TheJournalofNeuroscience,November22,2017•37(47):11441–11454•11441 NeurobiologyofDisease Seizures and Sleep in the Thalamus: Focal Limbic Seizures Show Divergent Activity Patterns in Different Thalamic Nuclei LiFeng,1,4JoshuaE.Motelow,1ChanthiaMa,1XWilliamBiche,1XCianMcCafferty,1XNicholasSmith,1MengranLiu,1 QiongZhan,5RuonanJia,1BoXiao,4AlvaroDuque,2andHalBlumenfeld1,2,3 Departmentsof1Neurology,2Neuroscience,and3Neurosurgery,YaleUniversitySchoolofMedicine,NewHaven,Connecticut06520,4Departmentof Neurology,XiangyaHospital,CentralSouthUniversity,Changsha,Hunan410008,China,and5DepartmentofNeurology,theSecondXiangyaHospital, CentralSouthUniversity,Changsha,Hunan410011,China Thethalamusplaysdiverserolesincortical-subcorticalbrainactivitypatterns.Recentworksuggeststhatfocaltemporallobeseizures depresssubcorticalarousalsystemsandconvertcorticalactivityintoapatternresemblingslow-wavesleep.Thepotentialsimultaneous andparadoxicalroleofthethalamusinbothlimbicseizurepropagation,andinsleep-likecorticalrhythmshasnotbeeninvestigated.We recordedneuronalactivityfromthecentrallateral(CL),anterior(ANT),andventralposteromedial(VPM)nucleiofthethalamusinan establishedfemaleratmodeloffocallimbicseizures.WefoundthatpopulationfiringofneuronsinCLdecreasedduringseizureswhile thecortexexhibitedslowwaves.Incontrast,ANTshowedatrendtowardincreasedneuronalfiringcompatiblewithpolyspikeseizure dischargesseeninthehippocampus.Meanwhile,VPMexhibitedaremarkableincreaseinsleepspindlesduringfocalseizures.Single-unit juxtacellularrecordingsfromCLdemonstratedreducedoverallfiringrates,butaswitchinfiringpatternfromsinglespikestoburstfiring duringseizures.Thesefindingssuggestthatdifferentthalamicnucleiplayverydifferentrolesinfocallimbicseizures.Whilelimbicnuclei, suchasANT,appeartoparticipatedirectlyinseizurepropagation,arousalnuclei,suchasCL,maycontributetodepressedcortical function,whereassleepspindlesinrelaynuclei,suchasVPM,mayinterruptthalamocorticalinformationflow.Thesecombinedeffects couldbecriticalforcontrollingbothseizureseverityandimpairmentofconsciousness.Furtherunderstandingofdifferentialeffectsof seizuresondifferentthalamocorticalnetworksmayleadtoimprovedtreatmentsdirectlytargetingthesemodesofimpairedfunction. Keywords: burstfiring;consciousness;juxtacellularrecording;sleep;temporallobeepilepsy;thalamus SignificanceStatement Temporallobeepilepsyhasamajornegativeimpactonqualityoflife.Previousworksuggeststhatthethalamusplaysacriticalrole inthalamocorticalnetworkmodulationandsubcorticalarousalmaintenance,butitspreciseseizure-associatedfunctionsarenot known. We recorded neuronal activity in three different thalamic regions and found divergent activity patterns, which may respectivelyparticipateinseizurepropagation,impairedlevelofconsciousarousal,andalteredrelayofinformationtothecortex duringfocallimbicseizures.Theseverydifferentactivitypatternswithinthethalamusmayhelpexplainwhyfocaltemporallobe seizuresoftendisruptwidespreadnetworkfunction,andcanhelpguidefuturetreatmentsaimedatrestoringnormalthalamo- corticalnetworkactivityandcognition. Introduction (Escuetaetal.,1982;Blumenfeld,2012).Previoushumanstudies Temporallobeepilepsyisacommonanddebilitatingneuro- and animal research looking at the electrophysiological, fMRI, logical disorder, usually characterized by focal seizures with andmetabolicdatasuggestthatthethalamus,akeysubcortical impairedconsciousness.Patientstypicallyexhibitrepetitivemo- nucleus,receivesmostoftheafferentinputsfromthelimbicsystem, tions and profoundly impaired consciousness during seizures brainstem,andothercircuitsparticipatinginseizures.Ittheninte- grates,processes,andprojectsinformationtowidespreadcortical regions,playingacriticalroleinepilepsy-generatingmechanismsin ReceivedApril14,2017;revisedOct.9,2017;acceptedOct.14,2017. focalseizuresandexertingamajorinfluenceonthethalamocortical Authorcontributions:H.B.designedresearch;L.F.,J.E.M.,andW.B.performedresearch;N.S.,Q.Z.,R.J.,B.X.,and A.D.contributedunpublishedreagents/analytictools;L.F.,C.Ma,C.McCafferty,andM.L.analyzeddata;L.F.andH.B. wrotethepaper. CorrespondenceshouldbeaddressedtoDr.HalBlumenfeld,YaleUniversitySchoolofMedicine,Depart- ThisworkwassupportedbyNationalInstitutesofHealthGrantsR01NS066974,R01NS096088,R21NS083783, mentsNeurology,Neuroscience,Neurosurgery,333CedarStreet,NewHaven,CT06520-8018.E-mail: R21NS093510,andP30NS052519,theLoughridgeWilliamsFoundation,andtheBetsyandJonathanBlattmachr [email protected]. Family.WethankXiangHeforassistancewithcomputationalanalysisprogramming. DOI:10.1523/JNEUROSCI.1011-17.2017 Theauthorsdeclarenocompetingfinancialinterests. Copyright©2017theauthors 0270-6474/17/3711441-14$15.00/0 11442•J.Neurosci.,November22,2017•37(47):11441–11454 Fengetal.•ThalamicNeuronalActivityinFocalSeizures networkandsubcorticalarousalsystems(Redeckeretal.,1997;Ber- ratsbecauseourgoalwastostudyfocallimbicseizureswithoutsecondary trametal.,1998;Benedeketal.,2004;Blumenfeld,2014;Heetal., generalization.Previousworkfromourlaboratoryandothershasshown 2015;Kelleretal.,2015). thatsecondarygeneralizationislesslikelyinfemalesthaninmales(Mejías- Recentworkhashighlightedthedistinctionswithinthalamic Aponteetal.,2002;Janszkyetal.,2004).ThirtyanimalswereusedforMUA recordingsindifferentnucleiofthethalamus(forCL,30seizureswerere- structures,includingthepotentialroleofsomenucleiinseizure cordedfrom20electrodesitesin9rats;forANT,31seizureswererecorded propagation,whereasotherscontributetoimpairedconscious- from26sitesin10rats;forVPM,30seizureswererecordedfrom22sitesin ness.AstudyofrodentlimbicseizuresrevealsdecreasedBOLD 11rats).Eightratswereusedforjuxtacellularsingle-unitactivity(SUA) fMRIsignalintheintralaminarthalamus,whichisstronglyre- recordingsfromthalamicCL(14seizuresfrom12neurons). latedtothesuppressionofcorticalfunction,suggestingapossible roleinmodulationofconsciousness(Motelowetal.,2015).Fur- Surgeryandelectrodeimplantation thermore,high-frequencyelectricalstimulationintheintrala- The animal model of focal limbic seizures was prepared as described previously(Englotetal.,2008).Animalswerefirstdeeplyanesthetized minarthalamusinrodentmodelscanconvertictalorpostictal with90mg/kgketamine(HenryScheinAnimalHealth)and15mg/kg corticalslowoscillationstoanawakeelectrophysiologicalpattern xylazine(AnaSed;LloydLaboratories)byintramuscularinjection.Re- andcanalsorestorebehavioralarousal(Gummadavellietal., sponsivenesstopainwascheckedevery15minbytoepinch.Aheating 2015b;Kundishoraetal.,2017).Incontrast,deepbrainstimula- padwasusedtokeepthebodytemperatureconstantat37°C.Allcoordi- tionintheanteriornucleusofthethalamus(ANT)reducessei- natesarereportedinreferencetobregma.Asingletungstenmonopolar zurefrequencyinbothanimalandhumanstudies(Mirskietal., microelectrode (UEWMGGSEDNNM; FHC) with an impedance of 1997;Hamanietal.,2004;Limetal.,2007;Salanovaetal.,2015). 3–4M(cid:2)wasimplantedatanapproachangleof20degreesfromvertical However, the specific electrophysiological changes in different intherightlateralorbitofrontal(LO)cortextargetingthefollowingfinal nucleiofthethalamusduringfocallimbicseizureshavenotbeen coordinates:anteroposterior4.2mm,mediolateral2.2mm,superoinfe- fullyinvestigated. rior(cid:3)4.2(PaxinosandWatson,1998).Twistedpairbipolarelectrodes (50–100k(cid:2)resistance;PlasticsOne,E363/2–2TW)withtipsseparated To better define thalamic functions during focal limbic sei- by1mm,insulationshavedfromthedistal0.3mm,wereimplantedinto zures,wechosethreedifferentthalamicnucleiinvolvedinthree the dorsal hippocampus (anteroposterior (cid:3)3.8, mediolateral 2.5, su- keypathways,includingarousal,sensoryrelay,andlimbicnetworks, peroinferior(cid:3)3.2mm)forstimulationandlocalfieldpotential(LFP) and investigated their specific electrophysiological changes in an signalrecording.Asteelscrew(0–80(cid:4)3/32;PlasticsOne)wasimplanted established rodent seizure model. The central lateral (CL) nu- intotheskulljustcaudaltothehippocampalburrholetohelpfixthe cleusofthethalamus,animportantpartoftherostralintralami- electrodebyapplyingacrylicdentalcement(LangDentalManufactur- nar thalamic nuclei, has been identified as a key region in the ing,powder:REF1220,jetliquid:REF1403).ForMUArecordinginthe subcortical arousal systems for maintaining the level ofcon- CL,ANT,andVPM,monopolartungstenmicroelectrodes(FHC,same sciousness (Van der Werf et al., 2002; Schiff et al., 2013). The modelasabove)wereplacedseparatelywiththefollowingcoordinates: ventralposteromedialnucleus(VPM)relayssomatosensory-specific anteroposterior (cid:3)2.8 mm, mediolateral 1.5 mm, superoinferior (cid:3)5.2 mmforCL;anteroposterior(cid:3)1.4mm,mediolateral1.5mm,superoin- informationforthefacetothecorrespondingprimarysomatosen- ferior(cid:3)5.6mmforANT;andanteroposterior(cid:3)3.3mm,mediolateral sorycortex.TheANT,oneofthemostwidelyuseddeepbrainstim- 2.4mm,superoinferior(cid:3)6.2mmforVPM. ulationsitesfortreatmentofrefractoryepilepsy,providesacrucial bridge between prefrontal and limbic functions (Aggleton et al., SeizureinitiationandMUArecording 2010;Wrightetal.,2013).Wehypothesizedthatdifferentialelectro- Seizure induction and electrophysiological recordings began (cid:5)1–2 h physiologicalpatternswouldbenotedacrossthesethreetypicaltha- postoperatively.Themethodsforinductionoffocallimbicseizuresin lamicsubregions.Inparticular,forCLandVPM,wepredictspecific lightanesthesiaweredescribedindetailpreviously(Englotetal.,2008, neuronalfiringpatternsreflectingimpairedconsciousarousaland 2009;Motelowetal.,2015).Seizureswereinducedfromalightlyanes- thetizedstate,whereanimalshadrecoveredfromdeepanesthesiatoa impaired information processing, whereas ANT may participate statewithslowwavesoccurringat(cid:5)(cid:6)3wavesper10sofrecordingbut moredirectlyinlimbicseizurepropagation. remainedunresponsivetotoepinch.A2sbiphasicsquarepulseat60Hz We found that modulation of thalamic neuronal activity in the hippocampus (1 ms/phase) was generated by an isolated pulse differs markedly by thalamic nuclei, suggesting they may serve stimulator(A-MSystems,Model2100)withcurrentrangingfrom100to divergent roles in the functional consequences of focal limbic 900 (cid:2)A. Focal seizures were obtained based on localized polyspike seizures.Multiunitactivity(MUA)intheCLshoweddecreased activitylastingatleast30sinthehippocampus,andanyseizureswith firing,whereasrecordingsfromVPMwerenotableforanincreasein secondarygeneralizationbasedonpropagationofpolyspikeactivityto sleepspindlewavesduringfocallimbicseizures.Meanwhile,MUA thefrontalcortexwereexcludedfromtheanalysis.HippocampalLFP intheANTtendedtoshowincreasedfiring.Single-celljuxtacellular signalswereamplified((cid:4)1000)andfiltered(1–500Hz)usingaMicro- recordingsfromindividualneuronsintheCLshoweddecreased electrodeACAmplifier(A-MSystems,Model1800).ThalamicCL,ANT, andVPMsignalsandcorticalLOsignalswerebroadbandfilteredfrom overall firing and a transition to a burst pattern, similar to 0.1Hzto10kHz((cid:4)1000gain)usingthesameamplifierandthenfiltered thalamic-burst firing described previously during sleep due to withananalogfilter(unitygain;Krohn-Hite,Model3364)intoeither enhanced low-threshold calcium spikes (Llina´s and Steriade, LFP(0.1–100Hz)orMUAsignals(400Hzto10kHz).Allelectrophysi- 2006). ThesefindingssuggestthatdepressedarousaloftheCL ologysignalsweredigitizedandrecorded(samplingrate1kHzforLFP, regionofthethalamusmayparticipateinsuppressedactivityof 20kHzforMUA)usingaPower1401(CED)andSpike2software(CED). thecortexandlossofconsciousness,whereasothernucleipartic- Attheconclusionofexperiments,thelocationsofallelectrodeswere ipateindifferentfunctionsduringfocallimbicseizures. verifiedbyhistology(describedbelow). JuxtacellularrecordingsfromtheCLnucleusofthethalamus MaterialsandMethods Animal preparation, electrode implantation in hippocampus and LO Animals cortex,andseizureinductionwereconductedasalreadydescribedfor AllprocedureswereconductedunderapprovedprotocolsofYaleUni- MUArecordings.ExtracellularSUArecordingswereacquiredusingthe versity’sInstitutionalAnimalCareandUseCommittee.Atotalof38 juxtacellularmethod(Pinault,1996;DuqueandZaborszky,2006;Mote- healthyadultfemaleSpragueDawleyrats(CharlesRiverLaboratories) lowetal.,2015;Zhanetal.,2016).Briefly,glasselectrodeswereusedto weighing180–280gwereusedintheseexperiments.Wechosefemale collect SUA data in the CL region at the same coordinates as above Fengetal.•ThalamicNeuronalActivityinFocalSeizures J.Neurosci.,November22,2017•37(47):11441–11454•11443 (anteroposterior(cid:3)2.8mm,mediolateral1.5mm,superoinferior(cid:3)5.2 amountofspindlewaveactivityinCLandVPM,weusedthetypical mm)withamicromanipulator(SutterInstruments,MPC-325).The1.5 patternoftransientrhythmicMUAfiring,whichmorereadilydistin- mm(cid:4)100mmborosilicateglasscapillaries(#1B150F-4,WorldPreci- guishedspindlesfromothermoresustained7–14HzactivityseenonLFP sionInstruments)werepulledonaFlaming/Brownmicropipettepuller recordings.InSpike2(CED),wefirstdownsampledtheMUAfrom20 (SutterInstruments,P-1000horizontalpuller),whichwerethenbumped kHzto100Hz.BecausetheMUAsignalswerealreadybandpassfiltered underamicroscopetoproduceaflatelectrodetipandfilledwith4% from400Hzto10kHz(describedabove),thisprovidedanamplitude Neurobiotin(VectorLaboratories,SP-1120)insaline(0.9%NaCl).Only profileofMUAcorrespondingtothe7–14Hzspindleactivitywithmost electrodeswitharesistanceof15–30M(cid:2)wereusedduringexperiments. oftheothercontaminating7–14HzsignalsfromtheLFPremoved.We An Axoclamp-2B amplifier (Molecular Devices, (cid:4)10 gain, current- nextcalculatedthe7–14HzpowerinthedownsampledMUAsignalin clampmode)wasusedtoacquireSUAsignalsdigitizedat20,000Hzwith 2.56soverlappingbinstoobtain“spindlepower.” a Power 1401 and Spike2 software (CED). Once a neuron signal was Tomonitorelectrophysiologychangesincortexwithfocallimbicseizures, stablyrecordedduringthebaseline,ictal,andpostictalperiods,itwould wechosetorecordfromtheLOfrontalcortexbecausethisregionexhibits belabeledbypassingcurrentpulses(0.6–10nA,pulseduration150ms, typicalictalandpostictal1–3Hzslow-waveactivityaswellaschangesin 3Hz)throughtheelectrodetiptoejecttheNeurobiotinasdescribed functionalneuroimaging,whicharealsopresentinotherwidespreadcortical previously(DuqueandZaborszky,2006;Motelowetal.,2015;Zhanet regionsinbothanimalmodelsandhumanstudies(Blumenfeldetal.,2004a; al.,2016).Cellsweredrivenbycurrentpulsesforatleast15mintoobtain Englotetal.,2008,2009;2010;Gummadavellietal.,2015a;Motelowetal., goodlabeling.Locationsofrecordedcellswereobtainedbyhistologyas 2015;Kundishoraetal.,2017).InSpike2(CED),wecalculatedthedelta(0–4 describedinthenextsection. Hz)powerintheLOLFPsignalin1soverlappingbins. Statistical analysis of MUA, spindle power, and LFP delta power. To Immunohistochemistryandmicroscopy showatimecourseofmeanpercentchangesforMUAorspindleanddelta Animalswereperfusedtranscardiallywith0.2%heparinizedPBS(APP power,weplotted[(signalduringfocalseizure(cid:3)meanbaseline)/meanbase- Pharmaceuticals)followedby4%PFA(JTBaker)inPBS.Thebrainwas line](cid:4)100%,forconsecutive1snonoverlappingintervals.AverageMUA thenremovedandpostfixedovernightin4%PFAinPBSat4°C.After Vrms,spindlepower,andLFPdeltapowersignalchangesineachepoch beingwashedthreetimesinPBS,theblockoftissuecontainingthecells (baseline,ictal,postictal,recovery)werecalculatedforstatisticalanalysis. andelectrodetractsofinterestwasdissected.Coronalsections60-(cid:2)m- Whenanalyzingdatafrommultipleseizuresinmultipleanimals,thereare thickwerecutwithaVibratome(LeicaMicrosystems).Foridentification trade-offsinpotentialbiasintroducedbyeitheranalyzingdataacrossall ofrecordingsitesbyelectrodetractsalone,slicesweremountedonpo- seizuresweightedequally(canoveremphasizeananimalwithoutliervalues larizedslidesandstainedwithcresylviolet(FDNeuroTechnologies).For ifithasmanyseizures)orpoolingwithinanimalfirst(canoveremphasizea identification of juxtacellularly recorded neurons by nickel stain, sec- seizurewithoutliervaluesifitoccursinananimalwithfewseizures).There- tionswereincubatedfor10minin0.7%hydrogenperoxideincoldPBS fore,weanalyzedallresultsusingbothapproaches.Figuresshownherewere (toblockperoxidases),andtheninbiotinylatedperoxidase(1:200,“B” generatedbypoolingseizureswithineachanimalfirstbecausethisapproach component of standard ABC [avidin-biotin peroxidase complex] kit, isgenerallymoreconservativeduetolowersamplesizes(n(cid:7)numberof VectorLaboratories)overnight.UsingDABasachromogen,theneuron animalsratherthannumberofseizures).However,verysimilarresultswere was then intensified with nickel (Ni) by incubating the sections in a obtained when each analysis was repeated across all seizures (data not solutioncontaining0.05%DABand0.038%nickelammoniumsulfate shown). for5minandthenaddinghydrogenperoxidetoafinalconcentrationof Repeated-measures ANOVA was used to detect electrophysiological 0.01%,andagitatingforanadditional5min.Thesliceswerethenrinsed changesinCL,ANT,VPM,andLObycontrastingvaluesinthepreseizure thoroughlytoremoveanyNi-DABdepositsoutsidethelabeledneuron. baselinewiththeictal,postictal,andrecoveryepochs.Allstatisticaltestswere Slicesweremountedonpolarizedslides(ThermoScientific)anddriedfor performedusingSPSS17(IBM),andsignificancelevelwassetatp(cid:6)0.05. at least 48 h. Finally, they were stained with cresyl violet using a SUAanalysis.Spikesortingonthejuxtacellularrecordingswasper- manufacturer-recommended protocol for reagents (FD NeuroTech- formedusingSpike2(CED,version5.20a)toidentifysingleunitsusing nologies) to confirm neuron locations. Slides were coverslipped with waveform shapes based on template matching. Recordings were then Permount(FisherChemicals).Imagesofslicesweretakenonacom- analyzed using in-house software written on MATLAB (R2009a, The poundlightmicroscope(CarlZeiss)withadigitalcamera(Motic),and MathWorks).Rasterplotforneuronfiringandburstfiringwereanalyzed digitally stitched together (Microsoft Image Composite Editor). Posi- duringepochsofbaseline(10–0sbeforestimulus),seizureperiod(the tively stained neurons were identified based on display of black-deep first10sofhippocampalseizureactivitybasedonpolyspikeactivityinthe browncolorfromNi-DAB.NeuronlocationsintheCLwereconfirmed LFPrecordings),andthepostictalperiod(0–10safterseizure).Analyses whentheyfellnomorethan1.5mmventraltothehippocampus,and wereperformedonlyonneuronsidentifiedbyjuxtacellularstainingorby werejustlateraltothestriamedullaris/lateralhabenulacomplexorthe electrodetractslocalizedtotheCLbyhistology.Histogramsofmeanfiring mediodorsalthalamicnucleus. ratewerecalculatedacrossneuronsin1snonoverlappingbinsforeach epoch,andstatisticalanalysesperformedasalreadydescribedforMUA. Dataanalysis Interspikeinterval(ISI)analysis.TheISIwascalculatedasthetime(in MUA,spindlepower,andLFPdeltapoweranalysis.Analysisepochswere milliseconds)betweentwoconsecutiveactionpotentialsintheSUAre- definedasfollows:baselinewasthelast10sofrecordingimmediately cordings,anapproachcommonlyusedintheanalysisofneuronalfiring preceding seizure onset; ictal was the first 30 s of the seizure period patternsandtodetectburstfiring(Chenetal.,2009).Wedefinedburst (definedbasedonpolyspikedischargesinthehippocampalLFP);postic- firingas(cid:3)2consecutiveactionpotentialswithanISI(cid:4)10ms(Krosetal., talwasthefirst10safterseizureoffset;andrecoverywasthelast10sof 2015).LogarithmicISIhistogramswerethenanalyzedusingin-house recordingbeforeeithertheanimalrequiredreanesthesiaortheexperi- softwarewritteninMATLAB(R2009a,TheMathWorks).Wecompared mentwasterminated.MUAsignalswereprocessedfurtherusingSpike2 theproportionofactionpotentialsthatoccurredintonic(nonburst)and (CED).ForanalyzingMUAsignalamplitudeintheCL,ANT,andVPM burstfiringpatternsinthebaseline,ictal,andpostictalperiods(same duringfocalseizures,therootmeansquarevoltage(Vrms)wasmeasured definitionsasforSUAanalysis)by(cid:5)2analysiswithBonferroni-corrected inconsecutiveoverlapping1stimebins.UseofVrmsanalysisofMUA significancethresholdp(cid:6)0.05. has been validated in previous studies of epilepsy models and under normalconditions,andcloselymatchesneuronalfiringbasedonspike Results sorting(Shmueletal.,2006;Englotetal.,2008;Schriddeetal.,2008). MUAdecreasesintheCLofthethalamusduringfocal Spindlewavesarewell-characterized7–14Hzthalamocorticaloscilla- tionslasting1–3swithacrescendo/decrescendoamplitudeprofile,seen limbicseizures mostprominentlyinthalamicrelaynucleiandcorrespondingcortical MUA,whichreflectstheaggregatespikingactivityofapopula- regions (Contreras and Steriade, 1996). To identify and quantify the tionofneurons,isinformativeindecipheringthebrain’scom- 11444•J.Neurosci.,November22,2017•37(47):11441–11454 Fengetal.•ThalamicNeuronalActivityinFocalSeizures Figure1. DecreasedMUAinthalamicCLnucleusduringfocallimbicseizure.A,Seizureinducedby2sstimulationofthehippocampus.Afterthestimulus,fastpolyspikeactivityisseeninthe hippocampallocalfieldpotential(HCLFP).MUAfromthalamicCLnucleusreflectsmarkedsuppressionofneuronalfiringduringtheictalperiodwithgradualrecoveryinthepostictalperiod.LOfrontal cortexshowsslow-waveactivityintheictalperiod,whichalsograduallyrecoveredpostictally.B,Expandedsegmentsofdatafrombaseline,ictal,andpostictalepochsaremagnifiedfromthelabeled regioninA.C,HistologyexamplefromthalamicCLnucleusMUArecording,coronalsectionatanteroposterior(cid:5)(cid:3)3.14mm.C1,Redboxrepresentsgeneralregionwheretheelectrodetracttipis located.C2,ExpandedviewofredboxinC1,showingelectrodetipinthalamicCLstainedbycresylviolet.D,SchematicsummaryofelectrodetiplocationsinCL(red)fromallexperimentsincluded intheMUAanalysisinFigure2A(n(cid:7)9animals,20recordingsites).MD,Mediodorsalnucleusofthalamus;MDL,mediodorsalnucleusofthalamus,lateralpart;MDM,mediodorsalnucleusof thalamus,medialpart;MDC,mediodorsalnucleusofthalamus,centralpart;LDDM,laterodorsalnucleusofthalamus,dorsomedialpart;PC,paracentralnucleusofthalamus;VL,ventrolateralnucleus ofthalamus;Po,posteriornucleargroupofthalamus;DG,dentategyrus.CoronalatlassectionsreproducedwithpermissionfromPaxinosandWatson(1998). Fengetal.•ThalamicNeuronalActivityinFocalSeizures J.Neurosci.,November22,2017•37(47):11441–11454•11445 Figure2. Meantimecoursesofthalamicactivityinfocallimbicseizures.A,InthethalamicCLnucleus,MUAVrmsdecreasedduringtheictalperiodcomparedwithpreseizurebaseline,andthen graduallyrecoveredduringthepostictalperiod.Dataarefrom9animals,30seizures.B,MUAchangesintheANTshowedanoppositetrendtothoseinCL.MUAtendedtoincreaseduringtheictal period,wassuppressedpostictally,andthenrecoveredtowardbaseline.Dataarefrom10animals,31seizures.C,MUAVrmsinthethalamicVPMnucleusincreasedduringictalperiodandthen graduallyrecoveredduringthepostictalperiod.Dataarefrom11animals,30seizures.D,InthethalamicVPMnucleus,spindlepower(7–14Hz)increasedintheictalperiodcomparedwithpreseizure baseline.Dataarefrom11animals,30seizures.E,Timecourseofdelta-band(0–4Hz)powerbefore,during,andafterseizures.Comparedwithpreseizurebaseline,deltapowerinthelateral orbitofrontalcortexgreatlyincreasedintheictalandpostictalperiods,finallyreturnedintherecoveryepoch.Dataarefrom30animals,91seizures.A–E,Dataarefor10sbaselineepochs immediately preceding seizures, 30 s ictal epochs starting immediately after seizure onset, 10 s postical epochs immediately after seizure end, and (Figure legend continues.) 11446•J.Neurosci.,November22,2017•37(47):11441–11454 Fengetal.•ThalamicNeuronalActivityinFocalSeizures plextime-varyingresponsetostimuliortoclinicalinsults.We cordedinVPM,characterizedbyacrescendo-decrescendopattern targetedourMUArecordingsfirsttotheintralaminarCLnucleus of7–14Hzrhythmicactivitylasting2–3s(Fig.4A)andaccompanied ofthethalamus(CL)becausethisregionhasbeenidentifiedasa bysimilarspindlewaveactivityinthecorrespondingsomatosen- keynucleusinthesubcorticalarousalsystemandplaysacritical sorycortex(datanotshown).Interestingly,whenaseizurewas anduniquefunctioninregulatingarousal,attention,andgoal- triggered, the occurrence of spindle waves markedly increased directedbehavior(VanderWerfetal.,2002).Inourexperiments, duringtheictalandpostictalperiods,resultingalsoinanincrease theanimalswouldbeinitiallyanesthetizedtosurgicaldepthand in overall MUA in the ictal and postictal periods, which later thenwereallowedtorecovertoalightanesthesialevelindicated recovered(Figs.2C,D,4A,B).Basedonrecordingsfrom11ani- by a predominance of cortical fast activity in LFP as described malsin30focalseizures,weobservedthatthespindleband(7–14 previously(Englotetal.,2008,2009).Focallimbicseizureswere Hz)powerandMUAVrmsinVPMweresignificantlyincreased theninducedwitha2shippocampalstimulation.Slowoscilla- ictally and postictally in focal limbic seizures compared with tionsinLFPwithupanddownstatesinMUAwererecordedin baseline(p(cid:6)0.05;Fig.2C,D,insets).Locationsofallelectrodes the LO frontal cortex. Electrophysiological recordings were intheVPMweredeterminedhistologicallybycresylvioletstain- performedduring30focalseizuresfromthethalamicCLin9 ing(Fig.4C,D). animals.MUAwasmarkedlyreducedduringtheictalperiod and gradually recovered toward baseline following seizures IncreasesincorticalLOLFPdeltapoweraccompany (Figs.1A,B,2A).Onaverage,MUAamplitudeintheCLwas thalamicchanges significantly reduced during focal limbic seizures (p (cid:6) 0.05; Previousworkhasshownthat,duringfocallimbicseizures,the Fig. 2A, inset) and gradually recovered in the postictal and cerebralcortexexhibitswidespreadslow-waveactivityalongwith recoveryperiods.UnlikeVPM(discussedbelow),wedidnot reducedcerebralbloodflowrepresentingdepressedcorticalac- observespindlewavesinCLduringourrecordings,andthere tivity(Blumenfeldetal.,2004a;Englotetal.,2008,2009;2010; were no significant changes in spindle frequency (7–14 Hz) Motelowetal.,2015).Inthepresentstudy,wethereforemoni- powerinCLduringorafterseizures(datanotshown).Loca- toredthelarge-amplitudeslowwavesthatareprominentinthe tions of electrodes were determined histologically by cresyl cortical LFP by quantifying delta-band power (0–4 Hz) in violetstaining(Fig.1C,D). epochsimmediatelybefore,during,andafterseizures(Fig.2E).We foundthattheneuronalactivitychangesinthalamicnucleiduring MUAtendstoincreaseintheANTofthethalamusduring focal seizures were accompanied by increased delta power in the focalseizures lateralorbitalfrontalcortexintheictalandpostictalperiods(p(cid:6) TheANTisakeycomponentofcortical-subcorticallimbiccir- 0.05;Fig.2E,inset),whichsubsequentlyrecoveredtobaseline. cuitry,includingthehippocampalsystemforepisodicmemory. Ithasdirectconnectionswith3differentepisodicmemorysub- SingleneuronsinthethalamicCLshowdecreasedfiringanda systems involving the hippocampus, mammillary bodies, and conversiontoaburst-firingpatternduringfocalseizures neocortex(ChildandBenarroch,2013).BasedonMUArecord- OurMUAdatashoweddecreasedpopulationneuronalfiringin ingresultsfrom10animals,31seizuresintotal,wefoundthat thethalamicCLduringfocalseizures.However,thefiringpattern neuronsintheANTregionofthethalamuswereobservedtohave ofindividualneuronsinthisregionwasnotclear.Therefore,we atrendtowardincreasedfiringduringseizures(Fig.3A,B).Un- conducted juxtacellular recordings of single neurons (SUA) in likethechangesinCL,averageMUAamplitudeintheANTdem- theCL.WefoundthatsingleneuronsintheCLfiredregularly onstrated an increase during seizures in 8 of 11 animals. This beforeseizureinitiationbutmarkedlydecreasedtheirfiringal- overallincreasewasstatisticallysignificantwhendatawereana- most immediately after seizure onset (Fig. 5). In the postictal lyzedacrossseizures(datanotshown)butdidnotreachsignifi- period,thefiringrateofthalamicCLneuronsgraduallybeganto cance when data were first pooled within animals and then recoverbacktobaseline.Meanwhile,asreportedpreviously(Englot analyzedacrossanimals.(Fig.2B,inset),althoughthepostictal etal.,2008,2009;Motelowetal.,2015)duringfocalhippocampal suppressionofMUAinANTdidreachsignificance.Locationsof seizures,thecorticalMUAconvertedtoupanddownstates, allelectrodesintheANTweredeterminedhistologicallybycresyl whereascorticalLFPshowedprominentslowoscillations(Fig. violetstaining(Fig.3C,D). 5).ThelocationsofallSUArecordingsinCLwereconfirmed byhistology(Fig.6).SUArecordingsfromneuronsintheCL MUAandspindlewavesincreaseintheVPMduring asagroup(12neuronsfrom8animals,14seizures)displayed focalseizures a consistent and dramatic decrease in firing during seizures Sleepspindlesaremajortransientoscillationsofthemammalian (Fig. 7A,B). Although they possessed variable firing rates at brain.Previousstudieshavesuggestedthatspindlesaregenerated baseline,11of12neurons(91.6%)decreasedtheirfiringrates in the thalamus during states of low arousal, such as sleep or duringseizuresandslowlyrecoveredduringthepostictalpe- deafferentation from subcortical modulatory arousal systems, riod.Onaverage,SUAfiringratedecreasedby51.87(cid:8)19.29% andareespeciallyprominentinthalamicrelaynuclei,suchasthe (mean(cid:8)SEM)duringthefirst10sofseizurescomparedwith VPM(SteriadeandDeschenes,1984;vonKrosigketal.,1993). 10spreictalbaseline(p(cid:6)0.05). Wefoundthat,duringthebaselinelightlyanesthetizedperiod,just Interestingly,almostallneuronsidentifiedintheCLbyhis- beforeseizureinitiation,occasionalisolatedspindlewaveswerere- tologyfiredtonicallywithsinglespikesbeforeseizureonsetbut afterseizureinitiationimmediatelyconvertedtoburstfiringof twoormorespikes(Figs.5C,D,7C–E).Enhancedburstfiringof 4 thalamicCLneuronsgraduallyrecoveredinthepostictalperiod (Figurelegendcontinued.)10srecoveryepochs.Lefttimecourses,Mean(cid:8)SEM,with1stime (Fig.7C).DefiningburstsastwoormorespikeswithISI(cid:6)10ms, bins.Time(cid:7)0fortheictalperiod,seizureonset.Righthistograms,Meanvaluesforeachepoch. we found the proportion of spikes in burst firing pattern was ErrorbarsindicateSEM.Datawereaveragedfirstwithinanimalsandthenanalyzedby significantlyhigherinboththeictalandpostictalperiodscom- repeated-measuresANOVA,contrastingbaselineversuseachoftheotherepochs.*p(cid:6)0.05. paredwithbaseline((cid:5)2(cid:7)634.1,223.6,respectively,p(cid:6)0.0001) Fengetal.•ThalamicNeuronalActivityinFocalSeizures J.Neurosci.,November22,2017•37(47):11441–11454•11447 Figure3. ExampleshowingincreasedMUAinANTduringfocallimbicseizure.A,Seizureinducedby2sstimulationofthehippocampus.Afterthestimulus,fastpolyspikeactivityisseeninthe hippocampalLFP(HCLFP).MUArecordingfromANTshowsincreasedfiringduringtheseizure,whichslowlyrecoveredinthepostictalperiod.LOfrontalcortexshowsslow-waveactivityintheictal period,whichpersistedpostictallyandgraduallyrecoveredatlatertimes(datanotshown).B,Expandedsegmentsofdatafrombaseline,ictal,andpostictalepochsaremagnifiedfromthelabeled regioninA.C,HistologyexamplefromANTMUArecording,coronalsectionatanteroposterior(cid:5)(cid:3)1.8mm.C1,Redboxrepresentsgeneralregionwheretheelectrodetracttipislocated. C2,ExpandedviewofredboxinC1,showingelectrodetipinANTstainedbycresylviolet.D,SchematicsummaryofelectrodetiplocationsinANT(red)fromallexperimentsincludedintheMUA analysisinFigure2B(n(cid:7)10animals,26recordingsites).AM,Anteromedialnucleusofthalamus;AD,anterodorsalnucleusofthalamus;AVDM,anteroventral(Figurelegendcontinues.) 11448•J.Neurosci.,November22,2017•37(47):11441–11454 Fengetal.•ThalamicNeuronalActivityinFocalSeizures Figure4. Increasedspindlewaveactivityinthalamicventralposteriormedicalnucleusduringfocallimbicseizure.A,Seizureinducedby2sstimulationofthehippocampus.Afterthestimulus, fastpolyspikeactivityisseeninthehippocampalLFP(HCLFP).MUArecordingfromthalamicVPMnucleusisnotableforanincreaseinspindlewavesduringfocalseizures,whichgraduallyreturned tobaselinefollowingthepostictalperiod.*Eachspindlewave.LOfrontalcortexshowsslow-waveactivityintheictalperiod,whichalsograduallyrecoveredpostictally.B,Expandedsegmentsofdata frombaseline,ictal,andpostictalepochsaremagnifiedfromthelabeledregioninA.C,HistologyexamplefromthalamicVPMMUArecording,coronalsectionatanteroposterior(cid:5)(cid:3)3.6mm. C1,Redboxrepresentsgeneralregionwheretheelectrodetracttipislocated.C2,ExpandedviewofredboxinC1,showingelectrodetipinthalamicVPMstainedbycresylviolet.D,Schematic summaryofelectrodetiplocationsinVPM(red)fromallexperimentsincludedintheanalysisofspindlewavesinFigure2C(n(cid:7)11animals,22recordingsites).VPM,VPMnucleusofthalamus; CL,CLnucleusofthalamus;Po,posteriornucleargroupofthalamus;VPL,ventralposteriorlateralnucleusofthalamus;Rt,reticularnucleusofthalamus.Coronalatlassectionsreproducedwith permissionfromPaxinosandWatson(1998). (Fig.7D,E).Thisdramaticchangeinfiringpattern,fromtonicto burstfiringduringseizures,tendedtograduallyrecovertoward tonicfiringinthepostictalperiod. 4 Discussion (Figurelegendcontinued.)nucleusofthalamus,dorsomedialpart;AVVL,anteroventralnucleus ofthalamus,ventrolateralpart;PT,paratenialnucleusofthalamus;Rt,reticularnucleusof WeinvestigatedneuronalactivityintheCL,ANT,andVPMof thalamus;VA,ventralANT;DG,dentategyrus.Coronalatlassectionsreproducedwithpermis- thethalamusduringtheperi-ictalperiodsinanestablishedro- sionfromPaxinosandWatson(1998). dentmodelthroughinducedfocallimbicseizures.UsingMUA Fengetal.•ThalamicNeuronalActivityinFocalSeizures J.Neurosci.,November22,2017•37(47):11441–11454•11449 Figure5. ThalamicCLneurondecreasesfiringduringfocallimbicseizure.A,Seizureinducedby2sstimulationofthehippocampus.Afterthestimulus,fastpolyspikeactivityisseeninthe hippocampalLFP(HCLFP).SUAinthethalamicCLnucleusshoweddecreasedfiringduringseizureactivity,whichslowlyrecoveredinthepostictalperiod.LOfrontalcortexshowedtonicfiringofMUA andlowvoltagefastactivityonLFPrecordingsatbaseline.Duringseizures,thisconvertedtoslowwavesonLFPaccompaniedbyupanddownstatesofMUAfiring,whichgraduallyrecoveredinthe postictalperiod.B,Expandedsegmentsofdatafrombaseline,ictal,postictal,andrecoveryepochsaremagnifiedfromthelabeledregioninA.C,ExampleoftonicfiringfromSUArecordinginCLis magnifiedfromthelabeledregioninbaselineofB.D,ExampleofburstfiringfromSUArecordinginCLismagnifiedfromthelabeledregioninpostictalofB.Burstsweredefinedastwoormorespikes withISI(cid:4)10ms. recordings,wefoundmarkedlyreducedpopulationfiringofneu- works participate directly in increased neuronal firing during ronsinCL,butatendencytowardincreasedfiringinANT.VPM focallimbicseizures,whereasotherthalamocorticalnetworksex- demonstrated a notable increase in spindle waves during focal hibit depressed physiology resembling deep sleep, which may seizures. Consistent with decreased MUA in CL, juxtacellular contributetoimpairedconsciousness. recordingsfromsingleneuronsinCLrevealeddecreasedoverall AlthoughtheimportantroleoftheCLnucleusofthethalamus firingratebutanincreaseinburstfiringafterseizureinitiation, inmodulationofconsciousnesshaslongbeenrecognized(Glenn which gradually recovered during the postictal period. These andSteriade,1982;Gottesmann,1999;Paus,2000;Schiffetal., findingsconfirmourhypothesisthatsomethalamocorticalnet- 2013),CL’sroleinlossofconsciousnessduringfocallimbicsei- 11450•J.Neurosci.,November22,2017•37(47):11441–11454 Fengetal.•ThalamicNeuronalActivityinFocalSeizures Figure6. HistologyofneuronsstudiedbyjuxtacellularrecordingsinCLthalamus.A,B,ExampleimageofNi-DAB(neurobiotin)stainedpositiveneuronplacementinCLnucleusofthethalamus (CL)andcorrespondingatlascoronalsectionatanteroposterior(cid:5)(cid:3)2.8mm.LocationofneuronisindicatedbyredcircleinA,andbyreddotinB.C,D,ProgressivelyenlargedviewsofsectioninA, showinglabeledneuronrecordedjuxtacellularly,stainedforDABonabackgroundstainofcresylviolet.SomaandneuritescanbeseenclearlyinD.E,Locationsofallrecordedneuronsinthalamic CL(n(cid:7)12neurons,n(cid:7)8animals).MDC,Mediodorsalnucleusofthalamus,centralpart;MDL,mediodorsalnucleusofthalamus,lateralpart;LDDM,laterodorsalnucleusofthalamus,dorsomedial part;PC,paracentralnucleusofthalamus;Po,posteriornucleargroupofthalamus;DG,dentategyrus.B,E,CoronalsectionschematicsreproducedwithpermissionfromPaxinosandWatson(1998). Scalebars:B,1mm;C,200(cid:2)m;D,50(cid:2)m.
Description: