SELECTED ASPECTS OF THE ARCTIC SEA ICE MOTION AND ITS INFLUENCE ON THE OCEAN by Polona Itkin nee Rozman A thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Geosciences Approved, Thesis Committee Prof. Dr. Ru¨diger Gerdes Prof. Dr. Laurenz Thomsen Dr. Martin Losch Date of Defense: 27th February 2014 School of Engineering and Science Abstract A faithful simulation of the sea ice drift in a coupled sea ice-ocean model is one of the key prerequisites for a reliable simulation of the sea ice, ocean and atmosphere interactions. To achieve this goal we should continue improving model physics and constructing parameterizations for relevant sub-gird pro- cesses. Also a validation of the simulations against the observational data is essential. The main aim of this work is to demonstrate the importance of the seaicemotionfortheunderlayingocean. Inthescopeoftheongoingandantic- ipated Arctic climate change it has been demonstrated that the changes in the atmosphere and ocean have large impacts on the sea ice cover. At present, it is still unclear if the changes in the sea ice motion itself can also have a feedback effect on the ocean. In this work we hypothesize that a change in the sea ice motion can cause significant changes in the ocean properties and circulation. To test the hypothesis we use two sensitivity studies that help to isolate sea ice motion processes and quantify the contribution of the process to the Arctic climate system. Our main results show that the immobile landfast ice in the model simulation shifts the flaw polynya, location of strong winter sea ice and brine production away from the coast in the more saline ocean waters and more brine reaches the Arctic halocline. This strengthens the halocline that shields coldsurfacewatersandseaicefromthewarmAtlanticWaterlayerunderneath. In addition we find that a general change in the sea ice internal strength leads to substantial changes in the ocean properties and circulation. Under weaker and more mobile sea ice Atlantic Water layer temperatures are reduced by 0.2 K. The Eurasian basin circulation in the Atlantic Water layer is increased and this leads to the volume transports adjustments at the Arctic Straits. This effect shows that the Arctic sea ice properties and motion are not only impor- tant for the Arctic ocean, but may have consequences also for the global ocean circulation. i ii Contents Abstract i 1 Introduction 1 1.1 Arctic Ocean . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Siberian Seas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.3 Scope of this work . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.4 Overview of the Papers . . . . . . . . . . . . . . . . . . . . . . . 13 2 Validating Satellite Derived and Modeled Sea Ice Drift in the Laptev Sea with In-Situ Measurements of Winter 2007/08 19 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.2 Observational Data . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.3 Model Description . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.4 Data Analysis Methods . . . . . . . . . . . . . . . . . . . . . . . 25 2.5 Observed Sea Ice Drift . . . . . . . . . . . . . . . . . . . . . . . . 28 2.6 Simulated Sea Ice Drift . . . . . . . . . . . . . . . . . . . . . . . 28 2.7 Drift Vector Validation . . . . . . . . . . . . . . . . . . . . . . . . 35 2.8 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 2.9 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3 Is weaker Arctic sea ice changing the Atlantic water circula- tion? 41 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 3.2 Model and sensitivity study setup. . . . . . . . . . . . . . . . . . 45 3.3 Comparison to observations . . . . . . . . . . . . . . . . . . . . . 47 3.4 Sea ice and ocean surface . . . . . . . . . . . . . . . . . . . . . . 54 3.5 Mid-depth ocean . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 3.6 Connecting the sea ice and mid-depth ocean . . . . . . . . . . . . 63 3.7 Summary and conclusions . . . . . . . . . . . . . . . . . . . . . . 66 4 Landfast ice affects the stability of the Arctic halocline: evi- dence from a numerical model 69 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 4.2 Model setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 4.2.1 Landfast ice Parameterization . . . . . . . . . . . . . . . . 74 4.3 Impact of the landfast parameterization on the sea ice . . . . . . 76 4.4 Impact of the landfast parameterization on the Arctic halocline . 79 iii 4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 4.6 Summary and conclusions . . . . . . . . . . . . . . . . . . . . . . 88 5 Summary and Concluding Remarks 89 5.1 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 Bibliography 93 Acknowledgements 109 iv List of Figures 1.1 The Arctic Ocean and its marginal seas . . . . . . . . . . . . . . 2 1.2 Arctic Oscillation . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 Arctic ocean vertical stratification . . . . . . . . . . . . . . . . . 4 1.4 Siberian Seas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.5 Photos of leveled landfast ice and polynya in the Chukchi Sea . . 7 1.6 Model domain of NAOSIM and MITgcm and the bathymetry of the MITgcm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.7 Schematic view of two vertical coordinate options under thick sea ice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.8 Mooring scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.1 Laptev Sea bathymetry and ASAR satellite image . . . . . . . . 21 2.2 Scatter plots of sea ice drift speed and direction at the Anabar and Khatanga mooring locations . . . . . . . . . . . . . . . . . . 29 2.3 Scatter plots of sea ice drift speed and direction in the outer shelf 30 2.4 Simulated sea ice drift speed and direction without and with integrated fast ice at Khatanga mooring . . . . . . . . . . . . . . 31 2.5 Simulated sea ice drift speed and direction without and with integrated fast ice in the outer shelf . . . . . . . . . . . . . . . . 32 2.6 Scatter plots of sea ice drift speed and direction at the Anabar and Khatanga mooring locations . . . . . . . . . . . . . . . . . . 33 2.7 Scatter plots of sea ice drift speed and direction at in the outer shelf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.1 The model domain and bathymetry . . . . . . . . . . . . . . . . . 43 3.2 Sea ice concentration observations and the differences to the model 49 3.3 Sea ice thickness observations and the differences to the model . 50 3.4 Histograms sea ice drift speed . . . . . . . . . . . . . . . . . . . . 52 3.5 Vertical mean annual temperature at the Kola section . . . . . . 53 3.6 Sea ice and ocean surface properties, part 1 . . . . . . . . . . . . 55 3.7 Sea ice and ocean surface properties, part 2 . . . . . . . . . . . . 56 3.8 Temperature and velocity means in the AWL . . . . . . . . . . . 58 3.9 Development of the AWL temperature differences, part 1 . . . . 59 3.10 Development of the AWL temperature differences, part 2 . . . . 60 3.11 Mean temperature sections at St. Anna Trough and Fram Strait 61 3.12 Time series of the net volume fluxes at the major Arctic Straits . 62 v 3.13 Time series of the annual mean sea ice and ocean variables for the Barents Sea . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 4.1 The Arctic Ocean and its marginal seas . . . . . . . . . . . . . . 71 4.2 Arctic Ocean vertical stratification and winter processes main- taining the Arctic halocline. . . . . . . . . . . . . . . . . . . . . . 73 4.3 The effect of the landfast ice parametrization on the sea ice . . . 76 4.4 Mean winter sea ice thickness, thermodynamical growth and salt flux. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 4.5 Mean winter sea ice time series for the Laptev Sea and East Siberian Sea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 4.6 Mean April buoyancy at the top halocline . . . . . . . . . . . . . 81 4.7 Mean April (2000-2010) salinity, temperature, river water frac- tion and buoyancy frequency along the section across the Cana- dian Basin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 4.8 Hovm¨oller diagrams of monthly mean salinity and river water fraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 4.9 Mean April (2000-2010) salinity, temperature, river water frac- tionandbuoyancyfrequencyalongthesectionacrosstheMakarov Basin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 4.10 Mean April (2000-2010) salinity, temperature, river water frac- tionandbuoyancyfrequencyalongthesectionacrosstheEurasian Basin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 vi List of Tables 2.1 The overview of the datasets used in the validation . . . . . . . . 24 2.2 Thevalidationresultsofthedriftvectorcomponentsofthesatel- lite products and model simulations with the in-situ measure- ments for the Laptev Sea mid-shelf in winter 2007/2008 . . . . . 35 vii viii
Description: