ebook img

Selected Applications of Convex Optimization PDF

150 Pages·2015·2.392 MB·English
by  Li Li
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Selected Applications of Convex Optimization

Springer Optimization and Its Applications 103 Li Li Selected Applications of Convex Optimization Springer Optimization and Its Applications Volume 103 ManagingEditor PanosM.Pardalos(UniversityofFlorida) Editor–CombinatorialOptimization Ding-ZhuDu(UniversityofTexasatDallas) AdvisoryBoard J.Birge(UniversityofChicago) C.A.Floudas(PrincetonUniversity) F.Giannessi(UniversityofPisa) H.D.Sherali(VirginiaPolytechnicandStateUniversity) T.Terlaky(McMasterUniversity) Y.Ye(StanfordUniversity) AimsandScope Optimizationhasbeenexpandinginalldirectionsatanastonishingrateduringthe lastfewdecades.Newalgorithmicandtheoreticaltechniqueshavebeendeveloped, thediffusionintootherdisciplineshasproceededatarapidpace,andourknowledge ofallaspectsofthefieldhasgrownevenmoreprofound.Atthesametime,oneof themoststrikingtrendsinoptimizationistheconstantlyincreasingemphasisonthe interdisciplinarynatureofthefield.Optimizationhasbeenabasictoolinallareas ofappliedmathematics,engineering,medicine,economics,andothersciences. The series Springer Optimization and Its Applications publishes undergraduate and graduate textbooks, monographs and state-of-the-art expository work that focusonalgorithmsforsolvingoptimizationproblemsandalsostudyapplications involvingsuchproblems.Someofthetopicscoveredincludenonlinearoptimization (convex and nonconvex), network flow problems, stochastic optimization, optimal control, discrete optimization, multi-objective programming, description of soft- warepackages,approximationtechniquesandheuristicapproaches. Moreinformationaboutthisseriesathttp://www.springer.com/series/7393 Li Li Selected Applications of Convex Optimization 123 LiLi DepartmentofAutomation TsinghuaUniversity Beijing,China Additionalmaterialtothisbookcanbedownloadedfromhttp://extras.springer.com. ISSN1931-6828 ISSN1931-6836 (electronic) SpringerOptimizationandItsApplications ISBN978-3-662-46355-0 ISBN978-3-662-46356-7 (eBook) DOI10.1007/978-3-662-46356-7 JointlypublishedwithTsinghuaUniversityPress,Beijing ISBN:978-7-302-39029-9TsinghuaUniversityPress,Beijing LibraryofCongressControlNumber:2015932423 MathematicsSubjectClassification:90C25,90C90,65K10,65K15,49M20 SpringerHeidelbergNewYorkDordrechtLondon ©TsinghuaUniversityPress,BeijingandSpringer-VerlagBerlinHeidelberg2015 Thisworkissubjecttocopyright.AllrightsarereservedbythePublishers,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Thepublishers,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishersnortheauthorsor theeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade. Printedonacid-freepaper Springer-VerlagGmbHBerlinHeidelbergispartofSpringerScience+BusinessMedia(www.springer. com) ToMyBelovedParents! Preface This book focuses on the applications of convex optimization, a special class of mathematical optimization techniques. Related problems arise in a variety of applicationsandcanbenumericallysolvedinanefficientway.Likewise,diversified applicationshavecontributedtoconvexoptimizationandurgedthedevelopmentof new optimization techniques. This intergrowth continues to produce new achieve- ments.JohnTukeysaid,“Thebestthingaboutbeingastatisticianisthatyougetto playineveryone’sbackyard.”While,inourhumbleopinion,“Thebestthingabout being a convex optimization researcher is that you get to help build many ones’ backyards.” As with any science worth its salt, convex optimization has a coherent formal theory and a rambunctious experimental wing. There are already a number of textbooks on the theory of convex optimization. So, we address the applications inthisbook. Tothoroughlysurveyapplicationsofconvexoptimizationinthisbookiscertainly impossible due to the width and depth of covered topics. Here, we emphasize our discussions on formulating empirical problems into formal convex optimization problemsinsixrepresentativecategories. In Chap.2, we introduce the supporting vector machines that are supervised learning models for data classification. In Chap.3, we study the parameter esti- mation problems particularly on maximum likelihood estimation and expectation maximizationalgorithms.InChap.4,wediscussthenormapproximationandsome widely adopted regularization tricks with a special emphasis on recently hottest sparsity features. In Chap.5, we present the positive semidefinite programming problems, linear matrix inequalities, and their applications in control theory. In Chap.6, we give some interesting examples of convex relaxation methods. In Chap.7,wevisitsomefrequentlyusedgeometricproblemsthatcanbehandledas convexoptimizationproblems. Webelievethattheserepresentativeapplicationswelldemonstratetheinterplay ofconvexoptimizationtheoryandapplications. The selection of topics is significantly influenced by the valuable textbook ConvexOptimizationwrittenbyProf.StephenBoydandProf.LievenVandenberghe vii viii Preface (a book that we require all my graduate students to carefully read for at least one time). Convex Optimization contains much more topics than this book. However, wemakenotablydeeperdiscussionsineachcategorythatarementionedaboveand arrangesomeissuesinamoresyntheticway. Similar to the writing purpose of Convex Optimization, our major goal is to help the reader develop the skills needed to recognize and formulate convex optimization problems that might be encountered in practice, since experiences of manyresearchershadproventhegreatadvantagestorecognizingorformulatinga problem as a convex optimization problem. All derivation processes are presented indetailssothatreaderscanteachthemselveswithoutanydifficulties. Thedraftofthisbookhadbeenusedforfiveyearsinagraduatecourse“Convex Optimization and Applications” in Tsinghua University. The required background of readers includes a solid knowledge of advanced calculus, linear algebra, basic probability theory, and basic knowledge of convex optimization. This book is not a text primarilyabout convex analysis or the mathematics of convex optimization. Indeed,wehopethisbookwillbeusedasasupplementtextbookforseveraltypes ofcourses,includingoperationsresearch,computerscience,statistics,datamining, andmanyfieldsofscienceandengineering.Ourteachingexperiencesshowedthat the covered materials also serve as useful references for beginners who are major inmachinelearningandcontroltheoryfield.Moreover,upontherequestsofmany readers,weplantoenrichthetopicsofthisbookinthecomingyearssothatitcould servestudentsinotherfields. Finally, we would like to thank Prof. Stephen Boyd at the Department of ElectricalEngineering,StanfordUniversity,forthehelpfuldiscussions.Wewould liketothankDr.XiaolingHuang,Dr.ZhengpengWu,Mr.KaidiYang,Mr.Yingde Chen, as well as Mr. Wei Guo for typing some parts of this book and Mr. Jiajie ZhangfordevelopingmostMatlabcodesnippetsaswellasallfiguresforthisbook. We would also like to thank many of our students for debugging the typos of this book.Withouttheirkindhelp,wecannotfinishthetediouswritingtasksinsucha shorttime. Due to our limited knowledge, this book might contain mistakes and typos. Please be kind to e-mail us when you find any problems within this book. We are morethanhappytorevisethisbookuponyournoticeandextenditscontentsinthe followingteachingprocess. Beijing,China LiLi Contents 1 PreliminaryKnowledge ..................................................... 1 1.1 Nomenclatures .......................................................... 1 1.2 ConvexSetsandConvexFunctions.................................... 2 1.3 ConvexOptimization ................................................... 5 1.3.1 GradientDescentandCoordinateDescent .................... 5 1.3.2 Karush-Kuhn-Tucker(KKT)Conditions...................... 7 1.4 SomeLemmasinLinearAlgebra ...................................... 10 1.5 ABriefIntroductionofCVXToolbox................................. 11 Problems....................................................................... 13 References..................................................................... 15 2 SupportVectorMachines................................................... 17 2.1 BasicSVM .............................................................. 17 2.2 SoftMarginSVM....................................................... 22 2.3 KernelSVM............................................................. 28 2.4 Multi-kernelSVM ...................................................... 35 2.5 Multi-classSVM........................................................ 38 2.6 DecompositionandSMO............................................... 45 2.7 FurtherDiscussions..................................................... 49 Problems....................................................................... 49 References..................................................................... 51 3 ParameterEstimations...................................................... 53 3.1 MaximumLikelihoodEstimation...................................... 53 3.2 MeasurementswithiidNoise........................................... 59 3.3 ExpectationMaximizationforMixtureModels....................... 61 3.4 TheGeneralExpectationMaximization ............................... 66 3.5 ExpectationMaximizationforPPCAModelwithMissingData..... 68 3.6 K-MeansClustering..................................................... 73 Problems....................................................................... 76 References..................................................................... 77 ix

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.