ebook img

Seifert manifolds admitting partially hyperbolic diffeomorphisms PDF

0.29 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Seifert manifolds admitting partially hyperbolic diffeomorphisms

SEIFERTMANIFOLDSADMITTINGPARTIALLYHYPERBOLIC DIFFEOMORPHISMS ANDYHAMMERLINDL,RAFAELPOTRIE,ANDMARIOSHANNON 7 1 0 2 ABSTRACT. Wecharacterizewhich3-dimensionalSeifertmanifoldsadmittran- n sitivepartiallyhyperbolicdiffeomorphisms.Inparticular,acirclebundleover a J ahigher-genussurfaceadmitsatransitivepartiallyhyperbolicdiffeomorphism ifandonlyifitadmitsanAnosovflow. 5 ] S 1. INTRODUCTION D This paper deals with the problem of classification of partially hyperbolic . h diffeomorphisms in dimension 3. This program was initiated by the works of t a Bonatti-Wilkinson([BoW])andBrin-Burago-Ivanov([BBI]). Theseresultswere m also motivated by an informal conjecture, due to Pujals, which suggested that [ therewerenonewtransitivepartiallyhyperbolicexamplestodiscoverindimen- 1 sion3(see[BoW,CHHU,HP3]). v Thefirsttopologicalobstructionstotheexistenceofpartiallyhyperbolicdif- 6 feomorphismscomesfrom[BI]wheretheexistenceofpartiallyhyperbolicdif- 9 1 feomorphisms in S3 is excluded. Other topological obstructions related with 1 theexistenceofpartiallyhyperbolicdiffeomorphismsin3-manifoldswithfun- 0 . damentalgroupwithpolynomialgrowthcanbederivedfromtheworkof[BI]; 1 see also [Pa]. In [HP , HP ], the first two authors provided a classification of 0 1 2 7 partially hyperbolic diffeomorphisms in3-manifolds with solvable fundamen- 1 talgroupgivinganaffirmativeanswertoPujals’conjectureinsuchmanifolds. : v Notice that these include Seifert fiber spaces whose fundamental group is of i X polynomialgrowth,inparticular,circlebundlesoverthesphereandthetorus. r EventhoughPujals’conjectureturnedouttobefalse([BoPP,BoGP,BoGHP]), a thereisstill(atleast)onepertinentquestionwhichremainsopenandisinthe spiritofthisconjecture. Question1. Ifa3-manifoldwhosefundamentalgroupisofexponentialgrowth admitsapartiallyhyperbolicdiffeomorphism,doesitadmitanAnosovflow? Since the examples in [BoPP, BoGP, BoGHP] are obtained starting with an Anosov flow, they do not provide a negative answer to the previous question. Date:January6,2017. R.P.andM.S.werepartiallysupportedbyCSICgroup618. R.P.wasalsopartiallysupportedby MathAmSud-Physeco. 1 2 A.HAMMERLINDL,R.POTRIE,ANDM.SHANNON Thisquestionseemshardinviewthatforthemomentwedonotknowwhich3- manifoldsadmitAnosovflowsandmoreorlessthesameobstructionsweknow fortheexistenceofAnosovflowsareobstructionsfortheexistenceofpartially hyperbolicdynamics. This paper grew out of the motivation to answer the question in a specific familyofmanifolds: circlebundlesoverhighergenussurfaces,ormoregener- ally, Seifert fiber spaces. The simplest sub-family where the question of exis- tenceoftransitivepartiallyhyperbolicdiffeomorphismswasunknownwasΣ × g S1whereΣ isaclosedsurfaceofgenusg ≥2.ByaclassicalresultofGhys([Gh]) g weknowthatsuchamanifolddoesnotadmitAnosovflows. We deal in this paper with partially hyperbolic diffeomorphisms in Seifert fiber spaces. For notational simplicity, and for the convenience of the reader notfamiliarwithSeifertfiberingsinallgenerality,westartbystudyingthe(ori- entable)circlebundlecasewhichismoreelementary,thoughmostofthemain ideasextendratherdirectly totheSeifertfibersetting(othersdo requiresome furtherstudyandwefinishthepaperwithasectionwhichextendstheresultsto themoregeneralsetting). Thestrategyistoshowthatthedynamicalfoliations thatapartiallyhyperbolicdiffeomorphismcarriesare(afterisotopy)transverse tothecirclefibers. Thisallowsustoprovidesomeobstructionsonthetopology ofthecirclebundlethatweexposelater.Letusmentionthatthisworkalsomo- tivates the study of horizontal foliations on Seifert fiber spaces to understand partially hyperbolic dynamics and this is very much related with the study of representationsofsurfacegroupsinHomeo(S1), aratheractivesubjectwhose interesthasbeenrenewedintherecentyears(seee.g. [Bow,Mann]andrefer- encestherein). Theconsequenceofourmainresultswhichiseasiesttostateis: Theorem. IfacirclebundleoverasurfaceΣofgenus≥2admitsatransitivepar- tially hyperbolic diffeomorphism, then it admits an Anosov flow. In particular, Σ×S1doesnotadmittransitivepartiallyhyperbolicdiffeomorphisms. TheobstructioncanbestatedintermsoftheEulernumberofthefiberbun- dleandsaysthatacirclebundleoverahighergenussurfaceadmitsatransitive partiallyhyperbolicdiffeomorphismifandonlyifitsEulernumberdividesthe EulercharacteristicofΣ.SeeTheoremAbelow. IntheAnosovflowcase,thecorrespondingstatementforΣ×S1followsfrom the classification result of Ghys [Gh] (see also [Ba] for the extension to Seifert fiber spaces). The proof we give here does not provide a classification, but is differentevenintheAnosovflowcase. Theresultsinthispaperwerepartially announcedin[HP ]. 3 1.1. PreciseStatementsofResults. 1.1.1. Circlebundles. ConsiderManorientablecirclebundleoveranorientable surfaceΣofgenusg ≥2.Seesubsection2.4forprecisedefinitions. SEIFERTMANIFOLDSADMITTINGPARTIALLYHYPERBOLICDIFFEOMORPHISMS 3 Every circle bundle over Σ can be obtained from Σ×S1 by removing a solid torusoftheformD×S1 (withD ⊂Σatwodimensionaldisk)andregluingbya mappreservingtheverticalfibersandgivingrisetoanew3-manifoldM which isacirclebundleoverΣinatrivialway. Thenumberofturnsameridianofthe form ∂D×{t} gives around a fiber after being sent by the gluing map is called theEulernumberofthebundleandisdenotedbyeu(M)(see[CC,Chapter4of BookII]or[Hat]formoredetailedinformationaboutthisconcept). TheunittangentbundleT1ΣoverΣiswellknowntosatisfyeu(T1Σ)=χ(Σ) whereχ(Σ)denotestheEulercharacteristic.Also,itisdirecttoshowthateu(Σ× S1)=0. Themainresultinthiscontextisthefollowing: TheoremA. LetM beanorientablecirclebundleoverΣ,anorientablesurfaceof genus g ≥2, admitting a transitive partially hyperbolic diffeomorphism. Then, thereexistsk∈(cid:90)suchthateu(M)= χ(Σ) ∈(cid:90). k Remark. ThisconditionontheEulernumberisequivalenttosaythatthecircle bundleisafinitecoveroftheunittangentbundle. Seesubsection2.1forthedefinitionofpartiallyhyperbolicdiffeomorphism. Inparticular,werequirethatthetangentspaceTM ofM splitsintothreenon- trivial bundles, one uniformly contracting, one uniformly expanded and the third one satisfies a domination condition with respect to the other two. This issometimescalledintheliteraturepointwisestrongpartialhyperbolicity. We saythatadiffeomorphism f istransitiveifthereisapointx∈M whose f-orbit isdense. Adirectconsequenceisthefollowing: Corollary1.1. LetM beacirclebundleoverΣ,asurfaceofgenusg ≥2,thenM admits a transitive partially hyperbolic diffeomorphism if and only if it admits anAnosovflow. Proof. ThetimeonemapofanAnosovflowispartiallyhyperbolicandiftheflow istransitiveandnotasuspension,thenthetimeonemapisalsotransitive. The mainresultof[Gh]impliesthatanAnosovflowinacirclebundlemustbetransi- tive(andnotasuspension),thus,thereverseimplicationistrivial. Thefirstone followsdirectlysincebyliftingthegeodesicflowinnegativecurvaturetofinite covers one can construct Anosov flows in all bundles with the corresponding (cid:3) EulernumbersadmittedbyTheoremA. Therearemanyconditionsweakerthantransitivitythatalsoallowustoob- tain the same result. These appear in the statement of Theorem 3.1 below, so beyondtransitivitywealsoobtain: TheoremB. LetM beacirclebundleoverΣ,asurfaceofgenusg ≥2,admitting apartiallyhyperbolicdiffeomorphismwhich 4 A.HAMMERLINDL,R.POTRIE,ANDM.SHANNON • eitherisdynamicallycoherent,or, • ishomotopictoidentity. Then,eu(M)= χ(Σ) ∈(cid:90). k See subsection 2.1 for a definition of dynamical coherence: it is related to the integrability properties of the bundles involved in the partially hyperbolic splitting. 1.1.2. Seifert fiber spaces. We now consider the more general case of partially hyperbolic systems defined on Seifert fiber spaces. Quotienting each fiber of a Seifert fiber space M down to a pointdefines a projectionfrom M to an ob- jectΣwhichistopologicallyasurface,butwhichismostnaturallyviewedasa 2-dimensional orbifold [Sco, Cho]. In this paper, every orbifold discussed will be2-dimensional. Apartfromafewknown“bad”orbifolds,everyorbifoldmay beequippedwithauniformgeometrywhichiseitherelliptic,parabolic,orhy- perbolic. EventhoughΣdoesnothavethestructureofasmoothmanifold,its unit tangent bundle T1Σ is a well-defined smooth 3-manifold and the natural projectionT1Σ→ΣdefinesaSeifertfibering. Onemayalsodefinethegeodesic flowonT1Σ. Asisthecasewithsurfaces, thisflowisAnosovifandonlyifthe orbifoldishyperbolic. Ifanorbifoldisbad,elliptic,orparabolic,thenaSeifertfiberspaceoverthis orbifoldhasoneofthemodelgeometriescorrespondingtohavingvirtuallynilpo- tentfundamentalgroup[Sco]. Partiallyhyperbolicsystemsinthesegeometries arealreadywellunderstood[HP ].Hence,weonlyconsiderhyperbolicorbifolds 2 here.TheoremsAandBthenhavethefollowinggeneralization. TheoremC. LetM beaSeifertfiberspaceoverahyperbolicorbifoldΣsuchthat M admits a partially hyperbolic diffeomorphism which is either transitive, dy- namicallycoherent,orhomotopictotheidentity. ThenM finitelycoverstheunit tangentbundleofΣ. BarbotshowedthatsuchmanifoldsareexactlytheSeifertfiberspaceswhich supportAnosovflows[Ba]. Corollary1.2. ASeifertfiberspaceoverahyperbolicorbifoldadmitsatransitive partiallyhyperbolicdiffeomorphismifandonlyifitadmitsanAnosovflow. Someofthemoststudiedorbifoldsaretheso-called“turnovers.”Aturnoveris aspherewithexactly3exceptionalpointsadded.Seifertfiberingsoverturnovers were the last family for which the Milnor-Wood inequalities were generalized [Nai],andBrittenhamshowedspecificallythatthesemanifoldsdonotsupport foliationswithverticalleaves[Bri]. Inthissetting,wemaythereforestateare- sultwhichdoesnotrelyontransitivityoranydynamicalassumptionotherthan partialhyperbolicity. Theorem1.3. ASeifertfiberspaceoveraturnoveradmitsapartiallyhyperbolic diffeomorphismifandonlyifitadmitsanAnosovflow. SEIFERTMANIFOLDSADMITTINGPARTIALLYHYPERBOLICDIFFEOMORPHISMS 5 Corollary1.4. ThereareinfinitelymanySeifertfiberspaceswhichsupporthori- zontalfoliations,butdonotsupportpartiallyhyperbolicdiffeomorphisms. 1.2. Organizationofthepaper. Section2introducessomeknownfactsthatwe willuseinthecourseoftheproofofourmainresults. Insection3westatethe result which establishes, under some assumptions (including being transitive, or dynamically coherent) that the dynamical (branching) foliations carried by partiallyhyperbolicdiffeomorphismsmustbe(homotopically)transversetothe fibersofthecirclebundleandworkoutsomepreliminariesfortheproof. This resultisprovedinsections4and5.Then,insection6weusethisfactstogivethe obstructionsintheEulernumberofthebundletoadmitsuchpartiallyhyper- bolicdiffeomorphisms. Finally,insection7weextendtheresultstothegeneral Seifertfibercase. Acknowledgements:WethankChristianBonattiforseveralremarksandideas thathelpedinthisprojectandinparticularforhishelpintheproofofLemma 4.11. WealsothankHarryBaik, JonathanBowden, JoaquínBrum, KatieMann andJulianaXavierforseveralhelpfuldiscussions. 2. PRELIMINARIES 2.1. Generalfactsonpartiallyhyperbolicdynamics. LetMbea3-dimensional manifoldand f :M→M aC1-diffeomorphism.Wesaythat f ispartiallyhyper- bolicifthereexistsaDf-invariantcontinuoussplittingTM =Es⊕Ec⊕Eu into 1-dimensionalsubbundlesandN >0suchthatforeveryx∈M: (cid:107)DxfN|Es(cid:107)<min{1,(cid:107)DxfN|Ec(cid:107)}≤max{1,(cid:107)DxfN|Ec(cid:107)}<(cid:107)DxfN|Eu(cid:107). Itisabsolutelypartiallyhyperbolicifmoreover,thereexistsconstants0<σ<1< µsuchthat: (cid:107)DxfN|Es(cid:107)<σ<(cid:107)DxfN|Ec(cid:107)<µ<(cid:107)DxfN|Eu(cid:107). ItispossibletochangetheRiemannianmetricsothatN =1andwewilldoso. See[Gou]. OnecallsEsandEuthestrongstableandstrongunstablebundlesrespectively. These integrate uniquely and give rise to foliations Fs and Fu called respec- tivelythestrongstableandstrongunstablefoliations([HPS]). TheleafofFs or Fu throughapointx willbedenotedbyWs(x)orWu(x). ThecenterbundleEc maynotbeintegrableintoafoliation(thoughbeingone-dimensionalitalways admitsintegralcurves). WhenthebundlesEs⊕Ec andEc⊕Euintegrateinto f-invariantfoliationswe saythat f isdynamicallycoherent,inthiscase,Ec integratesintoan f-invariant foliationobtainedbyintersection.Wewillsometimesconsideralift f˜toM˜,the universalcoverofM andweshalluseX˜ todenotetheliftofX whateverX is.For Y containedinametricspaceZ wedefineBε(Y):={z∈Z : d(z,Y)<ε}. 6 A.HAMMERLINDL,R.POTRIE,ANDM.SHANNON We refer the reader to [HP ] and references therein for a more detailed ac- 3 count. Inparticular, foraproofofthefollowingfactfrom[BI]thatwewilluse repeatedly: Proposition2.1. Foreveryε>0,thereexistsC >0suchthatifI isanarcofF˜u orF˜s then volume(Bε(I))≥Clength(I). Theproofofthispropositionreliesheavilyontheconstructionofbranching foliationsperformedin[BI]whichwereviewnext. 2.2. Branchingfoliations. Inthissubsectionweintroducetheconceptofbranch- ingfoliationsandsummarisetheresultsfrom[BI]wewilluse. A branching foliation F on M tangent to a distribution E is a collection of immersedsurfacestangenttoE sothat: • every L ∈F is an orientable, boundaryless and complete (with the in- ducedriemannianmetric)surface, • everyx∈M belongstoatleastoneL∈F, • notwosurfacesofF topologicallycrosseachother, • it is invariant under every diffeomorphism of M whose derivative pre- servesE andatransverseorientation, • ifx →x andL isaleafofF containingx thenL →L (uniformlyin n n n n compactsets)andx∈L∈F. Wewilluse: Theorem2.2(Burago-Ivanov). Let f :M →M be a partially hyperbolic diffeo- morphismsuchthatEs,Ec,Eu areorientableandtheirorientationarepreserved byDf. Then,thereexistbranchingfoliationsFcs andFcu tangentrespectively toEs⊕Ec andEc⊕Eu. Remark. The diffeomorphism is dynamically coherent if and only if Fcs and Fcuhavenobranching:eachpointbelongstoauniquesurfaceofthecollection (see[HP ]). 3 Toapplyfoliationtheory,wewillneedthefollowingresultwhichisalsoone ofthekeypointsbehindProposition2.1.AsymmetricstatementholdsforFcu. Theorem2.3(Burago-Ivanov). Foreveryε>0thereexistsafoliationWεtangent toadistributionε-closetoEs⊕Ec andacontinuousmaphε:M →M suchthat d(hε(x),x)<εforallx∈M andsuchthatwhenrestrictedtoaleafofWεthemap hεisC1ontoaleafofFcs. Indeedonehas(see[HP ]andreferencestherein): 3 Fact2.4. Thelifth˜εofhεtoM˜ whenrestrictedtoaleafofW˜εisadiffeomorphism ontoitsimage(aleafofF˜cs). Moreover,thesediffeomorphismsvarycontinu- ouslyasonechangestheleaf. SEIFERTMANIFOLDSADMITTINGPARTIALLYHYPERBOLICDIFFEOMORPHISMS 7 Fact 2.5. ThefoliationWε isReebless1forallsmallε([CC]). Inparticular,when lifted to the universal cover, the space of leaves Lε of the foliation W˜ε is a 1- dimensional, possibly non-Hausdorff simply connected manifold. Using the mapshεanditslifth˜εtotheuniversalcoveronededucesthatthespaceofleaves ofF˜cs isalsoa1-dimensional,possiblynon-Hausdorffsimplyconnectedman- ifold. 2.3. Torusleaves. Inthissectionwereviewaresultof[RHRHU]showingthatin ourcontextthebranchingfoliationsFcsandFcucannothavetorusleaves.No- ticethatthereexistsanexamplein(cid:84)3wheresuchleavesdoexist[RHRHU ].The 2 followingisasimplifiedversionofamoregeneralresultfrom[RHRHU]whichis enoughforourpurposes. Theorem2.6(RodriguezHertz-RodriguezHertz-Ures). Assumethatapartially hyperbolicdiffeomorphism f :M →M hasatorusT tangenttoEs⊕Ec,then,M fibersoverS1withtorusfibers. NoticethatthisimpliesthatifM doesnotfiberoverS1withtorusfibersthen neither the branching foliation Fcs from Theorem 2.2 nor the approximating foliationsWεgivenbyTheorem2.3canhavetorusleaves. 2.4. Circlebundles. Thepaperwillfirstdealwiththecirclebundlecaseforwhich therearesomesimplificationsinthenotationsandforwhichsomeresultsare easiertostate. Laterinsection7weshallremovethisunnecessaryhypothesis andworkingeneralSeifertfiberspaces. RecallthatacirclebundleisamanifoldMadmittingasmoothmapp:M→Σ (in our case, Σ is a higher genus surface) such that the fiber p−1({x}) for every x ∈ Σ is a circle and there is a local trivialization: for every x ∈ Σ there is an open setU such that p−1(U) is diffeomorphic toU×S1 via a diffeomorphism preservingthefibers. Notice that the fundamental group of the fibers fits into an exact sequence whichisacentralextensionofπ (Σ)by(cid:90): 1 0→π (S1)∼=(cid:90)→π (M)→π (Σ)→0 1 1 1 Recalling that, if the genus of Σ is g ≥2, then the fundamental group π (Σ) 1 admitsapresentation: (cid:68) (cid:89)g (cid:69) π (Σ)= a ,b ,...,a ,b | [a ,b ]=id , 1 1 1 g g i i i=1 oneobtainsthatπ (M)admitsapresentation: 1 π (M)=(cid:68)a ,b ,...,a ,b ,c | (cid:89)g [a ,b ]=ceu(M), [a ,c]=id, [b ,c]=id(cid:69), 1 1 1 g g i i i i i=1 1 Seealso[HP3,Section5]formoredetailsonhowthisfollowsfromNovikov’stheorem. 8 A.HAMMERLINDL,R.POTRIE,ANDM.SHANNON whereeu(M)istheEulernumberofthecirclebundle.See[CC,BookII,Chapter 4]formoredetailsontheEulernumberandthefundamentalgroupof M. Let usjustendbynoticingthatthecenter ofπ (M)isthe(cyclic)groupgenerated 1 bythefundamentalgroupofthefiber,calledcintheabovepresentation.Asthe center is a group invariant and in this case is isomorphic to (cid:90) one knows that everyautomorphismofπ (M)willsendc toeitherc orc−1. 1 Finally,letuspointoutthatcirclebundlesoversurfacesofgenus≥2donot fiberoverS1withtorusfiberssothatTheorem2.6willimplythatapartiallyhy- perbolicdiffeomorphismonsuchanM cannothaveatorustangenttoEs⊕Ec orEc⊕Eu. 2.5. Tautfoliationsoncirclebundles. LetM beacirclebundleandletF bea foliationonM whichhasnotorusleaves.Weremarkthatweusetheconvention herethatafoliationisaC0,1+-foliationinthesensethatithasonlycontinuous trivializationcharts,butleavesareC1 andtangenttoacontinuousdistribution (see[CC]). Foliationswithouttorusleavesin3-manifoldsareexamplesofwhatisknown astautfoliations. WewillstatearesultofBrittenham[Bri]asitappearsin[Ca] (whereadifferentproofinthecaseofcirclebundlescanbefound). Weremark thatBrittenhamresultisanextensionofanoldresultofThurstonthatwasalso improvedbyLevitt(see[Le]). Theproofof[Le]usesthehypothesisthatF isC2 butmostoftheproof(exceptthepartwhereitisshownthattherearenovertical leaves) canbeapplied intheC0,1+ case asthey only useresultsofputtingtori in general position which are now available forC0-foliations [So] (see also the proofof[Gh,Proposition2.3]). We need some definitions, we say that a leaf L of F is vertical if it contains everyfiberitintersects. Equivalently,thereexistsaproperlyimmersedcurveγ inΣsuchthatL=p−1(γ). A leaf L of F is horizontal if it is transverse to the fibers (this includes the possibilityofnotintersectingsomeofthem). Theorem2.7(Brittenham-Thurston). LetF beafoliationwithouttorusleaves inaSeifertfiberspaceM. Then,thereisanisotopyψ :M →M fromtheidentity t such that the foliation ψ (F) verifies that every leaf is either everywhere trans- 1 versetothefibers(horizontal)orsaturatedbyfibers(vertical). Ofcourse,itispossibletoworkinverselyandapplytheisotopytopinorderto havethatF hasthepropertythateveryleafisverticalorhorizontalwithrespect top◦ψ−1. 1 Remark. AfterTheorem2.7itmakessense,foratautfoliationF,tocallaleaf verticalifithasaloopfreelyhomotopictoafiber,andhorizontalifithasnosuch loop.Wewilladoptthispointofviewinwhatfollows. SEIFERTMANIFOLDSADMITTINGPARTIALLYHYPERBOLICDIFFEOMORPHISMS 9 3. VERTICALLEAVES Let M be an orientable circle bundle over an orientable surface Σ of genus g ≥2.Letp:M→Σdenotetheprojectionofthiscirclebundle. We consider f : M → M to be a partially hyperbolic diffeomorphisms such thatthebundlesEs,Ec,Eu areorientableanditsorientationispreservedbyDf. LetFcs,Fcu befixedbranchingfoliationsassociatedto f. WewillnowsaythataleafLofFcs orFcu isverticalifitsfundamentalgroup containsanelementofthecenterofπ (M)(i.e.,itcontainsaloopfreelyhomo- 1 topicinM toafiberofthecirclebundle).SeetheremarkafterTheorem2.7. Westatethefollowingresultwhichwillbeprovedinthenextsections. Theorem3.1. For f andMasabove,underanyofthefollowingassumptions,the branchingfoliationsFcs andFcu havenoverticalleaves: (1) f ischainrecurrent2,i.e.,ifU isanon-emptyopensetsuchthat f(U)⊂U thenU =M; (2) f isdynamicallycoherent,i.e.,thebranchingfoliationshavenobranch- ing; (3) f ishomotopictotheidentity; (4) theactionof f onπ (Σ)ispseudo-Anosov; 1 (5) f isabsolutelypartiallyhyperbolic. Initem(4)wearetakingintoaccountthat f∗:π1(M)→π1(M)preservesthe generatorcorrespondingtothefibers,andthereforeinducesanactiononπ (Σ) 1 viathefiberbundleprojectionp.Thegeneralcase,where f maynotbedynam- icallycoherentandtheactiononπ (Σ)isreducibleisstillopen,thoughwethink 1 thattheproofsweprovideshedsomelightonhowtoattackit. Noticethatre- centlynon-dynamicallycoherentexampleshaveappearedinSeifertmanifolds ([BoGHP])butthesehavehorizontalbranchingfoliations. Remark. Toproveitem(2)wegiveageneralstatementaboutverticalcsandcu- laminationswhichworksevenifthediffeomorphismisnotdynamicallycoher- ent(seeProposition4.12). Similarly,toprovepoint(4)weshowaslightlymore generalstatementthatmaybeusefulincertainsituations(seeProposition5.2). UsingTheorems2.7and2.3wegetthefollowingresultwhichiswhatwewill usetoobtainourmaintheorem: Corollary3.2. Underanyoftheconditions(1)-(5)itfollowsthatforeverysmall ε>0thereexistsaprojectionpεisotopictopsuchthatforWε,theapproximating foliationtoFcs,onehasthateveryleafistransversetothefibersofpε. The proofs are symmetric on cs and cu, so we concentrate on the cs-case. Item (2) is the most involved and will be proved separately in section 4. The 2 Thisincludesasparticularcaseswhenf istransitiveorvolumepreserving. 10 A.HAMMERLINDL,R.POTRIE,ANDM.SHANNON restoftheitemswillbeprovedinsection5andtheirproofsareindependentof section4withtheexceptionofitem(5). 3.1. Generalities. DefineΛcs⊂M tobetheunionofallverticalcs-leaves. Proposition3.3. ThesetΛcs iscompact, f-invariantandΛcs(cid:54)=M. Proof. The action of f on the fundamental group must preserve the center of π (M) and therefore, as leaves of Fcs are sent to leaves of Fcs, those which 1 containaloophomotopictoafiberareinvariant. ToshowthatΛcs isclosed,weworkintheuniversalcover,andnoticethatif asequencex →x andL areleavesthroughx whichareinvariantunderthe n n n deck transformation generated by c (a generator of the center of π (M)) then, 1 the same holds for a leaf L which is the limit (in the sense of uniform conver- genceincompactsets). Therefore,LalsobelongstotheliftofΛcs andcontains x. ToshowthatΛcs(cid:54)=Mwewillmakeanadhocdirectargument3.Analternative proofcanbeobtainedbyusingtherestoftheresultsinthissection. Wefollowanargumentborrowedfrom[Ba ]. Weworkintheuniversalcover, 2 wherethepropertiesofthebranchingfoliationimplythatthespaceofleavesL isa1-dimensional(possiblynon-Hausdorff)simplyconnectedmanifoldwhere π (M)acts(seeFact2.5). 1 IfoneassumesbycontradictionthatΛcs =M, oneobtainsthateveryleafis fixedbyageneratorc ofthecenterofπ (M). Astherearenotorusleavesandc 1 commuteswitheveryotherelementofπ (M),itfollowsthateveryelementnot 1 inthecenterofπ (M)actsfreelyonL.Thisimplies,byaTheoremofSacksteder 1 (see[Ba ,Theorem3.3])thatL isalineandtheactionisbytranslations. 2 Moreover,ifonechoosestwoelementsg ,g inπ (M)suchthatneitherg ,g 1 2 1 1 2 noritscommutatorbelongtothecenterofπ (M),oneobtainsacontradiction 1 sincethecommutatorshouldacttrivially,butitcannothavefixedpointsinL. (cid:3) Thereaderonlyinterestedinitem(1)ofTheorem3.1cansafelyskiptosub- section5.1foradirectproof. To continue we will introduce the concept of quasi-isometrically embedded submanifold. Given b >0 we say that a submanifold L of a manifold M is b- quasi-isometricifforeveryx,y∈Lonehasthat: d (x,y)≤bd (x,y)+b, L M whered denotesthemetricinducedbyM onLandd isthemetricinM. L M 3 Noticethatiff isdynamicallycoherent,thisfollowsdirectlybyapplyingTheorem2.7.Indeed,as Λcswouldbeaverticalfoliationonewouldbeabletoprojecttheleavestogetaonedimensional foliationinthesurface,contradictingthatithasgenus≥2.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.