2009)intheredshiftrange0.05 < z < 0.2with holemassesinactivegalaxies(e.g.,Ho&Kim2014). the photometric measurements from Meertetal. 2015. Through- However,itispossiblethatsomeofthebiasmaybeinduced out this paper, we restrict the analysis to galaxies whose prob- by real structural differences, i.e., physical effects could also be ability of being elliptical or lenticular p(E–S0) is greater than playing a role. One of the two aims of this Letter is to address 0.80, based on the Bayesian automated morphological classifier thequestion of structural differences between local galaxies with by Huertas-Companyetal. (2011); we refer to this as the SDSS dynamically-measured black holesandtheir counterparts inlarge E-S0sample2.Whendealingwithtotalstellarmasseswewillin- unbiased samples of galaxies. After briefly introducing the data steadrefertoonlyellipticalswithp(E)>0.8.Stellarmassesarede- adoptedinthisworkinSection2,wefocusondynamicalmasses rivedbycombiningtheSEREXPestimatesoftheluminosityfrom and(bulge) Se´rsicnsph distributionsinSection3.Wethenmove Meertetal. (2015) with mass-to-light ratios Mstar/L detailed in to the second aim of this work, which is to compare the impor- Bernardietal.(2010,2013)andChabrier(2003)InitialMassFunc- tanceofSe´rsicindexwithothervariablesintheblackholescaling tion (IMF). Systematic differences in Mstar/L can be of order relations, inorder to determine if n plays afundamental role. 0.1dex(e.g.Bernardietal.2016).SDSSvelocitydispersions are sph WeusededicatedMonteCarlosimulationstointerpretourresults convertedfromRe/8tothe0.595kpcapertureoftheHyperleda3 andpresentourconclusionsinSection4.TwoAppendicesprovide database(Patureletal.2003),usingthemeanaperturecorrections detailsofouranalysis.AppendixAdescribeshowouranalysisac- (e.g.,Jorgensenetal.1996;Cappellarietal.2006) counts for statisticalmeasurement errors,and Appendix B shows howtheslopesofcorrelationsinvolvingthreevariablesarerelated σR =(R/Re)−0.066 . (1) toslopesofpairwiseregressions. (cid:18)σe(cid:19) We note that blurring by seeing effects could potentially re- ducecentralvelocitydispersionmeasurements(e.g.,Grahametal. 1998), however we do not foresee any major difference in the 2 DATA seeing affecting ground-based measurements of σ in SDSS and Following Paper I, we use the Savorgnanetal. (2016) sample thosecataloguedinHyperleda.Strictlyspeaking,theSe´rsicindex of galaxies having dynamically measured black holes, with self- n we will adopt in this work is always referred to the galaxy sph consistent1measurementsofSe´rsicluminosities,effectiveradiiand spheroidal component extracted from a SEREXPluminosity pro- Se´rsicindicesofthespheroidalcomponents,aswellasestimatesof file fitting in both the SDSS and the Savorgnanetal. (2016) and thetotalhostgalaxyluminositiesandeffectiveradii.Centralveloc- La¨skeretal.(2014)samples.Thehalf-lightradiiRe,bulge andRe ity dispersions are from Hyperleda, while stellar masses are ob- aredefinedastheradiicontaininghalfofthebulgeandtotalgalaxy tainedbyapplyingtothe3.6µm(Spitzer)luminositiesaconstant luminosity, respectively. In the following, we will label the total mass-to-lightratioof(M/M )/(L/L ) = 0.6fromMeidtetal. ⊙ ⊙ (e.g. 2014). As detailed in Paper I, from the original sample of 66galaxiesweremove18objectswithuncertainblackholemass 2 FollowingPaperI,whendealingwithbulgeswepreferentiallyadoptE- and/or surface brightness, or unavailable central velocity disper- S0galaxieswithp(E–S0)> 0.8asourreferenceSDSScomparisonsam- sion, or because they are ongoing mergers. We checked that our ple,becausedeterminingthecentralvelocitydispersionofspiralsfromthe SDSSspectra(whicharenotspatiallyresolved)isnotpossible.Wechecked, however,thatnoneofourresultsdependsontheexactcutinp(E–S0). 1 Thesamesurfacebrightnessprofilefittingprocedurehasbeenadopted 3 Fromhereonwards,unlessotherwisestated,velocitydispersionsσwill foreachofthe66galaxiesinthesample. alwaysbedefinedattheapertureofHyperleda. (cid:13)c 2016RAS,MNRAS000,1–12 SMBHs:selectionbiasandSe´rsicindices 3 Figure1.Left:Meandynamicalmass,Mdyn = K(nsph)Reσ2/G,asafunctionofstellarmass.Right:Sameformatastheleftpanelsbutforthebulge component:Mdyn,bulge=K(nsph)Re,bulgeσ2/GasafunctionofMbulge.SolidlinesineachpanelshowthemeanrelationdefinedbytheSDSSofonly E(left)orE-S0(right)samples,withtheSEREXPstellarmassesandphotometricparametersfromMeertetal.(2015);greybandsmarkthe1σdispersion aroundthemean.SymbolsshowtheSavorgnanetal.(2016,toppanels)andLa¨skeretal.(2014,bottompanels)samples.Filledredcircles,greentriangles,and bluestarsshow,respectively,ellipticals,lenticulars,andspirals,thelattertworeportedonlyintherightpanels.Dottedlinesineachpanelmarktheone-to-one relations.TheagreementwiththeSDSSgalaxiesisgood. galaxystellarmass,galaxybulgestellarmass,totalgalaxydynam- from Prugniel&Simien (1997). It is clear that the bulge dynam- ical mass, and galaxy bulge dynamical mass as Mstar, Mbulge, ical mass of all galaxy types in the Savorgnanetal. (2016) and M , and M , respectively. In the next sections, unless La¨skeretal.(2014)samplesbroadlyagreewiththoseofSDSSE- dyn dyn,bulge otherwise noted, we will compute median instead of mean quan- S0sgalaxiesofsimilarstellarmass.Thedatatendtoshowslightly tities. While this makes little difference when dealing with stel- largerdynamicalbulgemassesatlowerstellarbulgemasses(right lar/dynamicalmassesorvelocitydispersions,itmattersmorewith panelsinFigure1),mostprobablyinducedbytheverylargeveloc- the (non-Gaussian) Se´rsic distributions at fixed stellar mass, for itydispersionscharacterizingthelowmassgalaxieswithdynami- whichmediansaremoreappropriate. calmeasurementsofblackholes,asemphasizedinPaperI.How- ever, most of theSavorgnanetal.(2016) andLa¨skeretal. (2014) data are still broadly consistent with SDSS galaxies within the quoted uncertainties. In line with a number of previous studies 3 RESULTS (e.g.,Forbesetal.2008;Shankar&Bernardi2009;Bernardietal. To test the hypothesis that galaxies with dynamically-measured 2011b;Cappellarietal.2013,andreferencestherein),itisalsoin- black holes are a structurally different subset of the full galaxy terestingtonotethatinboththeSDSSandSavorgnanetal.(2016) population–representedbytheSDSS–Figure1showsthemean samples all ellipticals have a dynamical mass a factor of 2 ∼ dynamical mass (solid lines), along with its 1σ dispersion (grey higher than their total stellar mass (left); this ratio is smaller but bands),fortheSDSSE-S0galaxiesasafunctionoftotal(leftpan- stillgreaterthanunityifonlythebulgecomponent isused(right; els)andbulge(rightpanels)stellarmass.TheSDSSE-S0sarecom- compare solid and dotted lines, thelatter marking the one-to-one paredtotheSavorgnanetal.(2016)andLa¨skeretal.(2014)sam- relations). ples(topandbottompanels,respectively),dividedintoellipticals, lenticulars/S0,andspirals,aslabelled.Heredynamicalmassisal- Figure2showsthecorrelationbetweenSe´rsicn andtotal sph ways computed for both samples as Mdyn = K(nsph)Reσ2/G, (left)orbulge(right)stellarmass.Solidlinesandgreyregionsmark with the Se´rsic index-dependent virial constant K(n ) taken themedianand1σdispersionsfortheSDSSonlyE(left)orE-S0s sph (cid:13)c 2016RAS,MNRAS000,1–12 4 F.Shankaret al. Figure2.Se´rsicindexnsphasafunctionofgalaxytotalstellarmass(left)andbulgestellarmass(right).SymbolsshowtheSavorgnanetal.(2016,toppanels) andLa¨skeretal.(2014,bottompanels)samples,dividedintoellipticals,lenticulars,andspirals,aslabelled.Solidlineandgreyshadedregionshowtherelation definedbySDSSonlyE(left)orE-S0(right)samples(blacklineswithgreyareas).Thepurplelong-dashedlineintherightpanelsshowsthemedianSe´rsic indexforSDSSSabgalaxies.ThereisnosignificantmismatchbetweenSDSSgalaxiesandblackholesamples. (right).SymbolsshowtheM hostsfromSavorgnanetal.(2016, ifnotlowerthanthoseofSDSSgalaxiesofsimilarbulgemassor bh toppanels)andLa¨skeretal.(2014,bottompanels).Thepanelson velocitydispersion. theleftshowthatellipticals(redcircles)matchtheSDSSSe´rsicin- Figure3showsthatthemeanvelocitydispersionasafunction dexdistributions.Thematchisextendedtolenticulars(greentrian- of Se´rsicindex n for early-type galaxies in our SDSS sample sph gles)whenswitchingtobulgestellarmasses(rightpanel).Spirals (long-dashed purple line) israther flat4 at n & 5. A direct fit sph (bluestars)intheSavorgnanetal.(2016)sample(top,right)tend tothedatabySavorgnanetal.(2016),reportedintheleftpanelof tofallslightlybelowthemediantracedbytheSDSSE-S0galaxies, Figure 3 and labelled per morphological type, yields a systemat- butarewithinthemedianSe´rsicdistributionsofE-S0andconsis- icallyhigher and steeper correlation with σ n0.3 (black thick ∝ sph tentwiththeSab(purplelong-dashed line)SDSSgalaxies.Thus, dotted line). We interpret this as another sign of existing biases the top panels of Figure 2 suggest that local galaxies with black in the local sample of galaxies with dynamical measurements of holemassmeasurementsarenot,onaverage,structurallydifferent blackholes, inlinewithPaperI.TheLa¨skeretal.(2014) sample fromSDSSgalaxiesofsimilarstellarmass. instead (right panel of Figure 3) appears broadly consistent with SDSS data, with a negligible dependence on Se´rsic index, espe- ciallyathighn ,asinourSDSSdata.InFigure3weonlyshow sph ThebottompanelsshowasimilaranalysisoftheLa¨skeretal. galaxies with logM /M > 10, to make a fair comparison bulge ⊙ (2014) sample. In both panels, the correlations are much noisier withour(selectionbiased)SDSSE-S0mocksample,describedin thanbefore.SpiralstendtoliesomewhatabovethemedianSDSS the next section, which can reliably probe only above this lower Se´rsicindexofSDSSgalaxies.Infact,thesymbolsinthebottom limitinbulgemass. rightpanelsuggestthatnsphdecreasesasMbulgeincreases;thisis Figure4showsthecorrelationbetweenblackholemassMbh oppositetothetrendintheSavorgnanetal.(2016)sample,andwill and bulge Se´rsic index n . Symbols show the galaxies in the sph beimportantinwhatfollows.Thisdifferenceshowshowchalleng- ing accurate determinations of Se´rsic indices can be. Finally, we alsoverifiedthat,fortheearly-typegalaxiesinourblackholemass 4 Incontrast,themeanSe´rsicindexisasteeperfunctionofvelocitydis- samples,theprojectedmassdensitywithinafewkpcaresimilarto, persion,thoughthescatterislarge. (cid:13)c 2016RAS,MNRAS000,1–12 SMBHs:selectionbiasandSe´rsicindices 5 Figure3.CorrelationbetweenvelocitydispersionandSe´rsicindexnsph.Long-dashedpurplelineisthemedianrelationinSDSSearly-typegalaxies,while symbolsmarkthegalaxiesintheSavorgnanetal.(2016,leftpanel)andLa¨skeretal.(2014,rightpanel)sampleshavinglogMstar/M⊙ >10,dividedper morphologicaltype,aslabelled.Theblackthickdottedlinesarethedirectfitstothesedata.TheSavorgnanetal.(2016,leftpanel)sample,inparticular,hasa highernormalizationandasteeperslopethantheSDSSrelation. Savorgnanetal.(2016)andLa¨skeretal.(2014)samples(leftand ficient is r = 0.81. In contrast, the upper right panel shows that rightpanelsrespectively)havinglogMstar/M⊙ > 10.Bluedot- residualsfromtheMbh-σrelationshowamuchweakercorrelation dashed and purple dotted lines are the curved relations described withthosefromthen -σ correlation(r = 0.48). Together, the sph by Graham&Driver (2007) and Savorgnan (2016), respectively. twoupperpanelsimplyM σ4.1±0.1n0.8±0.1. bh ∝ sph We describe the grey regions and other curves later. A direct fit Similarly, the two lower panels imply M totheSavorgnanetal.(2016)andLa¨skeretal.(2014)datayields M0.7±0.1n0.9±0.1. However, the correlation with bulbghe ma∝ss M n1.8 and M n0.1, respectively. The Appendix ad- star sph drebshse∝sthespqhuestionobfhw∝hethesprhornotsuch(different)behaviours atfixednsph (lowerleftpanel)tendstobetighterthantheonein Se´rsic index at fixed M (lower right panel has r . 0.31). wouldbeexpectedifblackholemassiscloselycorrelatedwithve- bulge BothslopeandPearsoncorrelationcoefficient droptoabout zero locitydispersion,asemphasizedinPaperI,buttheσ-n trends sph when considering only E-S0 galaxies, suggesting that most of forthetwosamplesareerydifferent(asshowninFigure3). the correlation in Figure 4 between black hole mass and Se´rsic Forthispurpose,wenowtestifthecorrelationbetweenblack index could be induced by the relation between Se´rsicindex and holemassandSe´rsicindex,evidentatleastintheSavorgnanetal. stellar (bulge) mass. If barred galaxies are excluded from the (2016)sample,isfundamental,ormerelyaconsequenceofothers. Savorgnanetal. (2016) sample, then the Pearson coefficients in Correlationsbetweentheresidualsofscalingrelationsareaneffi- thetworighthandpanelsofFigure5decreasetor 0.33(top) cientwayofaddressingthisquestion(Sheth&Bernardi2012,and ∼ and r 0.14 (bottom). Our analysis thus strongly suggests that PaperI). ∼ velocitydispersionismorefundamentalthanSe´rsicindex,further TheoriginalerrorsassignedtotheSavorgnan(2016)sample supportingandextendingtheresultsinPaperI. includeboththestatisticalaswellasthesystematicerrorsthataf- AsimilaranalysisoftheLa¨skeretal.(2014)sample,reported fectphotometricdecompositions.Thisisaparticularlyrelevantis- inFigure6,alsoyieldsatightcorrelationwithvelocitydispersion sueforSe´rsicindices.Thequotederrorsinn areinfactofthe sph (r = 0.89 in upper left panel), and extremely weak correlations orderof 35%,whiletypicalstatisticalerrorsamounttoatmost ∼ withSe´rsicindex(r < 0.3intopandbottomrightpanels).Using . 20 25%,i.e.,.0.1dex(Bernardietal.2014).Asdiscussed − only E-S0 galaxies yields even stronger dependence on velocity in Section 2, when computing residuals with respect to n , we sph dispersionandnearlynodependenceonSe´rsicindex.Evenassum- willalwaysconsideronlythestatistical 0.1dexerrors.Thedif- ∼ ingsubstantiallylargerstatisticaluncertaintiesinn stillyields ferenceinthemeasuredslopesfromdifferentsamplesshouldthen sph veryweakcorrelationsinthepanelsontheright.Finally,notethat provideanindicationoftheimpactofadditionalsystematicuncer- La¨skeretal.(2014)alsoprovideSe´rsicindicesderivedallowingfor tainties.Wenotethattheimpactofsystematicuncertaintiesshould acoreinsomegalaxies(seeLa¨skeretal.2014,fordetails).Using notbeincludedinanysinglemeasurementsimplybyinflatingthe theseinsteadyieldsresultsconsistentwithFigure6. measuredstatisticaluncertainties.Forsimilarreasonsweadopttyp- icalaverageerrorsforthebulgestellarmassesof0.13dex,i.e.,30% Intheanalysesabove,theerrorsonvelocitydispersionswere (see,e.g.,Meertetal.2013),insteadoftheirreportedaveragevalue takentobe5%(e.g.,Tremaineetal.2002;Graham&Scott2013), of 0.17 dex.Appendix Adescribesinsomedetailhow weac- inlinewithwhat isquoted intheHyperleda database. However, ∼ count for statistical measurement errors, and assign error bars in larger errors in velocity dispersion for these same galaxies have theanalysiswhichfollows. been reported in the literature (e.g., Ferrarese 2002), in linewith The upper left panel of Figure 5 shows that residuals in the those measured for SDSS galaxies (e.g., Bernardietal. 2011a). Savorgnan (2016) sample from the M -n relation correlate Largererrorsinvelocitydispersionwouldstrengthenourmainre- bh sph very well with those from the σ-n relation: the Pearson coef- sultthatvelocitydispersionismorefundamentalthanSe´rsicindex. sph (cid:13)c 2016RAS,MNRAS000,1–12 6 F.Shankaret al. Figure4.Correlation between black hole massMbh andbulgeSe´rsic indexnsph.Symbols showthe galaxies inthe Savorgnanetal. (2016,leftpanel) and La¨skeretal. (2014, right panel) samples having logMstar/M⊙ > 10. Blue dot-dashed and purple dotted lines are the curved relations described byGraham&Driver (2007)andSavorgnan (2016),respectively. Black solid lines and greybands show the selection biased relation inthe Monte Carlo simulationsdescribedinthenextsectionwhentheintrinsicrelationisgivenbyModelIofShankaretal.(2016)(dashedblackline).This(selectionbiased relation)isbroadlysimilartothatobserved,suggestingthatthemeanblackholemassatfixednsphcanbeseverelyoverestimated,atleastfornsph&5.The blackthickdottedlinesarethedirectfitstothedata.TheLa¨skeretal.(2014,rightpanel)sample,inparticular,showsnodependenceonSe´rsicindexanditis broadlyinlinewiththepredictionsoftheMonteCarlosimulations. retainonlythoseobjectsfor whichthegravitationalsphere ofin- Table1.SlopesoflinearrelationsinourSDSSgalaxysample. fluenceisgreater than thetypical resolution oftheHubble Space Telescope,i.e.,r GM /σ2 >0.1′′. X infl bh ≡ First, we note that the selection-biased mock residuals pre- logMstar logσ lognsph dictedbyour MonteCarlos(graybandsinFigures5and6),pre- logMstar 2.05 0.36 dictstrong correlations, especially invelocity dispersion, at fixed Y logσ 0.33 0.16 Se´rsicindex(leftpanels),andweakcorrelationswithSe´rsicindex, lognsph 0.19 0.55 inagreementwiththeLa¨skeretal.(2014)sample,butnotwiththe Savorgnanetal. (2016) one. It is interesting to note that the pre- dictions of the Monte Carlos without selection bias (purple long 4 DISCUSSION dashedlines)wouldpredictsignificantlysteeperresidualsatfixed Se´rsicindex(seetheAppendixforfurtherdetails). Intheprevioussectionweshowedthatvelocitydispersionismore fundamentalthanSe´rsicindexn fordeterminingM .Indeed, The long-dashed black lines in Figure 4 shows the intrinsic sph bh theMbh-nsphcorrelationseemstobemostlyinducedbythensph- Mbh-nsph relationinour SDSSE-S0sample predictedby Equa- M and M -M relations. However, because the M tion2.Itisremarkablyflat,becausevelocitydispersionisaweak bulge bh bulge bh sampleisbiased(tolargeσ)bythewayinwhichthesamplewasse- function of Se´rsic index (Figure 3; see Appendix for more dis- lected,wemustmakesurethattherelationsdefinedbythesymbols cussion.) The solid black line and associated grey region show inFigure5arenotaffectedbytheselectioneffect.Weusetargetted themeanand1σdispersioninthepredictedMbh-nsph relationof Monte-Carlosimulationstodoso:detailsaregiveninPaperI,so theselectionbiasedsample(i.e.,afterselectingobjectswithlarge herewebrieflysummarizethemainpoints. enoughrinfl).Noticethatitliesalmostanorderofmagnitudeabove To each SDSS galaxy in our sample5 we associate a super- theintrinsicrelationatnsph &5. massiveblackholefollowingthefavouredmodelinPaperI For completeness, blue dot-dashed and purple dotted lines in Figure 4 show fits to the observed M -n relation from M σ M bh sph log bh =γ+βlog +αlog bulge , (2) Graham&Driver (2007) and Savorgnan (2016), respectively. At M 200kms−1 1011M ⊙ (cid:16) (cid:17) (cid:18) ⊙(cid:19) least for relatively massive, large nsph early-type galaxies, these with (γ,β,α) = (7.7,5.0,0.5) and a total (Gaussian) scatter of fits and the measurements are in broad agreement with the grey 0.25 dex (inclusive of observational errors). We repeat the above region defined by our selection-biased Monte Carlos. Hence, we procedure several times tocreate a “full”black hole sample, and concludethatatleastsomeofthedifferencebetweentheintrinsic relation(blacklong-dashedline)andthedataatlargen canbe sph ascribedtoselectioneffects. 5 ThesimulationsarebasedontheSDSSsamplefromMeertetal.(2013) whichismagnitudelimited,thoughallmockresidualsareweightedthrough AtsmallernsphandlowerMstar thedatabySavorgnanetal. (2016)tendtocurvedownwards asindicated bythefits,whereas Vmax.Wehavefurtherverifiedthatnoneofourconclusionsarechangedif weadoptedafullmockcaseextractedfromthestellarmassfunctionandto our Monte Carlos do not. Including an intrinsic dependence be- whichvelocitydispersions,bulgefractionsandSe´rsicindicesareassigned tweenMbh andnsph,despitenotbeingfavouredbytheresiduals viaempirically-basedcorrelations. inFigure5,stillproducesaflatbiasedMbh-nsph relation.Itmay (cid:13)c 2016RAS,MNRAS000,1–12 SMBHs:selectionbiasandSe´rsicindices 7 Figure5.Correlations betweenresidualsfromtheobservedscalingrelations,asindicated ineachpanel.Redcircles,greentriangles,andbluestarsshow ellipticals,lenticulars,andspiralgalaxiesintheSavorgnanetal.(2016)sample.Thebluesolidanddottedlinesmarkthebest-fitscalingrelationandthe1σ uncertaintyintheslope(best-fitslopesarereportedintheupper,rightcorners).ThePearsoncorrelationcoefficientrisreportedinthetop,leftcornerofeach panel.Thegreybandsandpurplelong-dashedlinesshowtheresidualsextractedfromtheMonteCarlosimulationsdescribedinthetextwithandwithout selection intheblackholegravitational sphereofinfluence. Theresidualcorrelations withSe´rsicindexatfixedvelocity dispersion(toprightpanel)and, especially,with(bulge)stellarmass(bottomrightpanel),areweak. bethatother,possiblymass-dependent,selectioneffectsshouldbe over-predicted at thehigh-mass end, as was also revealed for the includedinourMonteCarlostoaccountfortheSe´rsicindexdistri- M -M andM -σrelations(PaperI). bh bulge bh butionofthelogM /M .10galaxiesinthelocalsamplesof bulge ⊙ galaxieswithdynamicallymeasuredblackholes.SeetheAppendix forfurtherdiscussionoftheexpectedslopesofthegreyregionsin Figures4–6. ACKNOWLEDGMENTS To summarize, inthiswork we havecompared SDSSearly- Wewarmlythank AlisterGraham, GiuliaSavorgnan,andRonald typegalaxieswiththelocalsampleofgalaxieswithdynamically- La¨skerforprovidingtheirdatainelectronicformatandforuseful measured black holes from the Savorgnanetal. (2016) and discussions. La¨skeretal.(2014)sampleswithself-consistentestimatesofbulge luminosities,effectiveradii,andSe´rsicindices.Wefindthelatter sample to be consistent with SDSS galaxies in terms of dynami- calmassandSe´rsicindexdistributions.Analysisoftheresidualsin APPENDIXA: ACCOUNTINGFORMEASUREMENT Figures5and6,revealsthatvelocitydispersionismorefundamen- ERRORS tal than Se´rsic index n in the scaling relations between black sph To include errors in the determination of the correlations, espe- holesandgalaxies. Indeed, residualswithn couldbeascribed sph ciallythosebetweenresiduals,wefollowBernardietal.(2003)and totheunderlyingcorrelationswithσandM .Ourconclusions bulge aresupportedbytargettedMonteCarloteststhatincludetheeffects Sheth&Bernardi (2012).Foranysetofmeasurements xi,yi and ofthesphereofinfluenceoftheblackhole.Theyshowthat,atleast (normalized)weightswi,wefirstcomputethelinearrelationswith forgalaxieswithM &1010M andn &5,theobserved slopemy|xandzeropointzpy|xgivenby bulge ⊙ sph msicedviaalnuebblayckuphtooleanatoardgeirvoenfmnaspghniitsudbeia,sie.ed.,hbilgahcekrhthoalenmthaessienstrainre- my|x= SSxxxy−EExxxy (A1) − (cid:13)c 2016RAS,MNRAS000,1–12 8 F.Shankaret al. Figure6.SameasFigure5butfortheLa¨skeretal.(2014)sample.TheresidualcorrelationswithSe´rsicindexatfixedvelocitydispersionandstellarmassare extremelyweak. and oftheresidualforeachsetofvariablesweproceedasfollows.Sup- posewehavethreevariables,say,x=logM ,y=logn ,and zp = y m x , (A2) bh sph y|x h i− y|xh i z = logσ.Wefirstcalculatethecorrelationcoefficientrforeach withtheweightedaverages y and x .Theotherquantitiesare pairas h i h i Sxx = (xi−hxi)2wi, Syy = (yi−hyi)2wi, (A3) rxy = Sxy−Exy (A7) Xi Xi √Sxx−Exx Syy−Eyy andthencomputethepslopem andcorrelationcoefficientr xy|z xy|z Sxy = (xi x )(yi y )wi, (A4) oftheresidualas −h i −h i i X Exx= he2xiiwi, Eyy = he2yiiwi, (A5) mxy|z= rxy1−−rrxy2zzryzsSSxyxy , (A8) i i X X and (cid:2) (cid:3) and Exy = i hexeyiiwi ≈k ExxEyy. (A6) rxy|z= [1r−xyr−x2z]rx1zr−yzry2z . (A9) X p q Thetermsex andey inEquationA5representtheunknownmea- ForeachpanelinFig(cid:2)ures5an(cid:3)d6weran200iterationsfollowing surementerrorsinthevariablesxandy;onlytheirvariances e2 thestepsoutlinedaboveand,inabootstrapfashion,eachtimeelim- and e2 areknown.ThefactorkinEquationA6accountsforhcoxri- inatingthreeobjectsatrandomfromtheoriginalsamples.Fromthe h yi relation between the measurement errors ex and ey. We will al- full ensemble of realizations wethen compute the mean slope of wayssetk = 0except whencalculatingtheslopesandresiduals thecorrelationandits1σuncertainty,whichwereportintheright, in the n and M correlations, for which we set k = 0.9 uppercornerofeachpanel,whiletheupperleftcornerreportsthe sph bulge (Meertetal.2013),astheSe´rsicindexandgalaxyluminosityare meanvalueofthePearsoncoefficientr.Theanalyticmethodology derivedfromthesamefittingprocedure. describedabove ismainlyintended forsymmetricerrors.Totake Inordertodeterminethefinalslopeandcorrelationcoefficient into account the asymmetry in black hole mass uncertainties, for (cid:13)c 2016RAS,MNRAS000,1–12 SMBHs:selectionbiasandSe´rsicindices 9 eachcorrelationweran100iterationsconsideringonlythepositive σ nδσ|n∗Mασ|n∗ whichmattersinthebottompanels.Averag- ∝ sph star error,and100iterationsconsideringonlythenegativeone.Consid- ingEquationB5overσatfixedn yields sph eringinsteadtheaverageorsquarederrorinblackholemassyields consistentresultswithintheuncertainties. δtot =α(δ∗|nσ+β∗|nσδσ|n)+βδσ|n, (B7) andthisequalstheresultofaveragingEquationB6overMstar at APPENDIXB: RELATIONBETWEENCOEFFICIENTSIN fixednsph: PAIRWISECORRELATIONSANDCORRELATIONS BETWEENRESIDUALS δtot =β(δσ|n∗+ασ|n∗δ∗|n)+αδ∗|n. (B8) Themaintextaddressesthequestionofwhetherornot theM - bh n correlationshowninFigure4isfundamental.Wedosofol- These final expressions, show how the slope δtot of the sph logM logn relationdependsontheblack-holeparameters lowingSheth&Bernardi(2012).Namely,westartwithEquation2 bh sph h | i inthemaintext,with(α,β)=(0.5,5),andaroundwhichthereis α,β,andonthescalingrelationsbetweenMstar,nsphandσ.The latter are reported in Figures B1 and B2 for the Savorgnanetal. 0.25dexscatterthatdoesnotdependonn . sph (2016)andLa¨skeretal.(2014)samples,respectively.IneachFig- AveragingthisexpressionoverallσatfixedMstaryields ure the residual correlations of velocity dispersion (top panels), logMbh logMstar α logMstar+β logσ logMstar . (B1) bulgestellarmass(middlepanels),andSe´rsicindex(bottompan- h | i∝ h | i els)areplottedagainstthetheothertwovariables.Thegrayband Ifασ|∗istheslopeofthehlogσ|logMstarirelation,thenwehave ineachpanelmarkstheresultsfromtheMonteCarlosimulations that basedontheMeertetal.(2013)SDSSsampleinclusiveofbiason hlogMbh|logMstari∝(α+βασ|∗) logMstar, (B2) theblIancskerhtionlgeδgravit=atio0n.1a6lsfprhoemreToafbilnefl1ueinncEeq.uationB7,andthe σ|n whichsuggestsdefining slopesoftheSDSSresidualsδ =0.37andβ =2.14from, ∗|nσ ∗|nσ respectively,themiddlerightandmiddleleftpanelsofFiguresB1 αtot =α+βασ|∗. (B3) andB2,wewouldgetδtot =0.5(0.37+2.14 0.16)+5 0.16 × × ≈ Similarly,averagingoverallMstaratfixedσinsteadyields 1.2,implyingasignificantcorrelationbetweenblackholemassand Se´rsicindex,eventhoughEquation2doesnotexplicitlydependon βtot =β+αβ∗|σ, (B4) Se´rsic index. On the other hand, setting δ∗|n = 0.36 (Table 1), δ = 0.06(upperrightpanels)andα =0.31(upperleft swhhoewres eβx∗p|σliciistlythtehastloαpteotof6=thαe ahnlodgβMtostta6=r|loβg,σbuitrtehlaattiothne. rTehlais- p0σa.5n|ne∗ls)0.i3n−6Equa0t.i5o.nTBh8isyiiselwdseaδkteotrt=han5(t−he0σ.|e0nx6∗pe+ct0ed.3v1a×lue0.o3f61).2+; tionbetweenthetwodependsonthetwoprojectionsoftheMstar- thed×iscrepa≈ncymaybeaconsequence ofthefactthatδ isso σ correlation.InourSDSSsample,σ ∝ Ms0t.a3r andMstar ∝ σ2, closetozero. σ|n∗ making(αtot,βtot) (2,6)when(α,β) = (0.5,5).Theseval- ≈ Exceptforthis,alloftheotherself-consistencyconditionsare uesof(αtot andβtot)areinagreementwiththosereportedinthe satisfiedinthemocksbeforeweapplythesphereofinfluencese- leftpanelsofFigures5and6(long-dashedpurplelines). lection.However,thereisnoguaranteethattheywillbesatisfiedin Ofcourse,theserelationsshouldholdinthefullsample:se- theselection-biasedmocksorinthe(selection-biased)data. lectioneffectsmaymodifytheserelationsandintroducecurvature. Nevertheless, the top panels of Figure 5 suggest M ThisisindeedwhatweobserveintheresidualsatfixedSe´rsicindex σ4.1n0.8 in the selection biased sample. Using these valubehs ∝in (leftpanelsofFigures5and6).OurMonteCarlos,inclusiveofthe sph Equation B7, along with the fact that δ 0.3 (left panel of selectionbiasintheblackhole’sgravitationalsphereofinfluence, σ|n ∼ predict significantly flatter, and in fact curved, residuals, roughly cFliogsuereto3t)hseaMysthatwne1.e8xwpeecsteδetoitn≈the0l.e8ft+pa4n.e1l(o0f.3F)ig≈ure24..TUhsisinigs consistentwith(αtot,βtot) (1,4). bh ∝ sph ≈ Equation B8 instead means we should use the values in the bot- Similarly,ifthe0.25dexscatteraroundEquation2doesnot tompanelsofFigure5alongwithδ 0.36(notethatFigure2 depend on nsph, we expect correlations such as those in the top ∗|n ≈ showstheinverserelation,α ).Thisyields0.7+0.9(0.4) 1.1, panelsofFigures5and6tosatisfy n|∗ ≈ whichissomewhatlowerthantheslopeof1.8,perhapsagainbe- logMbh lognsph,logσ causethecorrelationwithnsphissoweak.Sincethesescalingsare h | i satisfiedinthefullmocks,weconcludethatthesedifferencesare βlogσ +α logMstar lognsph,logσ ∝ h | i duetotheselectionbias. (αδ ) logn +(β+αβ ) logσ, (B5) ∝ ∗|nσ sph ∗|nσ Ifweusethevaluesinthetoppanel ofFigure6instead,we whereasthoseinthebottompanelsshouldscaleas find 0.4+3.9( 0.1) 0.01, where we have used the fact that − ≈ logσ logn 0.1 for this sample (right panel of Fig- sph hlogMbh|lognsph,logMstari uhre3).|Thisiscilos≈e∼tot−heMbh ∝ n0sp.1h scalingofthedirectrela- ∝(βδσ|n∗) lognsph+(βασ|n∗+α) logMstar. (B6) tthioisnsslhoopwenisinvethryerdiigfhfetrheanntdfrpoamnetlhaotfiFnigthuerele4f,tdheasnpditepathneelfaocftFthiga-t Theseexpressionsshowthat,iftheMbh-nsphcorrelationisdriven ure4.Weconcludethattheseverydifferentscalingsareindicating bythecorrelationbetweenσandMstar,andtheircorrelationswith that systematics in the determination of nsph prevent a definitive nsph, then the coefficients of correlations between residuals de- determinationofsomeaspectsoftheMbh-nsph-σ relation.How- pend both on the black-hole parameters α,β, and on the Mstar- ever,themainuncertaintiesarerelatedtothefactthatcorrelations σ-nsphcorrelations.Specifically,inthetoppanels,theparameters withnspharenotstrong:ourfindingthattheMbh-σcorrelationis which matter are those for Mstar ∝ nδsp∗h|nσσβ∗|nσ, whereas it is strongerisverylikelytobecorrect. (cid:13)c 2016RAS,MNRAS000,1–12 10 F.Shankaret al. FigureB1.Residualcorrelationsofvelocitydispersion(toppanels),bulgestellarmass(middlepanels),andSersicindex(bottompanels)againstthetheother twovariables.GraybandsaretheresultsfromtheMonteCarlosimulationsbasedontheMeertetal.(2013)SDSSsampleinclusiveofbiasontheblackhole gravitationalsphereofinfluence. REFERENCES MeiS.,ShankarF.,2013,MNRAS,436,697 BernardiM.,MeertA.,VikramV.,Huertas-CompanyM.,MeiS.,Shankar AbazajianK.N.etal.,2009,ApJS,182,543 F.,ShethR.K.,2014,MNRAS,443,874 Angle´s-Alca´zar D.,O¨zelF.,Dave´ R.,KatzN.,KollmeierJ.A.,Oppen- Bernardi M.,RocheN.,ShankarF.,ShethR.K.,2011a,MNRAS,412, heimerB.D.,2015,ApJ,800,127 684 BeifioriA.,CourteauS.,CorsiniE.M.,ZhuY.,2012,MNRAS,419,2497 BernardiM.,RocheN.,ShankarF.,ShethR.K.,2011b,MNRAS,412,L6 BernardiM.,MeertA.,ShethR.K.,FischerJ.-L.,Huertas-CompanyM., BernardiM.,ShankarF.,HydeJ.B.,MeiS.,MarulliF.,ShethR.K.,2010, MarastonC.,ShankarF.,VikramV.,2016,ArXiv:1604.01036 MNRAS,404,2087 Bernardi M.,Meert A.,Sheth R. K.,Vikram V., Huertas-Company M., BernardiM.etal.,2003,AJ,125,1817 (cid:13)c 2016RAS,MNRAS000,1–12