ebook img

Selected Works, Volume 3: Algebraic and Differential Topology PDF

275 Pages·2021·27.254 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Selected Works, Volume 3: Algebraic and Differential Topology

L. S. PONTRYAGIN SELECTED WORKS Volume 3 Algebraic and Differential Topology Classics of Soviet Mathematics L. S. PONTRYAGIN SELECTED WORKS Edited by R. V. Gamkrelidze Volume 1: Selected Research Papers Volume 2: Topological Groups Volume 3: Algebraic and Differential Topology Volume 4: The Mathematical Theory of Optimal Processes ISSN 0743-9199 L. S. PONTRY AGIN SELECTED WORKS Volume 3 Algebraic and Differential Topology Translated from the Russian by P. S. V. Naidu Boca Raton London New York CRC Press is an imprint of the Taylor & Francis Group, an informa business First published 1986 by Gordon and Breach Science Publishers Published 2021 by CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 © 1986 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an lnforma business No claim to original U.S. Government works ISBN 13: 978-2-88124-134-5 (set) ISBN 13: 978-2-88124-035-5 (hbk) (volume 3) This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint. Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers. For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged. Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe. Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com and the CRC Press Web site at http/ /www.crcpress.com Part One of this book was originally published in Russian as OCH0Bbl K0M01-1H8T0pH0lil Tononornlil and Part Two as rnaAK1-1e MHorooOpa31,tff Iii li!x nplilMeHeHlilff e Teopli!i-1 roMOToni-1111 by Izdatel'stvo Nauka, Glavnaya redaktsiya fizikomatematicheskoi literatury, Moscow, both in 1976. Library of Congress Cataloging-in-Publication Data Pontryagin, L. S. (Lev Semenovich), 1908- Algebraic and differential topology. (L. S. Pontryagin selected works ; v. 3) (Classics of Soviet mathematics, ISSN 0743-9199) Bibliography: p. I. Algebraic topology. 2. Differential topology. I. Gamkrelidze, R. V. II. Series: Pontryagin, L. S. (Lev Semenovich), 1908- . Selections. Polygot. 1985 ; v. 3. III. Series: Classics of Soviet mathematics. QA3.P76 1985 vol. 3 [QA612) 5IO s 85-9793 [514'.2] ISBN 2-88124--035--6 (Switzerland : v. 3) Lev Semenovich Pontryagin Contents Editor's Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xt FOUNDATIONS OF ALGEBRAIC TOPOLOGY Preface to the Second Russian Edition . . . . . . . . . . . . . . . . . . . . . 3 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Notation............................................... 7 CHAPTER I: COMPLEXES AND THEIR HOMOLOGY GROUPS................................ 9 1. Euclidean Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2. Simplex. Complex. Polyhedron . . . . . . . . . . . . . . . . . . . . . . . . 18 3. Application to Dimension Theory. . . . . . . . . . . . . . . . . . . . . . 25 4. Homology Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 5. Subdivision into Components. Zero-dimensional Homology Group.............................................. 38 6. Betti Numbers. Euler-Poincare Formula . . . . . . . . . . . . . . . . 41 CHAPTER II: INVA RIANCE OF HOMOLOGY GROUPS 49 7. Simplicial Mappings and Approximations . . . . . . . . . . . . . . . 50 8. Conic Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 9. Barycentric Subdivision of a Complex . . . . . . . . . . . . . . . . . . 62 10. Lemma on the Covering of a Simplex and its Applications 68 11. Invariance of Homology Groups Under Barycentric Sub- division. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 12. Invariance of Homology Groups. . . . . . . . . . . . . . . . . . . . . . . 77 CHAPTER III: CONTINUOUS MAPPINGS AND FIXED POINTS................................. 85 13. Homotopic Mappings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 14. Cylindric Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 15. Homological Invariants of Continuous Mappings . . . . . . . . 97 16. Theorem on the Existence of Fixed Points............... 103 Vll Vlll CONTENTS SMOOTH MANIFOLDS AND THEIR APPLICATIONS IN HOMOTOPY THEORY Preface to the Second Russian Edition . . . . . . . . . . . . . . . . . . . . . 117 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 CHAPTER I: SMOOTH MANIFOLDS AND THEIR SMOOTH MAPPINGS................... 121 1. Smooth Manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 Concept of a smooth manifold. . . . . . . . . . . . . . . . . . . . . . . . . 121 Smooth mappings.................................... 124 Certain methods of constructing smooth manifolds. . . . . . . 126 2. Embedding of a Smooth Manifold into a Euclidean Space. 130 Smooth mapping of a manifold into a manifold of greater dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 Projection operation in a Euclidean space . . . . . . . . . . . . . . . 131 Embedding theorem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 3. Improper Points of Smooth Mappings.................. 137 Putting into general position . . . . . . . . . . . . . . . . . . . . . . . . . . 138 Sard's theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 4. Nondegenerate Singular Points of Smooth Mappings . . . . . 143 Typical points of self-intersection under a mapping from a manifold Mk into a vector space E2k................ 145 Typical critical points of a numerical function on a manifold 148 Typical irregularities of a mapping from a manifold Mk into a vector space E2k-I . . . . . . . . . . . . • . . . . . . . . . . . . . . . . . 152 Canonical form of typical critical points and typical irregular points.......................................... 156 CHAPTER II: FRAMED MANIFOLDS................. 159 5. Smooth Approximations of Continuous Mappings and Deformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 Structure of the neighbourhood of a smooth submanifold 159 Smooth approximations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 6. The Main Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 Framed manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 Passage from mappings to framed manifolds............. 167 Passage from framed manifolds to mappings.. . . . . . . . . . . . 171 CONTENTS IX 7. Homology Group of Framed Manifolds . . . . . . . . . . . . . . . . 175 Homotopies of framed manifolds . . . . . . . . . . . . . . . . . . . . . . 175 Homology group II~ of framed manifolds . . . . . . . . . . . . . . . 178 Orthogonalization of frames. . . . . . . . . . . . . . . . . . . . . . . . . . . 180 8. The Suspension Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182 CHAPTER III: THE HOPF INVARIANT................. 187 9. Homotopic Classification of Mappings from n-Dimensional Manifolds into ann-Dimensional Sphere.. . . . . . . . . . . 187 Degree of a mapping................................. 187 Mappings from an n-dimensional sphere into an n-dimen sional sphere. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 Mappings from an n-dimensional manifold into an n-dimen sional sphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191 10. The Hopflnvariant of a Mapping from the Sphere L2k+l into the Sphere sk+ 1• • • • • . • • • • • • • • • • • • • • • • • • • • • • • • • . • . 194 Looping coefficient. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194 The Hopf invariant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 The Hopf invariant of a framed manifold . . . . . . . . . . . . . . . 197 11. Framed Manifolds with Vanishing Hopf Invariant. . . . . . . . 201 Reconstruction of manifolds. . . . . . . . . . . . . . . . . . . . . . . . . . . 202 Manifolds with vanishing Hopf invariant. . . . . . . . . . . . . . . . 206 CHAPTER IV: CLASSIFICATION OF THE MAPPINGS OF (n + 1)- AND (n + 2)-DIMENSIONAL SPHERES INTO AN n-DIMENSIONAL SPHERE................................ 211 12. Group of Rotations of a Euclidean Sphere . . . . . . . . . . . . . . 211 Quarternions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 Covering homotopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213 Group of rotations of a Euclidean space . . . . . . . . . . . . . . . . 215 13. Classification of the Mappings from a Three-dimensional Sphere into a Two-dimensional Sphere.............. 219 Mappings of a sphere into a circle . . . . . . . . . . . . . . . . . . . . . 220 The Hopf mapping from a three-dimensional sphere into a two-dimensional sphere . . . . . . . . . . . . . . . . . . . . . . . . . . . 220 Classification of the mappings from a three-dimensional sphere into a two-dimensional sphere . . . . . . . . . . . . . . . 223

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.