Clemson University TigerPrints All Theses Theses 12-2017 Seismic Risk Assessment of Masonry Arch Bridges in the United States Aditya Prakash Kamath Clemson University Follow this and additional works at:https://tigerprints.clemson.edu/all_theses Recommended Citation Kamath, Aditya Prakash, "Seismic Risk Assessment of Masonry Arch Bridges in the United States" (2017).All Theses. 2790. https://tigerprints.clemson.edu/all_theses/2790 This Thesis is brought to you for free and open access by the Theses at TigerPrints. It has been accepted for inclusion in All Theses by an authorized administrator of TigerPrints. For more information, please [email protected]. SEISMIC RISK ASSESSMENT OF MASONRY ARCH BRIDGES IN THE UNITED STATES A Thesis Presented to the Graduate School of Clemson University In Partial Fulfillment of the Requirements for the Degree Master of Science Civil Engineering by Aditya Prakash Kamath December 2017 Accepted by: Dr. Sez Atamturktur, Committee Chair Dr. Nadarajah Ravichandran Dr. Mohammad Javanbarg Dr. Saurabh Prabhu i ABSTRACT Over 1600 masonry arch bridges serve as part of the U.S. transportation infrastructure system. The preservation of these bridges is important due not only to their role in transportation network, but also to their cultural, architectural, and historic value to the nation. For successful preservation, the stewards of these historic bridges must be equipped with tools to make risk- aware decisions, considering both the susceptibility of the region to an extreme seismic event and the vulnerability of the bridge to undergo structural damage. To aid the stewards of these bridges, this master’s thesis develops Infrastructure Risk Indices (i.e. the probability of failure for local seismic hazard) for the masonry arch bridge inventory of the nation through non-linear finite element modeling coupled with fragility analysis under site-appropriate seismic excitation. The risk indices presented herein can aid the development of retrofitting strategies to help minimize risk and in turn, minimize financial loss, as well as loss of cultural heritage of the structures. ii DEDICATION I would like to dedicate this thesis to my parents Prakash Kamath and Mamta Kamath. iii ACKNOWLEDGMENTS I would like to thank my adviser, Dr. Sez Atamturktur and my committee members Dr. Nadarajah Ravichandran, and Dr. Mohammad Javanbarg for their constant support and encouragement throughout my degree program. I want to thank Dr. Bryant Nielson from whose meticulous work has contributed to this thesis. I would like to thank Dr. Saurabh Prabhu from American Insurance Group, for his constant support throughout my program. Finally, I would like to thank the PTT Grants program of National Center for Preservation Technology and Training (NCPTT) of Department of Interior, for providing the funds that made this work possible. iv TABLE OF CONTENTS Page TITLE PAGE ................................................................................................................................. i ABSTRACT .................................................................................................................................. ii DEDICATION ............................................................................................................................. iii ACKNOWLEDGMENTS .......................................................................................................... iv LIST OF FIGURES .................................................................................................................... vii LIST OF TABLES ............................................................................................................. ix CHAPTER ONE : INTRODUCTION ................................................................................ 1 1.1 Motivation and Background ...................................................................................................... 1 1.2 Background Perspectives on Fragility Analysis ........................................................................ 3 i) Empirical Fragility Curves .............................................................................. 4 ii) Expert Based Fragility Curves ......................................................................... 5 iii) Analytical Fragility Curves ............................................................................. 5 1.3 Overview of the Research Campaign ........................................................................................ 8 CHAPTER TWO : ANALYSIS OF THE NATIONAL BRIDGE INVENTORY (NBI) AND ARCHETYPE DEVELOPMENT ..................................................................... 10 2.1 Single-Span Masonry Arch Bridge Inventory ......................................................................... 10 2.2 Clustering to Obtain Representative Bridge Archetypes ......................................................... 11 CHAPTER THREE : NUMERICAL MODEL DEVELOPMENT .................................. 15 3.1 Development of Geometric Representation ............................................................................ 15 3.2 Selection of Element Type and Material Model ...................................................................... 17 3.3 Definition of Support Conditions ............................................................................................ 18 3.4 Determination of Material Model Properties for the Masonry Assembly ............................... 19 v Table of Contents (Continued) Page 3.5 Mesh Refinement .................................................................................................................... 20 CHAPTER FOUR : SEISMIC HAZARD, SELECTION OF GROUND MOTION RECORDS AND COLLAPSE MECHANISM .......................................................... 22 4.1 Selection of Ground Motions .................................................................................................. 24 4.2 Selection of Collapse Mechanism ........................................................................................... 27 CHAPTER FIVE : PROBABILISTIC SEISMIC DEMAND MODELS AND FRAGILITY CURVES ............................................................................................... 29 5.1 Probabilistic Seismic Demand Model ..................................................................................... 29 5.2 Fragility Curves ....................................................................................................................... 34 5.3 Risk Index ................................................................................................................................ 40 CHAPTER SIX : CONCLUSION .................................................................................... 43 REFERENCES ................................................................................................................. 46 vi LIST OF FIGURES Figure Page Figure 1 : A representative fragility curve for a specified limit state. ............................................. 3 Figure 2 : Probabilistic capacity and demand curves. ..................................................................... 7 Figure 3 : Methodology adopted to generate fragility curves.......................................................... 9 Figure 4 : Components of a single-span masonry arch bridge. ..................................................... 10 Figure 5 : Distribution of characteristics of single-span masonry arch bridges in the U.S. a) span, b) width, c) rise, d) height of backfill above arch, e) total length, f) construction year where 𝑁𝐵 means number of bridges. ....................................................................................................... 12 Figure 6 : The elbow approach to determine optimal number of clusters for 326 bridge models. 14 Figure 7 : Element types and support conditions of the finite element model of single-span masonry arch bridges. .................................................................................................................... 17 Figure 8 : Mesh refinement study to select optimal number of finite elements ............................ 21 Figure 9 : Peak ground acceleration with 2% probability of exceedance in 50 years in central and eastern U.S. (USGS, 2016). ........................................................................................................... 22 Figure 10 : Peak ground acceleration with 10% probability of exceedance in 50 years in central and eastern U.S. (USGS, 2016). .................................................................................................... 23 Figure 11 : Comparison of attenuation distance of earthquakes in eastern and western U.S. (USGS, 2002). ............................................................................................................................... 24 Figure 12 : The distribution of the PGA for the Wen & Wu (2001) ground motions. .................. 26 Figure 13 : Seismic ground motion at angle of incident. ............................................................... 27 Figure 14 : Formation of a four-hinge mechanism at the arch vault when subjected to longitudinal seismic loads. ................................................................................................................................. 28 vii List of Figures (Continued) Page Figure 15 : Rotation of spandrel wall when subjected to transverse seismic loads. ...................... 28 Figure 16 : Probabilistic Seismic Demand Model power model (Cornell et al., 2002). ................ 30 Figure 17 : Illustration of probabilistic seismic demand model in transformed space (Cornell et al., 2002). ....................................................................................................................................... 31 Figure 18 : Example of fragility curve for type - 4 bridge category, representing the three damage states for a) rotation of spandrel wall, and b) relative displacement between arch crown and abutment. ....................................................................................................................................... 37 Figure 19 : Comparison of fragility curves generated for type - 1 category bridge for rotation of spandrell wall using PSDM and MLE approach. .......................................................................... 38 Figure 20 : Geographical distribution of risk indices for 326 single-span masonry arch bridge for limit state – 1 with 2% probability of exceedance in next 50 years .............................................. 41 Figure 21 : Geographical distribution of risk indices for 326 single-span masonry arch bridge for limit state – 1 with 10% probability of exceedance in next 50 years. ........................................... 41 viii LIST OF TABLES Table Page Table 1 : Geometric properties of 20 representative bridge types obtained using the k-means clustering technique. ...................................................................................................................... 15 Table 2 : Sample time - acceleration records and their corresponding PGA and predominant period for Wen & Wu ground motions. ........................................................................................ 25 Table 3 : Probabilistic seismic demand model equations for the 20 representative bridge types for the rotation of spandrel wall. ......................................................................................................... 32 Table 4 : Probabilistic seismic demand model equation for the 20 representative bridge types for the relative displacement of the abutment and crown. .................................................................. 33 Table 5 : Damage limit states for relative displacement between arch crown and abutment, and rotation of spandrel wall collapse mechanisms. ............................................................................ 36 Table 6 : Fragility curve parameters of each damage limit state for rotation of spandrel wall. .... 38 Table 7 : Fragility curve parameters of each damage limit state for relative displacement between arch crown and abutment............................................................................................................... 39 ix
Description: