ebook img

Selecta. 2 Vols: Elementary, analytic and geometric number theory: I,II (2 Vols.) PDF

545 Pages·2007·3.45 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Selecta. 2 Vols: Elementary, analytic and geometric number theory: I,II (2 Vols.)

schinzel_vol_2_titelei 5.3.2007 18:34 Uhr Seite 1 H e r i t a g e o f E u r o p e a n M a t h e m a t i c s Advisory Board Michèle Audin, Strasbourg Ciro Ciliberto, Roma Ildar A. Ibragimov, St. Petersburg Wladyslaw Narkiewicz, Wroclaw Peter M. Neumann, Oxford Samuel J. Patterson, Göttingen schinzel_vol_2_titelei 5.3.2007 18:34 Uhr Seite 2 Andrzej Schinzel in 2007 schinzel_vol_2_titelei 5.3.2007 18:34 Uhr Seite 3 Andrzej Schinzel Selecta Volume II Elementary, Analytic and Geometric Number Theory Edited by Henryk Iwaniec Wladyslaw Narkiewicz Jerzy Urbanowicz schinzel_vol_2_titelei 5.3.2007 18:34 Uhr Seite 4 Author: Andrzej Schinzel Institute of Mathematics Polish Academy of Sciences ul.Śniadeckich 8,skr.poczt.21 00-956 Warszawa 10 Poland Editors: Henryk Iwaniec Władysław Narkiewicz Jerzy Urbanowicz Department of Mathematics Institute of Mathematics Institute of Mathematics Rutgers University University of Wrocław Polish Academy of Sciences New Brunswick,NJ 08903 pl.Grunwaldzki 2/4 ul.Śniadeckich 8,skr.poczt.21 U.S.A. 50-384 Wrocław 00-956 Warszawa 10 [email protected] Poland Poland [email protected] [email protected] 2000 Mathematics Subject Classification:11,12 ISBN 978-3-03719-038-8 (Set Vol I & Vol II) The Swiss National Library lists this publication in The Swiss Book,the Swiss national bibliography, and the detailed bibliographic data are available on the Internet at http://www.helveticat.ch. This work is subject to copyright.All rights are reserved,whether the whole or part of the material is concerned,specifically the rights of translation,reprinting,re-use of illustrations,recitation,broadca- sting,reproduction on microfilms or in other ways,and storage in data banks.For any kind of use per- mission of the copyright owner must be obtained. © 2007 European Mathematical Society Contact address: European Mathematical Society Publishing House Seminar for Applied Mathematics ETH-Zentrum FLI C4 CH-8092 Zürich Switzerland Phone:+41 (0)44 632 34 36 Email:[email protected] Homepage:www.ems-ph.org Printed in Germany 9 8 7 6 5 4 3 2 1 Contents Volume 2 G. Arithmeticfunctions 859 CommentaryonG:Arithmeticfunctions byKevinFord . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 861 G1 Onfunctionsϕ(n)andσ(n) . . . . . . . . . . . . . . . . . . . . . . . . . 866 G2 Surl’équationϕ(x)=m . . . . . . . . . . . . . . . . . . . . . . . . . . . 871 G3 Surunproblèmeconcernantlafonctionϕ(n) . . . . . . . . . . . . . . . . 875 G4 Distributionsofthevaluesofsomearithmeticalfunctions withP.Erdo˝s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 877 G5 Onthefunctionsϕ(n)andσ(n) withA.Makowski . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 890 (cid:4) G6 Onintegersnotoftheformn−ϕ(n) withJ.Browkin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 895 H. Divisibilityandcongruences 899 CommentaryonH:Divisibilityandcongruences byH.W.Lenstrajr. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 901 H1 SurunproblèmedeP.Erdo˝s . . . . . . . . . . . . . . . . . . . . . . . . . 903 H2 Onthecongruenceax ≡b(modp) . . . . . . . . . . . . . . . . . . . . . 909 H3 Onthecompositeintegersoftheformc(ak+b)!±1 . . . . . . . . . . . 912 H4 Onpowerresiduesandexponentialcongruences . . . . . . . . . . . . . . 915 H5 Abelianbinomials,powerresiduesandexponentialcongruences . . . . . . 939 H6 AnextensionofWilson’stheorem withG.Baron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 971 H7 Systemsofexponentialcongruences . . . . . . . . . . . . . . . . . . . . 975 H8 Onaprobleminelementarynumbertheory withJ.Wójcik . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 987 H9 Onexponentialcongruences . . . . . . . . . . . . . . . . . . . . . . . . . 996 H10 Unecaractérisationarithmétiquedesuitesrécurrenteslinéaires avecDanielBarskyetJean-PaulBézivin. . . . . . . . . . . . . . . . . 1001 H11 Onpowerresidues withM.Skałba . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1012 vi Contents I. Primitivedivisors 1031 CommentaryonI:Primitivedivisors byC.L.Stewart. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1033 I1 Onprimitiveprimefactorsofan−bn . . . . . . . . . . . . . . . . . . . . 1036 I2 OnprimitiveprimefactorsofLehmernumbersI . . . . . . . . . . . . . . 1046 I3 OnprimitiveprimefactorsofLehmernumbersII . . . . . . . . . . . . . . 1059 I4 OnprimitiveprimefactorsofLehmernumbersIII . . . . . . . . . . . . . 1066 I5 PrimitivedivisorsoftheexpressionAn−Bninalgebraicnumberfields . . 1090 I6 Anextensionofthetheoremonprimitivedivisorsinalgebraicnumberfields 1098 J. Primenumbers 1103 CommentaryonJ:Primenumbers byJerzyKaczorowski . . . . . . . . . . . . . . . . . . . . . . . . . . . 1105 J1 Surcertaineshypothèsesconcernantlesnombrespremiers withW.Sierpin´ski . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1113 J2 Remarksonthepaper“Surcertaineshypothèsesconcernantlesnombres premiers” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1134 J3 AremarkonapaperofBatemanandHorn . . . . . . . . . . . . . . . . . 1142 J4 OntwotheoremsofGelfondandsomeoftheirapplications Section5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1145 J5 Ontherelationbetweentwoconjecturesonpolynomials . . . . . . . . . . 1154 K. Analyticnumbertheory 1193 CommentaryonK:Analyticnumbertheory byJerzyKaczorowski . . . . . . . . . . . . . . . . . . . . . . . . . . . 1195 K1 OnSiegel’szero withD.M.Goldfeld . . . . . . . . . . . . . . . . . . . . . . . . . . . 1199 K2 Multiplicativepropertiesofthepartitionfunction withE.Wirsing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1211 K3 OnananalyticproblemconsideredbySierpin´skiandRamanujan . . . . . 1217 K4 ClassnumbersandshortsumsofKroneckersymbols withJ.UrbanowiczandP.VanWamelen . . . . . . . . . . . . . . . . . 1224 L. Geometryofnumbers 1245 CommentaryonL:Geometryofnumbers byWolfgangM.Schmidt . . . . . . . . . . . . . . . . . . . . . . . . . 1247 L1 AdecompositionofintegervectorsII withS.Chaładus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1249 L2 AdecompositionofintegervectorsIV . . . . . . . . . . . . . . . . . . . 1259 L3 ApropertyofpolynomialswithanapplicationtoSiegel’slemma . . . . . 1274 L4 Onvectorswhosespancontainsagivenlinearsubspace withI.AlievandW.M.Schmidt . . . . . . . . . . . . . . . . . . . . . 1288 Contents vii M. Otherpapers 1303 CommentaryonM:Otherpapers byStanisławKwapien´ . . . . . . . . . . . . . . . . . . . . . . . . . . 1305 TheinfluenceoftheDavenport–Schinzelpaperindiscrete andcomputationalgeometry byEndreSzemerédi . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1311 M1 Surl’équationfonctionnellef[x+y·f(x)]=f(x)·f(y) avecS.Gołab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1314 (cid:4) M2 Acombinatorialproblemconnectedwithdifferentialequations withH.Davenport . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1327 M3 AnanalogueofHarnack’sinequalityfordiscretesuperharmonic functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1338 M4 Aninequalityfordeterminantswithrealentries . . . . . . . . . . . . . . . 1347 M5 ComparisonofL1-andL∞-normsofsquaresofpolynomials withW.M.Schmidt . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1350 Unsolvedproblemsandunprovedconjectures 1365 Unsolvedproblemsandunprovedconjecturesproposedby AndrzejSchinzelintheyears1956–2006arrangedchronologically . . . . 1367 PublicationlistofAndrzejSchinzel 1375 viii Contents Volume 1 A. Diophantineequationsandintegralforms 1 CommentaryonA:Diophantineequationsandintegralforms byR.Tijdeman . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 A1 SurlesnombresdeMersennequisonttriangulaires avecGeorgesBrowkin . . . . . . . . . . . . . . . . . . . . . . . . . . 11 A2 Surquelquespropriétésdesnombres3/net4/n,oùnestunnombreimpair 13 A3 Surl’existenced’uncerclepassantparunnombredonnédepointsaux coordonnéesentières . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 A4 Surlessommesdetroiscarrés . . . . . . . . . . . . . . . . . . . . . . . . 18 (cid:2) A5 OntheDiophantineequation n A xϑk =0 . . . . . . . . . . . . . . . 22 k=1 k k A6 Polynomialsofcertainspecialtypes withH.DavenportandD.J.Lewis . . . . . . . . . . . . . . . . . . . . 27 A7 AnimprovementofRunge’stheoremonDiophantineequations . . . . . . 36 A8 Ontheequationym =P(x) withR.Tijdeman . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 A9 Zetafunctionsandtheequivalenceofintegralforms withR.Perlis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 A10 QuadraticDiophantineequationswithparameters withD.J.Lewis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 A11 Selmer’sconjectureandfamiliesofellipticcurves withJ.W.S.Cassels . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 A12 Familiesofcurveshavingeachanintegerpoint . . . . . . . . . . . . . . . 67 A13 Hasse’sprincipleforsystemsofternaryquadraticformsandforone biquadraticform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 A14 OnRunge’stheoremaboutDiophantineequations withA.Grytczuk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 A15 Onsumsofthreeunitfractionswithpolynomialdenominators . . . . . . . 116 A16 Onequationsy2 =xn+kinafinitefield withM.Skałba . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 B. Continuedfractions 127 CommentaryonB:Continuedfractions byEugèneDubois . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 B1 Onsomeproblemsofthearithmeticaltheoryofcontinuedfractions . . . . 131 B2 OnsomeproblemsofthearithmeticaltheoryofcontinuedfractionsII . . . 149 B3 OntwoconjecturesofP.ChowlaandS.Chowlaconcerningcontinued fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 Contents ix C. Algebraicnumbertheory 167 CommentaryonC:Algebraicnumbers byDavidW.BoydandD.J.Lewis . . . . . . . . . . . . . . . . . . . . 169 C1 ArefinementoftwotheoremsofKronecker withH.Zassenhaus . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 C2 OnatheoremofBauerandsomeofitsapplications . . . . . . . . . . . . 179 C3 AnextensionofthetheoremofBauerandpolynomialsofcertainspecialtypes withD.J.LewisandH.Zassenhaus . . . . . . . . . . . . . . . . . . . 190 C4 Onsumsofrootsofunity.(SolutionoftwoproblemsofR.M.Robinson) . 197 C5 OnatheoremofBauerandsomeofitsapplicationsII . . . . . . . . . . . 210 C6 Ontheproductoftheconjugatesoutsidetheunitcircleofanalgebraicnumber 221 C7 Onlineardependenceofroots . . . . . . . . . . . . . . . . . . . . . . . . 238 C8 OnSylow2-subgroupsofK O forquadraticnumberfieldsF 2 F withJ.Browkin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253 C9 Aclassofalgebraicnumbers . . . . . . . . . . . . . . . . . . . . . . . . 264 C10 OnvaluesoftheMahlermeasureinaquadraticfield(solutionofaproblem ofDixonandDubickas) . . . . . . . . . . . . . . . . . . . . . . . . . 272 D. Polynomialsinonevariable 281 CommentaryonD:Polynomialsinonevariable byMichaelFilaseta . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283 D1 Solutiond’unproblèmedeK.Zarankiewiczsurlessuitesdepuissances consécutivesdenombresirrationnels . . . . . . . . . . . . . . . . . . 295 D2 Onthereducibilityofpolynomialsandinparticularoftrinomials . . . . . 301 D3 Reducibilityofpolynomialsandcoveringsystemsofcongruences . . . . . 333 D4 ReducibilityoflacunarypolynomialsI . . . . . . . . . . . . . . . . . . . 344 D5 ReducibilityoflacunarypolynomialsII . . . . . . . . . . . . . . . . . . . 381 D6 Anoteonthepaper“ReducibilityoflacunarypolynomialsI” withJ.Wójcik . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403 D7 ReducibilityoflacunarypolynomialsIII . . . . . . . . . . . . . . . . . . 409 D8 ReducibilityoflacunarypolynomialsIV . . . . . . . . . . . . . . . . . . 447 D9 Onthenumberoftermsofapowerofapolynomial . . . . . . . . . . . . 450 D10 Onreducibletrinomials . . . . . . . . . . . . . . . . . . . . . . . . . . . 466 D11 OnaconjectureofPosnerandRumsey withK.Gyo˝ry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 549 D12 ReducibilityoflacunarypolynomialsXII . . . . . . . . . . . . . . . . . . 563 D13 OnreducibletrinomialsII . . . . . . . . . . . . . . . . . . . . . . . . . . 580 D14 OnreducibletrinomialsIII . . . . . . . . . . . . . . . . . . . . . . . . . . 605 D15 OnthegreatestcommondivisoroftwounivariatepolynomialsI . . . . . . 632 D16 OnthegreatestcommondivisoroftwounivariatepolynomialsII . . . . . 646 D17 Onthereducedlengthofapolynomialwithrealcoefficients . . . . . . . . 658 x Contents E. Polynomialsinseveralvariables 693 CommentaryonE:Polynomialsinseveralvariables byUmbertoZannier . . . . . . . . . . . . . . . . . . . . . . . . . . . 695 E1 Someunsolvedproblemsonpolynomials . . . . . . . . . . . . . . . . . . 703 E2 Reducibilityofpolynomialsinseveralvariables . . . . . . . . . . . . . . 709 E3 Reducibilityofpolynomialsoftheformf(x)−g(y) . . . . . . . . . . . 715 E4 Reducibilityofquadrinomials withM.Fried . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 720 E5 Ageneralirreducibilitycriterion . . . . . . . . . . . . . . . . . . . . . . . 739 E6 Somearithmeticpropertiesofpolynomialsinseveralvariables withH.L.Montgomery . . . . . . . . . . . . . . . . . . . . . . . . . . 747 E7 Ondifferencepolynomialsandhereditarilyirreduciblepolynomials withL.A.RubelandH.Tverberg . . . . . . . . . . . . . . . . . . . . 755 E8 Onadecompositionofpolynomialsinseveralvariables . . . . . . . . . . 760 E9 Onweakautomorphsofbinaryformsoveranarbitraryfield . . . . . . . . 779 E10 Reducibilityofsymmetricpolynomials . . . . . . . . . . . . . . . . . . . 828 F. Hilbert’sIrreducibilityTheorem 835 CommentaryonF:Hilbert’sIrreducibilityTheorem byUmbertoZannier . . . . . . . . . . . . . . . . . . . . . . . . . . . 837 F1 OnHilbert’sIrreducibilityTheorem . . . . . . . . . . . . . . . . . . . . . 839 F2 Aclassofpolynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . 846 F3 TheleastadmissiblevalueoftheparameterinHilbert’sIrreducibility Theorem withUmbertoZannier . . . . . . . . . . . . . . . . . . . . . . . . . . 849

Description:
Andrzej Schinzel, born in 1937, is a leading number theorist whose work has had a lasting impact on modern mathematics. He is the author of over 200 research articles in various branches of arithmetics, including elementary, analytic, and algebraic number theory. He has also been, for nearly 40 year
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.