RESEARCHARTICLE Segregating the Effects of Seed Traits and Common Ancestry of Hardwood Trees on Eastern Gray Squirrel Foraging Decisions MekalaSundaram1*,JannaR.Willoughby1,NathanaelI.Lichti1,MichaelA.Steele2,Robert K.Swihart1 1 DepartmentofForestryandNaturalResources,PurdueUniversity,WestLafayette,Indiana,UnitedStates ofAmerica,2 DepartmentofBiology,WilkesUniversity,Wilkes-Barre,Pennsylvania,UnitedStatesof America * [email protected] Abstract Theevolutionofspecificseedtraitsinscatter-hoardedtreespeciesoftenhasbeenattrib- utedtogranivoreforagingbehavior.However,thedegreetowhichforaginginvestments andseedtraitscorrelatewithphylogeneticrelationshipsamongtreesremainsunexplored. OPENACCESS Wepresentedseedsof23differenthardwoodtreespecies(familiesBetulaceae,Fagaceae, Citation:SundaramM,WilloughbyJR,LichtiNI, Juglandaceae)toeasterngraysquirrels(Sciuruscarolinensis),andmeasuredthetimeand SteeleMA,SwihartRK(2015)Segregatingthe distancetravelledbysquirrelsthatconsumedorcachedeachseed.Weestimated11physi- EffectsofSeedTraitsandCommonAncestryof HardwoodTreesonEasternGraySquirrelForaging calandchemicalseedtraitsforeachspecies,andthephylogeneticrelationshipsbetween Decisions.PLoSONE10(6):e0130942.doi:10.1371/ the23hardwoodtrees.Variancepartitioningrevealedthatconsiderablevariationinforaging journal.pone.0130942 investmentwasattributabletoseedtraitsalone(27–73%),andcombinedeffectsofseed Editor:HepingCao,USDA-ARS,UNITEDSTATES traitsandphylogenyofhardwoodtrees(5–55%).AphylogeneticPCA(pPCA)onseedtraits Received:February19,2015 andtreephylogenyresultedin2“global”axesoftraitsthatwerephylogeneticallyautocorre- latedatthefamilyandgenuslevelandathird“local”axisinwhichtraitswerenotphyloge- Accepted:May27,2015 neticallyautocorrelated.Collectively,theseaxesexplained30–76%ofthevariationin Published:June25,2015 squirrelforaginginvestments.ThefirstglobalpPCAaxis,whichproducedlargescoresfor Copyright:©2015Sundarametal.Thisisanopen seedspecieswiththinshells,lowlipidandhighcarbohydratecontent,wasnegatively accessarticledistributedunderthetermsofthe relatedtotimetoconsumeandcacheseedsandtraveldistancetocache.Thesecond CreativeCommonsAttributionLicense,whichpermits unrestricteduse,distribution,andreproductioninany globalpPCAaxis,whichproducedlargescoresforseedswithhighprotein,lowtanninand medium,providedtheoriginalauthorandsourceare lowdormancylevels,wasanimportantpredictorofconsumptiontimeonly.ThelocalpPCA credited. axisprimarilyreflectedkernelmass.Althoughitexplainedonly12%ofthevariationintrait DataAvailabilityStatement:Allrelevantdataare spaceandwasnotautocorrelatedamongphylogeneticclades,thelocalaxiswasrelatedto withinthepaperanditsSupportingInformationfiles. allfoursquirrelforaginginvestments.Squirrelforagingbehaviorsareinfluencedbyacombi- Funding:ThisstudywasfundedbyaFredM.van nationofphylogeneticallyconservedandmoreevolutionarilylabileseedtraitsthatisconsis- EckscholarshipawardedtoMSbytheFredM.van tentwithaweakormorediffusecoevolutionaryrelationshipbetweenrodentsandhardwood EckFoundationforPurdueUniversity,andtheJohn treesratherthanadirectcoevolutionaryrelationship. S.WrightEndowment.Thefundershadnorolein studydesign,datacollectionandanalysis,decisionto publish,orpreparationofthemanuscript. CompetingInterests:Theauthorshavedeclared thatnocompetinginterestsexist. PLOSONE|DOI:10.1371/journal.pone.0130942 June25,2015 1/16 Phylogenetic&EcologicalDeterminantsofGraySquirrelForaging Introduction Scatter-hoardingrodentsinfluenceseedlingestablishmentinmanycommunitiesbyactingas seeddispersalagentsandseedpredators[1,2].Whereasmostseedsharvestedbyrodentsare ultimatelyconsumed[1,3],manyrodentsenhancetheprobabilityofgerminationandestab- lishmentbycachinginsuitablemicrosites[4]andthensubsequentlyfailingtorecoverapor- tionoftheseseeds[1,5].Mostrodentscantherefore,easilyshiftfrommutualismtoseed predation,andthisconditionalnatureofmutualismbetweenseed-bearingtreesandscatter- hoardersisadelicateone[1]thatoftenfollowsfromtherodents’responsestoseedcharacteris- tics[2,6]. Fromtheperspectiveofarodent,seedpreferenceandseedhandlinginvolveasequenceof behavioraldecisions.Ateachstepintheprocess,scatter-hoarderspresumablyevaluatecosts andbenefitsassociatedwithalternativestomaximizeuseofresources[7,8].Experimentswith artificialandnaturalseedssuggestthatseeddispersalandhandlingbehaviorisrelatedtothe perceivedvalueofaseed,orthebenefitsofattractivetraitsdiscountedbythecostsleviedby defensiveseedtraits[8,9].Whilenumerousstudieshavefocusedontherelationshipbetween seedtraitsandfate,fewerhaveexaminedtheinfluenceofseedtraitsonthespecificbehavioral decisionsofthescatterhoarder[10,11].Fine-scaleassessmentsoftheseedhandlingprocess provideevidencethatrodentsevaluatetheconditionofseeds(e.g.bypawmanipulationin Sciurusniger),whichmaybepredictedbytraitsindicatingseedqualityorcondition[11]. Fromtheperspectiveofatree,someseedtraitsmayimprovetheprobabilityofbeingcached orconsumed,therebyinfluencingfitness[12].Creatinganattractiveseed(e.g.,withahigh caloricvalue)incomparisontothatofcompetitorsisbeneficialbecausesuchseedsmaybedis- persedlongerdistances[13,14,15]reducingdensity-dependentmortalityfromseedlingcom- petitorsorseedpredation[16–18].Ontheotherhand,aseedwithdefensivetraitssuchasa hardshellmaybebeneficialbecausesuchseedsincreasehandlingcostsandinduceseedcach- ingbehaviorstherebyincreasingseedsurvival[10,19–22].SeedsofhardwoodtreesinChina, forexample,showtrade-offswithrespecttoinvestmentinseedtraitsthatlikelyinfluencehan- dlingcostsandseeddispersal[12]. Observationsofseedhandlingandseedchemistryprovideabundantevidenceforreciprocal evolutionaryeffectsbetweenrodentsandwoodyplants[23].Intreesquirrels,suitesofbehav- ioraladaptationsandmorphologicaladaptationshaveresultedfromselectivepressuresassoci- atedwithseedmorphologyandchemistry[23].Forexample,gradientsoftannin concentrationshavebeenobservedinoakkernels,whichimpartphysiologicalandmetabolic coststorodentsandresultinportionsofkernelsbeingrejected[24–27].Inresponse,some rodentshaveadaptedtodetoxifytannins[28,29],andmanycacheacornswithhightannin concentrationsmorefrequently,possiblytoavoidordelaythecostsassociatedwithingesting tannins[30,31].Intrees,changesinseedchemistryandmorphologyhaveevolvedinresponse topredationanddispersalpressuresexertedbytreesquirrels[23].Forinstance,whiteoak seedsshownodormancyandmultiple-seededacornspossiblytominimizelengthofexposure topredationandescapemortalityfromembryo-excisionbehaviorsbyeasterngraysquirrels [31,32].Thusfarallapproachestorodent-treecoevolutionhavecollectedsomecombinationof detailedmorphological,physiological,behavioral,andbiogeographicdata[23].Whilethese studiessuggestthatcoevolutionaryinteractionsexistbetweengranivorousrodentsandhard- woodtrees,thestrengthofthisinteractionisvariable[23]. Coevolutionaryrelationshipsbetweenplantsandseeddispersershavebeendescribedacrossa continuum,rangingfromstrong,pairwiseinteractionstoweak,diffuseinteractions.Pairwise coevolutionoccursbetweenspecificspeciesandleadstostrongselectivepressuresontraits[33]. Recentobservationsofacorn(Quercusspp.)embryoexcisionbehaviorshownbynaïvesquirrels PLOSONE|DOI:10.1371/journal.pone.0130942 June25,2015 2/16 Phylogenetic&EcologicalDeterminantsofGraySquirrelForaging (Sciuridaespp.;[31,32])isanexampleofabehavioraladaptationandsuggestsastrongandper- hapspairwisecoevolutionaryrelationshipbetweenoaksandsquirrels[31,34].Incontrast,weak selectivepressuresduetodisparitiesinevolutionaryratesofwoodyspeciesandanimaldispers- ers,unpredictabilityofconditionsforseedgermination,andaplethoraofotherfactorsleadsto diffuseorweakcoevolution[35,36]. Tobetterunderstandthenatureofcoevolutionaryinteractionsbetweenhardwoodtree seedsandsquirrels,weusedacombinationofphylogeneticandecologicalmethodstodeter- minehowseedcachingandseedconsumptionbehaviorsofeasterngraysquirrels(Sciuruscar- olinensis)variedasafunctionofseedtraitsandphylogeneticrelationshipsof23hardwood treesspecies.Specifically,wehypothesizedthatgraysquirrelswouldinvestmoretimeand travellongerdistancestoconsumeandcacheseedswithstrongphysicaldefensesandhigh nutrientvalues.Inaddition,wepredictedthatconspecificinterferencewouldberelatedto physicaldefensesofaseedandnutrientvalueofaseed.Weincorporatedphylogeneticrelation- shipsofhardwoodtreesintoouranalysestoevaluatetherelativeproportionofgraysquirrel seedhandlingbehaviorsthatisinfluencedbycommonancestryofhardwoodtreespeciesand todeterminewhichphylogeneticallyrelatedseedtraitsinfluencehandling.Wehypothesized thatifstrongcoevolutionaryrelationshipsoccurbetweengraysquirrelsandhardwoodtreespe- cies,mostofthevariationingraysquirrelbehaviorwouldbeexplainedbyseedtraitswith strongphylogeneticsignals.However,weaker,morediffusecoevolutionaryrelationships wouldbeexplainedbyamixofseedtraitswithastrongphylogeneticsignalandthosetraits withnophylogeneticsignal.Finally,ifnocoevolutionaryrelationshipsoccur,phylogenetically conservedtraitsshouldexplainasmallportionofthevariationingraysquirrelbehavior. MaterialsandMethods Seedhandlingmetrics Free-rangingeasterngraysquirrelsonthecampusofPurdueUniversitywerepresentedwitha sequenceofseedtypesinpseudo-randomorderbetween1October2011and15February2012. Seedswereobtainedfromcommercialseedcompanies(F.W.SchumacherCo.,EastSandwich, MAandSheffield’sseedCo.,Locke,NY)andfrombeneathtreesoncampus.Seedswerestored at4°C,separatedbyspeciesinplasticcontainers.Seedpresentationswereconductedbytossing aseedtoasquirrelfrom1–4m.Ifthesquirrelretrievedtheseed,theobservervideorecorded theeventuntiltheseedwasconsumedorcached.Whentheseedwasconsumed,theobserver recoveredtheremainsoftheseedkernelandshellbysiftingthroughthelitterandsoil.Thedis- tanceasquirrelmovedtocacheorconsumeaseedwasdeterminedbyretracingthepathofthe squirrel,markingthefinaldestination,andthenmeasuringthestraight-linedistancebetween thepointofencounteroftheseedandthefinallocation.Ifthedistancetravelledwastoogreat tobeaccuratelyestimatedwithatapemeasure,aGPS(GarminModelNo.72)wasusedto obtaincoordinates.Straight-linedistancewasthencalculatedinArcGIS10(EnvironmentalSys- temsResearchInstitute2010).Asecondseedwaspresentedtoasquirrelonlyafterthefirstseed washandled,andtheprocessrepeateduntilsquirrelsnolongerrecoveredseeds.Presentations ofthesameseedtypeswerespatiallyseparatedbyselectinglocationsthatwere>100mapart toincreasethelikelihoodthatdatawerecollectedfromdifferentsquirrels.Exceptionswereper- mittedonlyiftwodifferentsquirrelscouldberecordedsimultaneously.Theprotocolincluded non-intrusiveobservationwithnohindrancetotheanimals,andtherefore,wedidnotseek additionalapprovalfromPurdueAnimalCareandUseCommittee(PACUC). Foragingtrialvideoswerecollectedfor23seedtypesfromthetreefamiliesBetulaceae,Faga- ceae,andJuglandaceae(S1Table).Thetimetakentoconsumeorcacheeachseedwascalcu- latedfromthevideos.Timerequiredtoconsumeandcacheaseedwasdefinedasthetime PLOSONE|DOI:10.1371/journal.pone.0130942 June25,2015 3/16 Phylogenetic&EcologicalDeterminantsofGraySquirrelForaging neededtoconsumeandcompletelyburyaseedrespectively,anddidnotincludetraveltime. Wequantifiedthenumberofrecordedtrialsperseedtypeinwhichthefocalsquirrelwas chasedbyaconspecificwhilehandlingaseed,whichwedefineasconspecificinterference[37]. Seedtraits Thevalueofeachseedtraitwasmeasuredfor3seedsforeachofthe23seedtypesunlessspeci- fiedotherwise(S2Table).Percentageofmoistureinseedswascalculatedbydryingsamplesat 103°Cfor3days.Percentageoftannicacidequivalentsinnutmeatwasdeterminedbyperform- ingradialdiffusionassays[38,39].Thevaluewasexpressedastannicacidequivalentsoccurring in100gramsofdrynutmeat.Energycontentofthenutmeatwasobtainedinabombcalorime- ter(PARR1262bombcalorimeter,ParrInstrumentCo.,Moline,IL)usingbenzoicacidasa calibrationstandard.Thevaluewasadjustedtoobtaincaloriespergramofdryweight.Seed hardnesswasestimatedasthepeakload(kilograms)requiredtobreakaseed’sshellandpierce thenutmeat.TestingwasdonewithaMTS/Sintechcomputerizedtestingmachine(MTSCor- poration,EdenPrairie,MN)usingacrossheadfashionedaftertheskullofaneasterngray squirrelanddesignedtomimicasquirrel’sincisoraction(S1Fig).Onlytheupperincisors wereusedtoobtainhardnessestimates.Peakloadwithin5mmcrossheaddisplacementwas sufficienttobreaktheseedshellofmostseedsandwasusedasanestimateofseedhardness. Onlybutternut(Juglanscinerea)seedshellswerenotpiercedwiththe5mmcrosshead;there- fore,10mmdisplacementwasemployedforthisseed.Seedshellthicknesswasdeterminedby visualizingthecrosssectionofseedshellswithastereoscopicmicroscopeattachedtoaNikon ImagingSystemat4.91micrometersperpixel.Proximateanalysiswasperformedfollowing AssociationofOfficialAnalyticalChemists(AOAC)protocolstoestimatepercentageofcrude proteins(Kjeldahl,AOACOfficialMethod984.13A-D,2006),fats(etherextraction,AOAC OfficialMethod920.39A,2006)andcarbohydrates(differencemethod,FAO2003)innut- meat.Wecombinedkernelsfrommultipleseedstoobtainatleast10gofdriedmaterial,and duplicatesampleswereusedinproximateanalysesforeachseedtype.Finally,weusednumber ofdaysofcoldstratificationrequiredbeforegerminationinachamberasanindexofdormancy periodofseedtypes.Estimatesofcoldstratificationdayswereobtainedfromtheliterature [40–42],andaverageswerecomputedandusedwheneverarangeofdayswasprovided. Molecularandphylogeneticmethods Weconductedaphylogeneticanalysistoestimateandincorporateevolutionaryrelationships betweenhardwoodtreespeciesintoanalysesinthisstudy.Toachievethisgoal,wefirst extractedDNAfromplanttissueusingtwomethods.Forthemajorityofspecies,weextracted DNAfromleaftissueusingaphenol-chloroformprotocol[43],modifiedbygrindingfreshleaf tissuewith500mgPVPPinliquidnitrogen[44].WeusedthePowerPlantProDNAIsolation Kit(MoBioLaboratories,Inc;Carlsbad,CA)toextractDNAfromCaryatomentosaleaftissue andembryosremovedfromtheseedsofQuercusprinusandQuercusbicolor. Tocreateaphylogenyforour23hardwoodtreespecies,weusedsequencedatafromtwo chloroplastgenes-ribulose-bisphosphatecarboxylaseoxygenaselargesubunit(rbcL)and maturaseK(matK)aswellaportionofthenucleargenomethatincludedtheinternaltran- scribedspacer1,5.8SrRNAgene,andtheinternaltranscribedspacer2(ITS).Whenpossible, weobtainedrelevantsequencesfromGenbank(S6Table).Fortheremainingspecies,we sequencedeachsampleusingpolymerasechainreaction(PCR)onanEppendorfMastercycler (Eppendorf,Westbury,NewYork).Initialamplificationwasperformedin20μLreactionscon- tainingapproximately40ngtemplateDNA,1unitofNEBTaqpolymerase,0.3lMofeach primer,1.5mMMgCl2,10mMTris-HCl,50mMKCl,0.5mg/mlBSA,and0.2mMofeach PLOSONE|DOI:10.1371/journal.pone.0130942 June25,2015 4/16 Phylogenetic&EcologicalDeterminantsofGraySquirrelForaging dNTP.PCRparametersincludedaninitialdenaturingtemperatureof95°Cfor30secondsfol- lowedby30cyclesof95°Cfor30secondsdenaturing,annealingtemperatureof53°CforrbcL andmatK[45]and58°CfortheITSgene(primersITS5andITS4;[46]),and72°Cfor1minute elongation,withafinalelongationtemperatureof72°Cfor5minutes.Wecleanedtheresulting PCRproductwiththeMinElutePCRPurificationKit(Qiagen,Valencia,California).Sanger sequencingreactionswereperformedat10μLandcontained50ngoftemplateandBigDye 3.1.WeusedanABIPrism3730XLsequencer(AppliedBiosystems,FosterCity,CA,USA)and trimmedsequencesinSequencher4.7(GeneCodesCorp.,AnnArbor,MI). WealignedthesequencesforeachgeneusingM-coffeewebserverhostedbytheCentrefor GenomicRegulation[47,48].Wetestedforcongruenceofspeciespairwisedistancematrices derivedforthe3alignedgenesinthisstudybycalculatingKendall’sWstatisticofconcordance asimplementedbythefunction‘CADM’withinthepackage‘ape’inR[49].Afterrejectingthe nullhypothesisofincongruencebetweendistancematrices,weconcatenatedsequencesofthe 3genesforfurtheranalyses.Thefunction‘modelTest’inthepackage‘phangorn’wasusedto selectthebestnucleotidesubstitutionmodelfortheconcatenatedsequences[50].ModelSYM (symmetricalmodel;[51])+G(gammadistributedratevariation)wasselectedbasedonBIC values. Wegeneratedaphylogenyforour23speciesusingtheprogramBEAST[52],andprepared ourinputfileusingBEAuti[53].Weusedarelaxedlognormalmolecularclock[54],theYule speciationmodel[55,56],andRubusoccidentalisasanoutgroup.Weran5independentruns of50millionsteps,thinningtoevery1000trees.Weconfirmedconvergenceofeachrunwith Tracer,andfilteredthefirst10%eachgroupofrunsusingTreeAnnotator. Statisticalanalyses WeestimatedpairwiseSpearmanrank-correlationsbetweentheseedhandlingmetricsandall seed-traitvaluesinthisstudy.WealsocomputedMoran’sImetricofphylogeneticsignal[57] forallseedtraitsandevaluatedsignificancebypermutingseedtraitvaluesacrosstipsofthe phylogeny1000times.Forallfurtherstatisticalanalyses,weincludedthefollowingseedtraits inourseedtraitmatrix:percentlipids,percentcarbohydrates,percentproteins,caloricconcen- tration,dormancyperiod,loghardness,logshellthickness,loginteractionofhardnessand thickness,logkernelmass,logshellmass,andlogtanninconcentration.Naturallogtransfor- mationwasusedforseedtraitswithskeweddistributions.Beforelog-transformingtannin concentrations,alowvalueof0.35%TAEwasassignedtothe3seedswith0%TAEtoavoid undefinednumbers. Weincorporatedthephylogenyofhardwoodtreesintoourstatisticalanalysesusingtwo methods—variancepartitioninganalysesandphylogeneticPCA.Topartitionthevariationin eachseedhandlingmetricbetweenseedtraitsandphylogeneticrelationships,weusedphyloge- neticeigenvectorsandapartialregressionanalysisimplementedintheRpackage‘PVR’[58]. ThePVRmethodconvertsamatrixofdouble-centeredphylogeneticdistancesintoeigenvec- tors,whicharethenusedaspredictorstoexplainvariationinatraitofinterest.Thefirstfew eigenvectors,whichcapturemostofthevariationinthedistancematrix,representdifferences betweencladesattherootofthephylogeny.Subsequenteigenvectorscapturevariationamong taxaorgroupsclosertothetips.Selectionofalleigenvectorsaspredictorsinregressionsisnot necessaryandmayresultinlargeorinflatedR2values.Incontrast,selectionoftoofeweigen- vectorscanresultinresidualautocorrelationbecauseallofthephylogeneticdependenceisnot captured.Forouranalyses,weselectedphylogeneticeigenvectorsthatminimizeresidualauto- correlationasestimatedbyMoran’sI[59,60].ThePVRmethodthenusesthephylogenetic eigenvectorsandenvironmentalvariables(i.e.seedtraits)aspredictorsinapartialregression PLOSONE|DOI:10.1371/journal.pone.0130942 June25,2015 5/16 Phylogenetic&EcologicalDeterminantsofGraySquirrelForaging analysestopartitionthevariationinatrait.WeusedthePVRmethodtoobtainthevariation ineachseedhandlingmetric(handlingtimeanddistancestravelledpriortohandlingfor cachedandconsumedseeds)explainedbyseedtraitsalone,selectedphylogeneticeigenvectors alone,informationsharedbetweenseedtraitsandselectedphylogeneticeigenvectors,and finallyunexplainedfactors. Next,weidentifiedlinearcombinationsofseedtraitsthatexhibitautocorrelationswiththe hardwoodtreecladesobservedinourphylogeny.Weperformedaphylogeneticprincipalcom- ponentsanalysis(pPCA)usingtheAbouheifmethod(equivalenttoMoran’sImetric)ofcom- putingphylogeneticsignals[61].ThepPCAgroupsseedtraitsintopossible‘global’and‘local’ structuresgivenacandidatephylogenyandtraitsofinterest.The‘global’structuresconstitute pPCaxesthatarepositivelycorrelatedtocladesattherootofthephylogeny.Largepositive eigenvaluesrepresentaxesshowinglargevarianceandpositivephylogeneticautocorrelationor Moran’sI.Incontrast,‘local’structuresconstitutepPCaxesandtraitswithnegativephyloge- neticautocorrelationindicativeoftraitsthataredifferentbetweenrelatedtaxa.Largenegative eigenvaluesrepresentaxesexplainingalargevarianceandaxeswithanegativeMoran’sI. Together,theglobalandlocalpPCaxescansuggestspecificlifehistorystrategiesadoptedby thetaxa.WeperformedapPCAonourseedtraitmatrixusingthefunction‘ppca’inthepack- age‘adephylo’[62].Toensurethatinconsistenciesinthephylogenywerenotdrivingthe observedrelationships,wecollapsedsubcladesintogroupsandperformedthepPCAasecond time.Thecollapsedcladesinourphylogenyincluded-walnuts(Juglans),hickories(Carya), whiteoakgroup(QuercussectionQuercus),redoakgroup(QuercussectionLobatae),and chestnuts(Castanea).Inaddition,thetreecontainedthefollowingsingletontaxa—hazelnut (Corylusamericana),beechnut(Fagusgrandifolia)andtanoak(Notholithocarpusdensiflorus). WeretainedthefirstthreepPCaxes(2globaland1localasdeterminedbythesignofthe eigenvalue)explainingthehighestproportionofvariation.WetestedourselectedpPCaxesfor significantpositiveandnegativephylogeneticautocorrelationbyperformingAbouheif’stest onthePCscoresusingthe‘abouheif.moran’function.Finally,weregressedthe4squirrelseed handlingmetricsin4differentmultiplelinearregressionmodelsagainstour2globaland1 localpPCaxes.Plotsofresidualsindicatedunequalvariancesanddeparturesfromnormality, soweevaluatedsignificanceofpredictorsbypermutingtheresponsevariable1000timesand estimatingthenulldistributionofcoefficients.Finally,weperformedapost-hocPoisson regressiontopredictnumberoftrialswhereaconspecificinterferedwithseedhandlingusing our3pPCaxesaspredictors.Toevaluateifinterferencecausedanincreaseinhandlingtime, weperformedapairedt-testcomparingaveragetimesspenthandlingaseedtypewheninter- ferencewasnotobservedtowheninterferencewasnotobservedpoolingacrossseedtypes.All analyseswereperformedinR3.1.0. Results Werecorded272foragingtrials,whichincluded5–7seed-consumptionand4–6seed-caching trialsperseedtype(meanof5.04seed-consumptionand5.52seed-cachingtrials/seedtype). Fortanoak(N.densiflorus)4cachingtrialswererecorded.Forblackwalnut(J.nigra),thedis- tancetravelledtoconsumeaseedwascomputedfor4ofthe5consumptiontrials.Kernels weretypicallyconsumedorcached(S1Table). PairwiseSpearmanrankcorrelationsbetweenseedtraitsofthe23seedtypesrevealedsev- eralpatternsofcorrelationbetweengroupsofseedtraits(S3Table).Nutrientandperishabil- ity-relatedvariablessuchaspercentageofproteins,carbohydratesandlipidsinthekernel, caloricconcentration,anddormancyperiodwerepositivelycorrelated.Physicaldefensivetraits includinghardness,shellthickness,hardnessandthicknessinteraction,anddrymassofshell PLOSONE|DOI:10.1371/journal.pone.0130942 June25,2015 6/16 Phylogenetic&EcologicalDeterminantsofGraySquirrelForaging werealsopositivelycorrelated.Inaddition,lipidconcentrationwaspositivelycorrelatedto shellthicknessandhardness.Tanninconcentrationofkernelswascorrelatedtoproteincon- centrationanddormancyperiodonly(S3Table). WesuccessfullyextractedDNAfromplanttissuefor12taxaforwhichsequenceswerenot availableinGenBank(S6Table).Theconcatenateddatasetcontained1864sites,outofwhich 332wereparsimonyinformative.TopologyoftheBayesiantree(Fig1)issupportedbyother existingphylogeniesandcurrenttaxonomicclassificationofthehardwoodtreesspecies[63– 67].Inaddition,posteriorprobabilitiesassociatedwiththecladeswereusually>0.9.Weak nodesupportoccurredonlyatthetipsofthephylogenywithinthewhiteoakgroup(Quercus sectionQuercus),andthesplitofshagbarkandpignuthickory(CaryaglabraandCaryaovata, Fig1). Afterdeconstructingourphylogenyintoeigenvectors,weperformedvariancepartitioning toestimatetheproportionofsquirrelseedhandlinginvestmentsexplainedbyseedtraitsand phylogeny(Table1).Seedtraitvariationaloneexplainedbetween27and73%ofthevariation intheseedhandlingbehaviorofsquirrels.Phylogenyindepdentofthemeasuredtraits explained<6%ofallseedhandlingbehaviors.Fortimerequiredtoconsumeaseedanddis- tancetravelledtocacheaseed,thevariationexplainedbythecombinationofseedtraitswitha phylogeneticstructurewas44%and56%,respectively.Unexplainedvariationwasrelatively high(21%and32%)fordistancemovedtoconsumeaseedandtimerequiredtocacheaseed. The11seedattributesof23seedtypes(Fig2,S4Table)werereducedtothreephylogenetic principalcomponents(pPC),cumulativelyexplaining83.3%ofthetotalvariation.Weinter- pretedthefirstglobalpPCaxisasfamily-leveldifferencesbetweenseeds.Thisaxisaccounted for63.5%ofthetotalvariation.Percentageofcarbohydratesloadedhighlyandcontrastedwith Fig1.Bayesianmaximumcladecredibilitytreefor23hardwoodtreespeciesfromthefamilies Fagaceae,JuglandaceaeandBetulaceae,usingRubusoccidentalisasanoutgroup.Treeinferredfrom rbcL,matKandITSgenesequences.Posteriornodesupportindicatedbynodelabels. doi:10.1371/journal.pone.0130942.g001 PLOSONE|DOI:10.1371/journal.pone.0130942 June25,2015 7/16 Phylogenetic&EcologicalDeterminantsofGraySquirrelForaging Table1. Variancepartitioningresultsforeachsquirrelseedhandlingbehavior,includingtimetoconsume,distancetravelledtoconsume,timeto cache,anddistancetravelledtocacheaseed. Responsevariable Seedtraitsalone Combinedtraits&phylogeny Phylogenyalone Unexplained Timetoconsume 0.502 0.440 0.006 0.052 Distancetravelledtoconsume 0.731 0.055 0.000 0.214 Timetocache 0.409 0.213 0.058 0.320 Distancetravelledtocache 0.274 0.556 0.004 0.156 Valuesareproportionofvariation(R2)ofeachbehaviorexplainedbyseedtraitinformationalone,combinedinformationbetweenseedtraitand phylogeny,phylogeneticinformationalone,andunexplainedsourcesofvariation. doi:10.1371/journal.pone.0130942.t001 percentageoflipidsandshellthickness.ScoresfrompPC1werephylogeneticallyautocorre- lated(I=0.83,p=0.002),anddifferentiatedlipid-rich,thickshellseedsofJuglandaceaeand Betulaceaefromcarbohydrate-richFagaceae(Fig2).ThesecondglobalpPCaxisexplained 8.4%ofthevariation,andreflectedgenusandsection-leveldifferencesinseeds.Theaxisposi- tivelyloadedproteinconcentration,andnegativelyloadedtanninconcentrationanddormancy period.ScoresfrompPC2axiswerealsophylogeneticallyautocorrelated(I=0.36,p=0.004) andseparatedhighproteinJuglansseedsfromCaryaseedsandhighproteinCastaneaseeds fromlowdormancyQuercussectionQuercusseeds(Fig2).Finally,thethirdpPCaxisreflected kernelsizeofseedsandexplained12.4%ofthetotalvariation.Thisaxispositivelyloadedkernel andshellmassandnegativelyloadedenergyvalueofseed.ScoresfrompPC3werenotsignifi- cantlyphylogeneticallyautocorrelated(I=-0.12,p=0.694,Fig2).ThepPCaxesdidnot changesubstantiallyafterreducingthephylogenytoonlywell-establishedclades. TimerequiredtoconsumeaseedwaspredictedbythetwoglobalpPCaxesandthelocal pPCaxis(R2=0.76,Table2).Thedistancemovedtoconsumeaseedwaspositivelypredicted predominantlybythelocalpPCaxisandmarginallybythefirstglobalpPCaxis(R2=0.30, Table2).TimerequiredtocacheaseedwasnegativelypredictedbythefirstglobalpPCaxis andpositivelytothelocalpPCaxis(R2=0.43,Table2).Distancemovedtocacheaseedwas correlatednegativelywiththefirstglobalpPCaxisandpositivelywiththelocalpPCaxis (R2=0.76,Table2). Competitiveinterferencewasobservedin10seedtypes(range0–3trialsperseedtype)and wasobservedin3seed-cachingvideosand11seed-consumptionvideos.Numberoftrialsin whichconspecificinterferencewasobservedwasnotpredictedbyanyofthepPCaxes.The meanhandling(consumptionand/orcaching)timedidnotdifferwithinaseedtypebetween trialsinwhichinterferencewasobservedandtrialswhereinterferencewasnotobserved (Pairedt-testt=0.22,df=10,P=0.95). Discussion Ourresultsprovideevidencethatforaginginvestmentsareinfluencedbyamixtureofseed traitsthatarephylogeneticallyautocorrelated(massofshell,hardnessofshell,shellthickness, lipidconcentrations,andcarbohydrateconcentrations)andthosethatarenot(kernelsizeand tanninconcentrations,seeTable2,S5Table).Wesuggestthattheseresultssupporttheexis- tenceofadiffusecoevolutionaryrelationshipbetweeneasterngraysquirrelsandhardwood treeseeds. Byincorporatingphylogeneticinformation,wefoundthatgraysquirrelforaginginvest- mentsareinfluencedtodifferentdegreesbyseedtraitinformation,phylogeneticrelatednessof hardwoodtreesandunexplainedsourcesofvariation.Distancemovedtoconsumeaseedand timetocacheaseedshowedarelativelyhighdegreeofunexplainedvariationinthevariance PLOSONE|DOI:10.1371/journal.pone.0130942 June25,2015 8/16 Phylogenetic&EcologicalDeterminantsofGraySquirrelForaging Fig2.Biplotsofseedtraitsandscoresof23hardwoodtreespeciesobtainedfromaphylogenetic principalcomponentsanalysis(pPCA).Distributionofhardwoodtreespeciesacrossthefirst2‘global’ pPCaxes(A).Distributionoftreespeciesacrossthefirst‘global’andthird‘local’pPCaxes(B).Separationof speciesbelongingtofamiliesJuglandaceaeandBetulaceae(symbols:squareanduprighttriangle)from Fagaceae(symbols:circlesandinvertedtriangle)isobservedacrossphylogeneticallyautocorrelatedpPC1. SeparationofJuglans(grayfilledsquare)fromCarya(blackfilledsquare)andseparationofCastanea(black filledcircle)fromQuercussectionQuercus(opencircle)andQuercussectionLobatae(grayfilledcircle)is seenacrosspPC2.Thethirdaxisisnotsignificantlyphylogeneticallyautocorrelatedandspeciesarenot differentiatedbytaxonomiccladesacrosspPC3.BiplotsalsoincludeNotholithocarpusdensiflorus(inverted graytriangle)andFagusgrandifolia(invertedopentriangle).Biplotarrowsplottedonlyforseedtraitswith loadingsgreaterthan75thpercentileofabsoluteloadings(pPCloadingsand75thpercentilecutoffinS4 Table). doi:10.1371/journal.pone.0130942.g002 PLOSONE|DOI:10.1371/journal.pone.0130942 June25,2015 9/16 Phylogenetic&EcologicalDeterminantsofGraySquirrelForaging Table2. Regressionsofsquirrelforagingbehavior(timetoconsume,distancetravelledtoconsume,timetocache,anddistancetravelledto cacheaseed)against3phylogeneticPCaxes(pPC1,pPC2,pPC3). Responsevariable Predictor Slope t-statistic p-value Timetoconsumeaseed Intercept 9.216 7.039 0.000 pPC1 -3.112 -6.208 0.000 pPC2 4.196 3.039 0.006 pPC3 2.843 2.388 0.033 Distancemovedtoconsumeaseed Intercept 6.048 5.341 0.072 pPC1 -0.736 -1.699 0.090 pPC2 -0.007 -0.006 0.994 pPC3 2.460 2.389 0.039 Timetocacheaseed Intercept 2.090 10.044 0.039 pPC1 -0.220 -2.864 0.016 pPC2 0.130 0.614 0.544 pPC3 0.507 2.133 0.047 Distancemovedtocacheaseed Intercept 26.283 12.400 0.000 pPC1 -5.263 -6.757 0.000 pPC2 0.437 0.204 0.840 pPC3 8.742 3.621 0.002 Estimatesofslope,t-statisticandp-valueareprovidedforeachpredictor.Boldfacedepictsvaluesofp<0.05;italicsdepict0.05(cid:1)p<0.10. doi:10.1371/journal.pone.0130942.t002 partitioninganalyses,suggestingthatthesemetricsmaybeinfluencedtoarelativelygreater degreebyvariablesnotmeasuredinthisstudy.Adifferentpatternofvariancepartitioningwas observedfortimerequiredtoconsumeaseedanddistancetocacheaseed,bothofwhichare behaviorsrelatedtocachingdecisionsandseedsurvival.Specifically,seedswithlargehandling timesmaybecachedmoreoften,increasingthepossibilityofgerminationandestablishment, andseedscachedatlongdistancesmayescapedensity-dependentsourcesofmortality [16,17,18,68].Thesebehaviorswereexplainedtoalargeextentbythesharedinformationin seedtraitsandphylogeny(Table1),suggestingpossiblecoevolutionbetweenhardwoodtrees andeasterngraysquirrels. Coevolutionresultsfrominteractionsthatoccuroverlongtimescalesandshouldextendto ancestralstatesexistingpriortodifferentiationofgenera[36].OurpPCAmethodsallowedus todeterminewhichseedtraitvariantscorrespondtofamilyandgenus-leveldifferentiations amongour23hardwoodtreespecies.ByregressingsquirrelforaginginvestmentsagainstpPC axes,weindirectlydeterminedifgraysquirrelsaresensitivetofamilyorgenus-levelseedtrait variations. Family-levelseedtraitdifferencesweremoreimportantinpredictinggraysquirrelbehavior thangenus-orsection-leveldifferences.Theearliestsplitobservedinourhardwoodtreephy- logenycorrespondstotheseparationofJuglandaceaeandBetulaceaefromFagaceae(Fig1), whichcoincideswithtwodifferentstrategiesofmakingseeds(assuggestedbytheglobalpPC1 axis)—lipid-richandthickshelledseedsinJuglandaceaeandBetulaceae,asopposedtothin- shelledbutcarbohydrate-richFagaceaeseeds(Fig2).Specifically,squirrelstravelfartherto cacheandinvestmoretimecaching/consuminglipid-richandthick-shelledJuglandaceaeand Betulaceaeseeds(Table2),potentiallyimprovingseedsurvivalandfitnessofthesetrees.The secondpPCaxis,describingdifferencesinseedtraitsbetweengeneraandsectionclades,was alsoincludedasapredictorinourregressionanalysesbutpositivelyexplainedonlytimeto PLOSONE|DOI:10.1371/journal.pone.0130942 June25,2015 10/16
Description: