Geophysical Journal International Geophys.J.Int. (2011)184,1037–1057 doi:10.1111/j.1365-246X.2010.04910.x Segmented African lithosphere beneath the Anatolian region inferred P from teleseismic -wave tomography C. Berk Biryol,1 Susan L. Beck,1 George Zandt1 and A. Arda O¨zacar2 1DepartmentofGeosciences,UniversityofArizona,Tucson,AZ,USA.E-mail:[email protected] s c 2GeologicalEngineeringDepartment,MiddleEastTechnicalUniversity,Ankara,Turkey ni o t c e t Accepted2010November29.Received2010November19;inoriginalform2010July9 d nD ao w sn SUMMARY micloa d LithosphericdeformationthroughoutAnatolia,apartoftheAlpine–Himalayanorogenicbelt, ae iscontrolledmainlybycollision-relatedtectonicescapeoftheAnatolianPlateandsubduction dynd from roll-back along the Aegean Subduction Zone. We study the deeper lithosphere and mantle eo h structure of Anatolia using teleseismic, finite-frequency, P-wave traveltime tomography. We Gttp s uAspepdroaxtaimfarotemlys3e4ve0r0a0l tPem-wpaovrearryelaatnivdepterramvealntiemnet sreesisidmuiaclsn,emtweoasrkusreddeipnlomyeudltiipnlethfreeqreugeinocny. GJI://aca d bands, are inverted using approximate finite-frequency sensitivity kernels. Our tomograms e m revealsegmentedfastseismicanomaliesbeneathAnatoliathatcorrespondstothesubducted ic .o portion of the African lithosphere along the Cyprean and the Aegean trenches. We identify u p theseanomaliesasthesubductedAegeanandtheCyprusslabsthatareseparatedfromeach .co m other by a gap as wide as 300 km beneath Western Anatolia. This gap is occupied by slow /g velocityperturbationsthatweinterpretashotupwellingasthenosphere.Theeasterntermina- ji/a tionofthesubductingAfricanlithosphereislocatednearthetransitionfromcentralAnatolia rtic le totheEasternAnatolianPlateauorArabian–Eurasiancollisionfrontthatisunderlainbylarge -a b volumesofhot,underplatingasthenospheremarkedbyslowvelocityperturbations.Ourtomo- stra gramsalsoshowfastvelocityperturbationsatshallowdepthsbeneathnorthwesternAnatolia c t/1 that sharply terminates towards the south at the North Anatolian Fault Zone (NAFZ). The 8 4 associatedvelocitycontrastacrosstheNAFZpersistsdowntoadepthof100–150km.Hence, /3 /1 ourstudyisthefirsttoinvestigateandinterprettheverticalextentofdeformationalongthis 0 3 7 nascenttransformplateboundary. /6 2 Overall,theresolvedupper-mantlestructureofAnatoliaisdirectlyrelatedwiththegeology 3 6 3 and tectonic features observed at the surface of the Anatolian Plate and suggest that the 6 b segmentednatureofthesubductedAfricanlithosphereplaysanimportantroleintheevolution y g ofAnatoliaanddistributionofitstectonicprovinces. u e s Key words: Mantle processes; Seismic tomography; Transform faults; Subduction zone t on processes;Continentalmargins:convergent;Dynamicsoflithosphereandmantle. 29 M a rc h 2 0 1 9 tantroleinthetectonicdevelopmentoftheregion(Bozkurt2001, 1 INTRODUCTION Fig.1). AnatoliaisapartoftheAlpine–Himalayanorogenicbelt,formed The processes of collision-related tectonic escape of the Ana- bydiscretecoalescedpiecesofcontinentallithosphereamalgamated tolian Plate and the subduction roll-back taking place along the duringtheCenozoicclosureandterminalsuturingofthenorthern AegeanSubductionZone(ASZ)resultedindifferentstylesoflitho- andsouthernbranchesoftheNeotethysOcean(S¸engo¨r&Yılmaz sphericdeformationthroughouttheregion.Basedonthesedeforma- 1981; Go¨ru¨r et al. 1984; Robertson & Dixon 1984; S¸engo¨r et al. tionstyles,theAnatolianregioncanbesubdividedintofourtectonic 1984). The recent tectonics of the region is controlled by north- provincesasdescribedbyS¸engo¨retal.(1985):theEastAnatolian wardcollisionoftheArabianPlateandwestwardextrusionofthe contractional,theNorthAnatolian,theCentralAnatolianandthe AnatolianPlatealongtheNorthAnatolianandEastAnatolianFault WestAnatolianextensionalprovinces(Fig.1). Zones(NAFZandEAFZ,respectively).Inaddition,thenorthward Intheframeworkoftheseprovinces,theAegeanandtheCyprean subductionofAfricanlithospherealongthesouthwestwardretreat- trenchesplayakeyroleinthedistributionofthetectonicregimes ingAegeantrenchandobstructedCypreantrenchplaysanimpor- withintheEasternMediterraneanregion.Studiesshowedthatthe (cid:2)C 2011TheAuthors 1037 GeophysicalJournalInternational(cid:2)C 2011RAS 1038 C.B.Biryoletal. D o w n lo a d e d fro m h ttp s ://a c a d e m ic .o u p .c o m Figure1. Locationmapofthestudyareaandthemajortectonicandgeologicalfeaturesoftheregion.Thedistributionoftheseismicstationsusedinourstudy /g isalsoshown.ThethickwhitearrowsshowsthemotiondirectionsoftheassociatedplateswithrespecttoEurasia(McCluskyetal.2003).Theapproximate ji/a boundariesbetweenzonesofdifferenttectonicdeformationstyles(differenttectonicprovinces)areindicatedwiththickdashedlines.Theseprovincesare rtic EACP,EasternAnatolianContractionalProvince;CAP,CentralAnatolianProvince;WAEP,WesternAnatolianExtensionalProvince;NAP,NorthAnatolian le-a Province(modifiedfromBarka&Reilinger1997;Bozkurt2001).TheyellowregionshowstheIspartaAngle(IA)andthegreyregionsshowtheAntalya b s andCiliciaBasins(ABandCB,respectively).NAFZ,NorthAnatolianFaultZone;EAFZ,EastAnatolianFaultZone;DSFZ,DeadSeaFaultZone;FBFZ, tra c Fethiye-BurdurFaultZone;SF,Sultandag˘Fault. t/1 8 4 /3 Cypreantrenchislessactiveintermsofseismicitycomparedtothe EurasianPlatetothenorth.Followingtheclosureofthesouthern /1 0 Aegeantrench(Wdowinskietal.2006).Basedonthelarge-scale branchofNeotethysduringthemiddleMioceneN–Scontractionin 3 7 tomographicmodelofPiromallo&Morelli(2003),Faccennaetal. theregiongavewaytotheformationandwidespreaddistribution /6 2 3 (2006)describedthesubductingportionoftheAfricanlithosphere ofleft-andright-lateralconjugatestrike-slipfaultsduringtheearly 6 3 betweensouthwesternAnatoliaandtheCyprusIslandaslesswell Pliocene(∼5Ma).Recentgeophysicalinvestigationsintheregion 6 b definedandverticallydiscontinuous.Faccennaetal.(2006)further revealedthincrustandmantlelithospherebeneaththeEasternAna- y g observedthattheseismicvelocityanomalyrelatedwiththisslab- tolianPlateau(EAP,Fig.1,Tu¨rkellietal.1996;Sandvoletal.1998; u e likestructuredisappearscompletelyeastofCyprus.Manystudies Go¨ketal.2000;Al-Lazkietal.2003;Zoretal.2003;Angusetal. st o point out that subduction along the Cyprus section of the trench 2006;O¨zacaretal.2008,2010b).Basedontheseobservationsand n 2 isinfluencedbythecollisionoftheEratosthenesSeamount(apart geochemicalanalysisofigneousrocksexposedintheEAP,ithas 9 M of the African promontory) with the Cyprean trench (Robertson beenproposedthattheupliftoftheplateauisassociatedwiththe a 1994,1998;Robertson&Grasso1995;Glover&Robertson1998, steepeningandbreak-offofthenorthwardsubductingArabianlitho- rch Fig.1). sphere(∼11Ma).Consequently,theupwellinghotasthenosphere 20 1 To investigate the relationship between the distribution of the replaced theslab,givingway torecent volcanismand supporting 9 majorgeologicalandtectonicfeaturesassociatedwiththetectonic the 2-km-high plateau (Keskin 2003; S¸engo¨r et al. 2003). This provincesandtheupper-mantlestructurebeneathAnatolia,wecar- eventalsomarksadramaticchangeinthestressfieldthroughout ried out seismic tomography analysis in this region. Our aim in theEAP,assuggestedbyKoc¸yig˘itetal.(2001)andO¨rgu¨lu¨ etal. thisstudywastoprovidebetterconstraintsonthestructureofthe (2003).TeleseismictomographystudiesbyLei&Zhao(2007)indi- subductingAfricanlithospherealongboththeAegeantrenchand catedthepresenceofadetachedslablocatedatdepthsasshallowas particularlytheCypreantrench. 180kmbeneaththeEAP.However,amorerecentteleseismictomog- raphystudybyZor(2008)indicatedthepresenceofthedetached slabat∼600kmdepth. TheNorthAnatolianProvince(NAP)isthearealocatedtothe 1.1 Tectonicsetting northoftheNAFZandischaracterizedbynearlyE–Wstrikingdex- TheEastAnatolianContractionalProvince(EACP)ischaracterized tralstrike-slipfaults.ThebasementoftheNorthernAnatoliancrust byN–SconvergencebetweentheArabianPlatetothesouthandthe isrelativelyold,withvariablymetamorphosed,intenselydeformed (cid:2)C 2011TheAuthors,GJI,184,1037–1057 GeophysicalJournalInternational(cid:2)C 2011RAS SegmentedlithospherebeneathAnatolia 1039 and imbricated Precambrian to Late Palaeozoic rocks associated theAksufaultcontrolstheNEmarginoftheAntalyaforearcbasin with the closure of Paleotethys (Aydın et al. 1986; Okay 1996; onthewestsideandthesouthernmarginoftheCiliciaforearcbasin Go¨ru¨retal.1997;Deanetal.2000).Itiscommonlyagreedthatthe ontheeastside(Aksuetal.2005;˙Is¸leretal.2005,Fig.1).Recent NAFZfollowstheNeotethyansuturealongthenorthernmarginof onshoreandoffshoreanalysisofthestructuresandsedimentshosted the Anatolian Plate (Koc¸yig˘it, 1996; Bozkurt 2001; S¸engo¨r et al. bythesebasinsdocumentedachangeinstressfieldintheregion 2005).Therearemanystudiesontheageandthetotaloffsetofthe duringthelatestphaseofdeformation. dextralNAFZ.ThelateststudiesindicatesthatNAFZisfairlyyoung The northern tip of the Isparta angle defines the boundary be- (∼5–7Ma)andaccommodatesoffsetsintherangeof∼25–85km tween the Western Anatolia Extensional Province (WAEP) and along its different segments (Koc¸yig˘it 1991; Bozkurt & Koc¸yig˘it the Central Anatolia Province (Barka & Reilinger 1997; Glover 1996;Barkaetal.2000;Bozkurt2001;S¸engo¨retal.2005).Several & Robertson 1998; Bozkurt 2001, Fig. 1). The Western Anatolia geophysicalstudiesfromthewesternNAParoundtheMarmaraSea ProvinceischaracterizedbyN–Sextensionandrelatedformationof (Fig.1)reportedcrustalthicknessestimatesrangingbetween25and grabensboundedbyroughlyE–Wstrikingnormalfaults(Taymaz 30kmaroundtheMarmaraSea(Gu¨rbu¨z&U¨c¸er1980;Laigleetal. etal.1991;Jacksonetal.1992;Jackson1994).Theageandcause 2008; Becel et al. 2009). Karahan et al. (2001) reported crustal of the crustal extension in Aegean region is a subject of ongoing D thicknessestimatesof39kmfromtheeasternMarmararegion.In debate. Proposed explanations include tectonic escape (Dewey & o w arecentstudy,O¨zacaretal.(2010a)reportedcrustalthicknessesin S¸engo¨r1979;S¸engo¨r1979;S¸engo¨retal.1985;Go¨ru¨retal.1995), n lo theorderof35–40kmforthecentralNAP.UnliketheEAPandthe subductionroll-back(Mckenzie1978;LePichon&Angelier1979) a d EACP,thedeeperstructureoftheremainingpartsoftheNAPisnot and orogenic collapse (Seyitog˘lu & Scott 1991; Seyitog˘lu et al. ed wellconstrainedduetothelackofgeophysicalinvestigations. 1992).Thetectonicescapemodelsuggeststhattheextensioninthe fro m The Central Anatolian Province (CAP) is a wedge-like region westiscontrolledbythewestwardextrusionoftheAnatoliaPlate h thatisboundedbytheNAFZtothenorthandEAFZtothesouth- alongtheNAFZandEAFZsince12Ma(Bozkurt2001,Fig.1).The ttp s east,andthatextrudeswestwardalongthesestructures(Fig.1).The subductionroll-backmodelsuggeststhatSWretreatoftheAegean ://a central part of this region is characterized by generally SW–NE trenchresultsinbackarcextensioninAegeanregionandWestern c a striking,widelyspaced,oblique-slipfaultswithdextralandsinis- Anatolia (Fig. 1). The orogenic collapse model proposes that the de m tralcomponents.Someofthesestructuresarethoughttoberelated extensionisduetothecollapseandthinningofthethickenedcrust ic toearlierdeformationphasesthatwerereactivatedduetotheN–S following the closure of the Neotethys ocean. The controversial .o u convergencebetweentheAfricanandAnatolianPlatesandthean- agesfortheextensionrangesbetween5and60Madependingon p.c ticlockwise rotation of the Anatolian block (S¸engo¨r et al. 1985; thecontrollingmechanisminvoked(Bozkurt2001).Severalstud- om Reilingeretal.1997;Bozkurt2001;Taymazetal.2007a,b).The iesonthecrustalseismicpropertiesoftheWAEPindicatedcrustal /g presenceofdiffusefaultzonesinthecentralpartofthisprovince thicknesses ranging between 28 and 35 km (Kalafat et al. 1987; ji/a manifestsitselfwithaflattertopographycomparedtoWesternAna- Saunders et al. 1998; Sodoudi et al. 2006; Zhu et al. 2006). Re- rtic le tolianExtensionalProvinceandEACP.Thisregionisalsocharac- sultsofregionalseismictomographyindicatethepresenceofthe -a b terizedby∼13MatoRecentpost-collisionrelatedvolcanismthat steeplydippingEasternMediterraneanlithosphereunderneaththe stra wasfollowedbyemplacementofseveralstratovolcanoes(Pasquare Aegeanregion,favouringtheideathatsubductionroll-backplays c etal.1988;Notsuetal.1995).Recently,thenorthernandcentral an important role in the evolution of the region (Spakman et al. t/1 8 4 partsofthisprovincewerestudiedindetailusingPn tomography. 1988;Faccennaetal.2003;Piromallo&Morelli2003;Faccenna /3 Results indicate the presence of anomalously slow P velocities etal.2006).ThecentralpartofthisprovinceischaracterizedbyLate /1 n 0 (<7.8 km s−1) located at the eastern edge of this province (Gans MioceneandPliocenevolcanism(Yılmaz1990;Delaloye&Bingo¨l 37 etal.2009).Thesouthwesternedgeofthisprovinceisknownasthe 2000;Yılmazetal.2001).Recentgeochemicalstudiesshowedthat /62 3 ‘IspartaAngle’(IAonFig.1). theevolutionofthesevolcanicscouldbeassociatedwithavertical 6 3 TheIspartaAngleisatectonicallycomplexzoneconsistingof tearinthesubductingMediterraneanlithosphere(deBoorderetal. 6 b SE-andSW-vergentallochthonsthatwereemplacedduringmultiple 1998; Tokc¸aer et al. 2005; Dilek & Altunkaynak 2009; Dilek & y g tectonicphasesbetweentheLateCretaceousandtheLateMiocene Sandvol2009). ue s (S¸engo¨r & Yılmaz 1981; Robertson et al. 2003; Robertson et al. t o 2009).ThiszoneisboundedbytheNW–SEstrikingSultandag˘Fault n 2 (SF)tothe east(Boray etal. 1985) and transtensional left-lateral 2 DATA AND METHOD 9 M NE–SW trending Fethiye-Burdur Fault Zone (FBFZ) to the west a rc (Dumont etal. 1979;Taymaz &Price1992;Price&Scott1994, Seismictomographyisanimportanttoolininvestigatingtheman- h 2 Fig. 1). The southernmost, offshore part of the Isparta angle is tle structure beneath an array of seismic stations. The mantle 0 1 markedbytheAnaximanderMountains.Thisregionofpronounced structure beneath the Mediterranean region has been studied by 9 sea floor relief with an anticlinal core is a part of the Anatolian Spakman(1985),Bijwaardetal.(1998)andPiromallo&Morelli Plate and is located at the cusp where the Aegean and western (2003)usingseismictomography.Thesestudiescoveredbroadre- Cyprustrenches(FlorenceRise)meet(Zitteretal.2003;tenVeen gionsandhence,hadlimitationsinresolvingfiner-scalestructures. etal.2004,Fig.1).Inadditiontothesestructures,thecomplexity TherecentimprovementsinthegeographicalcoverageofNational of the region is further accentuated by the presence of the Late EarthquakeMonitoringCenter(NEMC)seismographicnetworkof Pliocene–Recent Aksu-Kyrenia thrust at the centre of the Isparta Turkey(Kalafatetal.2008)andseveraltemporaryseismicdeploy- Angle(McCallum&Robertson1995;Poissonetal.2003,Fig.1); mentshavemadeitpossibletoimprovetheresolutionandquality thismarksthelatestchangeintectonictranslationdirectionswithin oftheseismicstudiesfortheAnatoliaregion.Westudiedasmaller thiszone(Poissonetal.2003).TheregionoftheIspartaAnglehosts partoftheEasternMediterraneanregionatafinerscaleusingtele- several basin bounding grabens, half-grabens and transtensional seismic P-wave tomography with finite-frequency approximation faults of various sizes (ten Veen et al. 2004; Alc¸ic¸ek et al. 2005; (Fig. 1). Although the narrower geographical span of the studied Verhaertetal.2006,Fig.1).Inthesouth,theoffshoresegmentof regionlimitsthemaximumdepthfortheresolvablestructures,we (cid:2)C 2011TheAuthors,GJI,184,1037–1057 GeophysicalJournalInternational(cid:2)C 2011RAS 1040 C.B.Biryoletal. Events Ray Coverage Hypocenter depth N (km) 0 50 100 150 30° 200 W E 250 300 90° D S 1000 ow 150° Number n of Rays loa Events used for picking P arrivals de d Events used for picking PKPdf arrivals fro Location of the study area m h Figure2. (a)Globaldistributionoftheteleseismiceventsusedinourstudy.(b)Thebackazimuthalcoverageofallthearrivals(rays)picked. ttps ://a c a d cangetfinerresolutionatshallowerdepthswhencomparedtolarger residuals).Thisisinagreementwiththermsvaluesforindividual e m regionalstudies. frequencybandsthatareallwithin0.54–0.58s. ic Ray theory is used to calculate traveltime corrections for the .ou p observedrelativetraveltimeresidualstoaccountforcrustalhetero- .c o geneities(Schmandt&Humphreys2010).Weincorporatedcrustal m 2T20.h11ebDtrraoavatedalbtiamneddanatdasthhoartt-wpeerhioadveseuissemdicinstoautiroannsablyelsoisngcionmgetsofmrouml- &tshtuiUcd¨kic¸enesersa1sn9ad8n0fdr;ovKmelaolrcaeifctayetievesettriamflu.an1tec9st8ifo7rn;oGmanu¨sareblvyu¨eszrisa&lfdoEerevtphanesesrie1sgm9i9oic1n;s(oTGuu¨nu¨rdrkbienu¨llgzi /gji/article tipleseismographicnetworksoperatedintheregionbetween1999 etal.1996;Sandvoletal.1998;Saundersetal.1998;Karahanetal. -a b and2009.ThesenetworksaretheNationalEarthquakeMonitoring 2001;Zoretal.2003;Sodoudietal.2006;Zhuetal.2006;Laigle stra Centernetwork(NEMC)(bothshortperiodandbroadbanddeploy- etal.2008;Beceletal.2009;O¨zacaretal.2010a,b)tocalculate c ments)(Kalafatetal.2008),GlobalSeismographicNetwork(GSN), correctiontimes.Thermsforthesecrustalcorrectionsis0.08and t/18 4 EasternTurkeyPassiveSeismicExperiment(ETSE)(Tu¨rkellietal. afterthecorrectionsthermsoftherelativetraveltimeresidualsis /3 2003),Geophone(GE),WesternAnatoliaSeismicRecordingEx- 0.55,whichisnearlythesamevalueasthermsbeforethecrustal /10 periment (WASRE) (Zhu et al. 2006) and our North Anatolian corrections. This might be due to the lack of a direct correlation 37 Faultpassiveseismicexperimentnetwork(NAF)(Gansetal.2009, betweenobservedtraveltimeresidualsandthecrustalcorrections. /62 3 Fig.1). Inaddition,thisalsoshowsthatthemajorpartoftheseismic-speed 63 Weusedarrivaltimedatafrom409teleseismiceventswithmag- anomalyexistsinthemantle. 6 b nitudesMw>5.0locatedatdistancesof30–90◦fordirectPphases y g and155–180◦forPKPdfphases(Fig.2a).Weusedthemultichannel ue s carrorisvsa-lcsorarnedlactiaolncutleacthendiqreuseidoufaPlatvimlises&wVitehrnroensp(e2c0t1t0o)IfAorSpPi9c1k.inAg 2.2 Method t on 2 totalof33771directPand219PKPdfphaseswerepickedonver- The seismic arrivals observed on seismic records have a finite- 9 M ticalcomponentsofbroadbandrecordsinthreefrequencybands,to frequencybandwidthandtheirtraveltimesaresensitivetoseismic a rc incorporatethemeasuredtraveltimeresidualsinafinite-frequency speedvariationswithinthevolumesurroundingthegeometricalray h 2 approximation.Thepassbandfiltersthatweusedhavecornerfre- path(Woodward1992;Marqueringetal.1999;Dahlenetal.2000; 0 1 quencies of 0.2–0.8 Hz (short period), 0.1–0.4 Hz (intermediate Hungetal.2000;Zhaoetal.2000).Theseismicwaveswithdifferent 9 period)and0.04–0.16Hz(longperiod)forbroadbandrecords.The frequencycontentshavedifferentFresnelzonewidthsandthusthey picksassociatedwiththeshort,intermediateandlongperiodbands sampledifferentvolumesofmediumsurroundingthegeometrical constitute34,36and27percentoftheentiredataset,respectively. raypath. Thedatafromshort-periodstationsarefilteredonlywithapassband Inthisstudy,weusedtheteleseismictomographyalgorithmof filterwithcornerfrequencies0.5–1.5Hzandthissubsetconstitutes Schmandt&Humphreys(2010),whichincorporatestheuseoffre- only3percentoftheentiredatasetduetothelowerqualityofthe quencydependent3-Dsensitivitykernels.Theuseofthesekernels teleseismicrecords.Toavoidanydirectionalbiasinourresults,we helpsustoaccountforvolumetricvariationsinwavespeedswhen optimizedthebackazimuthaldistributionoftheobservedresiduals calculatingthevelocityperturbationsinthetomographymodel.The (Fig.2b).Themeasuredtraveltimeresidualswerethendemeaned usageofsensitivitiesislimitedtothefirstFresnelzone.Bornthe- foreacheventtoobtaintherelativetraveltimeresiduals.Thermsof oretical‘banana–doughnut’kernelapproximationofDahlenetal. theobservedrawrelativeresidualsis0.56s(alsoseeAppendixA1, (2000)isusedtocalculatethesesensitivities.Thesensitivityker- intheSupportingInformation,fordistributionofrelativetraveltime nelsareapproximatedasafunctionofthedominantperiodofthe (cid:2)C 2011TheAuthors,GJI,184,1037–1057 GeophysicalJournalInternational(cid:2)C 2011RAS SegmentedlithospherebeneathAnatolia 1041 seismicarrival,epicentraldistance,distancesnormaltotheraypath eventtermsis∼0.02,alsosmallcomparedtotheoverallrmsofthe and along the ray path and ray centred azimuth. Details of this dataset. algorithm are explained in Schmandt & Humphreys (2010). We preferthistomographicalgorithmbecauseitallowsustoincorpo- ratemeansofinterpretingthefrequencydependenceoftraveltime 2.3 Modelparametrization data,makingbetteruseofbroadbandrecordsanditintroducesan intrinsicsmoothnessconstraintfortomographythroughtheuseof Theregionthatwestudiedcoversanareaapproximately1100km approximate sensitivity kernels (see Appendices C1, C2 and C3, (E–W)×900km(N–S)andouraveragestationspacingisroughly inSupportingInformation,forcomparisonofsingle-frequencyand 50 km (Fig. 1). This region is parametrized with an irregularly integratedthree-bandfrequencytomographicmodelsforourdata spaced3-Drectangulargridthatstartsat35kmdepthandextends set).Inaddition,thesensitivitykernelapproximationusedinthis downto655kmdepth.Thelateralnodespacingatthetopofthis algorithmhasahighcomputationalefficiency. volume varies from 35 to 50 km, with denser spacing (35 km) Smoothingisappliedontheapproximatedsensitivitykernelsto present only at the central to outer central parts of the seismic accountforgeometricalraylocationuncertaintynormaltotheray array.Towardstheedgesofthemodelledvolume,thenodespacing D andalongtheraypath.Gradientandnormdampingarealsoused increasesgraduallyupto50kmtoaccountfortheeffectsofreduced o w toregularizetheinverseproblem.Thegradientdampingalgorithm resolutionpowerattheedges(Fig.3a).Theverticalnodespacing n lo incorporates variations of ray path-normal damping weights as a increases from 35 to 50 km with increasing depth. Similarly, the a d functionofdepthtoaccountfortheincreasingangleofinclination horizontal node spacing gradually increases from 35 to 48 km at ed ofthemeanraypath.Normdamping,ontheotherhand,attempts thecentreofthemodel(50to70kmattheedges)fromthetopof fro m to obtain the model with smallest possible perturbations satisfy- themodeltothebottom(Fig.3b).Suchdilationsinnodespacing h ingthetraveltimedata,whilestronglydown-weightinganomalies as a function of depth constitute a more efficient parametrization ttp s thatareweaklysampledbytheobservedsetofrays(Schmandt& approach,astheFresnelzonewidthincreaseswithdepthwhereas ://a Humphreys2010).TheinverseproblemissolvedusingtheLSQR the resolution decreases. Our parametrized model has a total of c a methodofPaige&Saunders(1982)withanobjectiveofminimizing 41 808 nodes with 67 (latitudinal)-by-39 (longitudinal) nodes in de m theleast-squaresmisfitbetweencalculatedandobserveddatainan 16layers. ic iterativesequence.Weperformedtrade-offanalysisbetweenEuclid- Toestimatetheresolvingpowerofourinversionwithourdataset, .o u ianmodelnormandvariancereductiontodeterminethesmoothing weinvestigatedoursamplingofthemodelspace.Forthispurpose, p.c weightandtheoveralldampingfactor(Menke1989).Indeed,our we calculated hit quality maps for each depth layer of our model om testsshowedthatthevariationinvariancereductionsforinversions space(Figs4a–d).Thesenormalizedhitqualitymapsarebasedon /g withslightlyvarying(±1.0)dampingandsmoothingweightswere densityofsamplingofeachnodeinagivenlayer,wherethequality ji/a small (see Appendix A4, in Supporting Information, for various isalsoafunctionofthebackazimuthaldistributionofthesampling rticle smoothing/damping trade-off plots and Appendix B1 and B2 for rays. The function governing the assignment of hit quality index -a b comparisonofresultsobtainedusingdifferentsmoothing/damping iscustom-builtbasedontheideathatbetterresolutioninseismic stra parameters).Weobtainedanrmsof0.1fortheresidualsafterthe tomographyisprovidedbyraysfromvariousdirectionsintersecting c inversionwithfavouredvaluesofdamping(6)andsmoothening(7), at high angles (Schmandt & Humphreys 2010) (see Appendix D, t/18 achievingavariancereductionof∼81percent. in Supporting Information, for a summary table). Thus, a quality 4/3 Eventhoughcrustalcorrectionsareappliedtotheobservedrela- of1indicatesthattheassociatednodeissampledbyatleastfive /1 0 3 tivetraveltimeresiduals,stationtermsareincludedforeachstation rays from each of the four geographical quadrants (NE, SE, SW 7 intheinversiontoaccountforthesmall-scalelocalvariationsand andNW)andaqualityof0indicatesthattheassociatednodeisnot /62 3 errorsinincorporatedcrustalthicknessesandvelocities.Therms sampled.ThemapsinFig.4showusthatbetternodesamplingis 6 3 for these terms is ∼0.09, which is small compared to the rms of restrictedtonodeslocateddirectlybeneaththeindividualstations 6 b the entire data set (0.55), showing that these terms explain only atshallowerdepths(Fig.4a),particularlyforthetoplayer(35km y g asmallfractionof thedata. Indeed, strongdamping isapplied to depth), due to the near vertical incidence of teleseismic arrivals ue s stationtermstoavoidanyabsorptionofmantlestructurebythese thatclusteraroundthestations.Thus,thebroad-scaleresolutionis t o terms. We tested the case where no crustal traveltime corrections poorforthistoplayer.Further,thislayercompensatesfortheerrors n 2 wereappliedtotherawdata.Inthiscase,weobservedthattherms in crustal corrections and poorly constrained variations in upper 9 M forthestationstatictermsincreasedby∼0.05.Thisindicatesthat mantle. Hence, in the following sections where we discuss and a rc thestationstatictermseffectivelyaccountsforthevaryingshallow interpret the resolved perturbations in our model, we will ignore h 2 structureinthestudyarea. anomalies resolved in this layer. In deeper parts of the modelled 0 1 Eventtermsarealsocalculatedrepresentingtheadjustmentofthe volume,the‘good’hitqualityregionsspreadouttocoveralmost 9 meanarrivaltimeforthesetofstationsthatrecordedeachevent(see theentirestudyregion(Figs4bandc).Atthebottomofthemodel, AppendicesA2andA3,inSupportingInformation,fordistribution however,duetothereductioninsamplingdensityattheedgesofthe ofstationandeventterms).Ourdatasetiscomposedoftraveltime model,thebettersampledportionsarelimitedtothecentralparts datafrompatchworkofregionalseismicnetworkssomeofwhichare ofthestudyarea(Fig.4d).Wealsoobserveapersistentpatternof notconcurrentintime.Thismightintroducetheproblemofshifts relativelylowerqualitiesincentralpartsatshallowerdepths(Figs4a in calculated mean traveltime residuals between these networks andb),whichisanartefactofwiderstationspacingintheseportions that were deployed at geographically different parts of the study ofthestudyarea. area. However, both the incorporation of the event terms in the Inadditiontothequalityofsamplingofmodelspace,weinves- inversion and usage of data from long-operating, spatially well- tigated the resolution in our model area through synthetic tests. distributed/envelopingnetworkssuchasNEMCandGSN(Fig.1) Our synthetic tests involve layers with ‘checkerboard’ type ve- helpustoaccountforvariationsorshiftsinmeanvelocitystructure locity anomalies embedded in a neutral background. With this indifferentportionsofthestudyarea.Thecalculatedrmsforthe setup,weaimedtoplaceconstraintsonthelateral(Figs5a–d)and (cid:2)C 2011TheAuthors,GJI,184,1037–1057 GeophysicalJournalInternational(cid:2)C 2011RAS 1042 C.B.Biryoletal. km 42° N 60 55 40° N 50 45 38° N 40 36° N 35 30 34° N D 25° E 30° E 35° E 40° E 45° E ownlo a d e d fro m h ttp s ://a c a d e m ic .o u pth p.co e m D /g ji/a rtic le -a b s tra c t/1 8 10 15 20 25 30 35 40 45 50 55 60 4/3 Longitude /1 0 3 7 Figure3. Nodeandlayerspacinginourparametrizedmodel.(a)Lateralnodespacingat60kmdepth.(b)Layersandnodespacingofourparametrizedmodel /6 onaverticlesectionalong39◦latitude.Reddiamondsshowsthestationsusedinthisstudy.Notethedilationinnodespacingbothtowardstheedgesandwith 23 6 increasingdepth. 3 6 b y vertical(Figs5eandf)resolvingpowerofourdatasetwithinthe is recovered as an anomaly of ±1.8 per cent within the resolved gu e parametrized model. The volume of each perturbation in the lay- model.Thepeakamplituderecoveryis78percent.Thelossesin s ers of the checkerboard is defined by cube of two nodes (eight amplituderecoveryduringtheinversionprocessarealsoaconse- t on nodestotal).Hence,thelateralandverticalextentsoftheindividual quenceofapplieddamping,smoothingandimperfectraycoverage. 29 anomalies vary as a function of position in the model and dilate Theverticalcross-sectionsalsoshowsomedilationandstreaking M a with depth (Figs 5e and f) and towards the edges in accord with of the recovered perturbations at the edges of the model due to rc h the dilation in node spacing within the model (Figs 3 and 5a–d). sparse sampling. Although the reliability of these resolution tests 2 0 Theintensitiesoftheinputperturbationsare−3and+3percent islimitedbythebasictomographicassumptions(i.e.isotropicand 19 forslowandfastanomalies,respectively.Theseanomaliesaresep- elastic mantle, well constrained ray locations at depth, accurate arated by a cube of two nodes belonging to neutral background. traveltime sensitivity kernels), the recovery of the pattern of per- Figs5(a1–f1)showstheinputsyntheticstructureandrecoveryof turbationsinourresolutiontestindicatesthatweshouldbeableto it after inversion (Figs 5a2–f2). The results of this test show that retrievemajorupper-mantlestructures(i.e.subductedlithosphere, our resolution is good within the modelled volume and the study plumes)usingthedatasetathandandthepreferredparametrized area. However, there is some amplitude decay and dilation in re- model. In the following section, we will show results from addi- covered perturbations due to minimum-length solution objective tional resolution tests on specific features that emerge from the of the inversion procedure and subvertical incidence of teleseis- inversion. mic rays (Schmandt & Humphreys 2010). The inversion for the Itisimportanttokeepinmindtheresultsofthehitqualityand synthetic model achieved 60 per cent amplitude recovery of the checkerboardresolutiontestswheninterpretingthemodelledveloc- inputperturbationswithinthecentralpartsofthemodel.Inother ityperturbations,toavoidmisinterpretationofanomalieslocatedin words, a ±3.0 per cent perturbation in the input synthetic model regionsofthemodelthatarepoorlyresolved. (cid:2)C 2011TheAuthors,GJI,184,1037–1057 GeophysicalJournalInternational(cid:2)C 2011RAS SegmentedlithospherebeneathAnatolia 1043 42° N N 42° N N 40° N 40° N 38° N 38° N 36° N 36° N 60 km depth 130 km depth 34° N 25° E 30° E 35° E 40° E 45° E NHoitr-qmuaalliiztey1d.0 34° N 25° E 30° E 35° E 40° E 45° E 0.8 0.6 42° N N 0.4 42° N N D o 40° N 0.2 40° N wnlo a 38° N 0.0 38° N ded 36° N 36° N from 34° N 25° E 30° E 35° E 40° E2 40 km 4d5e° Ep th 34° N 25° E 30° E 35° E 40° E5 55 km d45e° pEt h https://a c a Figure4. Normalizedhitqualitymapsforourdatasetandparametrizedmodelatvariousdepths(plotsa–d).Hitqualityisbasedonthenumberandazimuthal de distributionofrays.Redshadingindicatesgoodhitquality(1onscale)andblueshadingshowspoorhitquality(0onscale)foreachnode.Whitediamonds m ic showthestationsusedinthisstudy.Notethatthespreadingofthepatternofbetterhitqualitiesatdeeperpartsofthemodel. .o u p .c o m 3 RESULTS featuresoftheresolvedmodelandresultsoftherealisticanomaly /g recoveryanalysisfortestingtherobustnessofresolvedfeatures. ji/a 3.1 Inversion The most significant feature of the resultant model is the fast rtic le The data variance reduction is a common way of assessing the anomalies located to the north of the Aegean and the Cyprean -ab trenches (Figs 6a–d and 7b and c). Overall, these fast anomalies s quality of the least squares solution to the tomographic inverse haveameanperturbationof+1.7percentwithintheentiremodel tra problem. As pointed out by Schmandt & Humphreys (2010), the and they shift in a northerly direction as a function of increasing ct/1 overallvariancereductionfortheentiremodelledvolumegivesa 8 depth.ThegeneralstrikesoftheseanomaliesareroughlyNWonthe 4 ratheroptimisticestimateowingtothefactthatthesetupofthefor- /3 AegeansideandE–WontheCypreanside.Theindividualmean /1 wardproblemheavilyreliesontheaprioriassumptions(i.e.elastic, 0 perturbations for Aegean and Cyprean anomalies above 450 km 3 isotropic upper mantle, accurate ray locations) and the resolution depthare+1.8and+1.7percent,respectively.Thesetwoanoma- 7/6 ofthesolutionshowsvariationsthroughoutthemodelledvolume. 23 liesareseparatedbyanN–Strendingvolumeofslowperturbation 6 Asreportedearlier,weobtainedanoveralldatavariancereduction locatedbetween28◦ and30◦ longitudes(Figs6a–eand7eandf). 36 of 81 per cent after the inversion. This indicates that the resul- Thisslowanomalyhasameanperturbationof−1.4percent.We by tant model successfully explains most of the observed traveltime g can also observe relatively fast anomalies (mean perturbation of u rtheseidoubaslesr.vTedo dteastta,hsoawmpsulicncgestshfeulwlyelol-urresroelsvoeldvepdarmtso,dweleeaxdpolpatiends +1.6 per cent) located to the north of the NAFZ at the western est o andeasternpartsofthestudyarea(Figs6aandb).However,these n the same approach as Schmandt & Humphreys (2010), calculat- 2 anomalies are only observed at shallower depths (Figs 7c and d). 9 ing the variance reduction for the portions of the model that are M The rest of the resultant model mostly contains scattered, small- a denselysampledandwellresolvedwithahitqualitygreaterthan scaleandweakerslowvelocityperturbations.Thepatternsofslow rch 0.4 (i.e. rays from at least two backazimuth quadrants, excluding anomalies, however, are more persistent and continuous beneath 20 thetopandbottomtwolayers).Weobtainedavariancereductionof 1 eastern Anatolia (Figs 6a–d and 7d and e). The mean amplitude 9 73percentforthe‘highquality’partsoftheresolvedmodel.This of the ‘blob’ of slow velocity anomaly beneath the EAP is −1.5 shows that major portion of the observed traveltime residuals is per cent. At depths below 500 km, the separated fast anomalies explainedwithinthewell-sampled,well-resolvedpartofthemodel, throughoutthestudyareamergetoformacontinuous,WNW–ESE althoughaminorportionofitisresolvedasprobableartificialhet- trendingbelt(meanperturbationof+1.7percent)thatoccupiesthe erogeneitiesatthepoorlysampled,poorlyconstrainedpartsofthe deeper,northernportionsoftheresolvedmodel(Figs6f–hand7e). model(i.e.edgesofthemodel),duetotheobjectiveofleastsquares Theverticalslices(cross-sections)thatcutacrossthestudyarea inversiontominimizethelengthofthesolution. showthedippingfastanomaliesassociatedwiththeAegeanandthe Cypreantrenches(Figs7bandc).Wealsoobserveacleareastern terminationofthefastanomalyassociatedwiththeCypreantrench 3.2 Tomograms at∼34◦Elongitude(Fig.7f).Alonglatitude37◦N,theslowanomaly The resultant tomograms are shown in Figs 6 (map views) and 7 thatseparatestheAegeanandtheCypreananomaliesextenddown (cross-sections).Inthissection,wesummarizethemostprominent todepthsof300km(Fig.7f).Itbecomesclearonthecross-sections (cid:2)C 2011TheAuthors,GJI,184,1037–1057 GeophysicalJournalInternational(cid:2)C 2011RAS 1044 C.B.Biryoletal. D o w n lo a d e d fro m h ttp s ://a c a d e m ic .o u p .c o m /g ji/a rtic le -a b s tra c t/1 8 4 /3 /1 0 3 7 /6 2 3 6 3 6 b y g u e s t o n 2 9 M a rc h 2 0 1 9 Figure5. Resultsoftheresolutiontestspresentedintheformofhorizontalslices(plotsa–d)andvertical(latitudinal)cross-sections(plotseandf).Theeffects ofverticalstreakingcanbeseenatshallowerdepths(a1anda2).Thelateralresolutionisgenerallygoodbutthereissomeamplitudedecay.Theopentriangles showthelocationofstations. (cid:2)C 2011TheAuthors,GJI,184,1037–1057 GeophysicalJournalInternational(cid:2)C 2011RAS SegmentedlithospherebeneathAnatolia 1045 D o w n lo a d e d fro m h ttp s ://a c a d e m ic .o u p .c o m /g ji/a rtic le -a b s tra c t/1 8 4 /3 /1 0 3 7 /6 2 3 6 3 6 b y g u e s t o n 2 9 M a rc h 2 0 1 Figure6. Horizontalslicesatdepthsbetween60and605km(plotsa–h)fromtheresultanttomographymodel.Openstarsindicatethestationsusedinour 9 study.Thedark-shadedareasremainingoutsideofthewhitedashedlinearepoorlyresolvedportionsofthemodelwithhitqualitieslessthan∼0.2. thatthesedippingfastanomaliesmergeatdepthsof∼500kmand indicatedthepresenceofadiscontinuous,northwarddippingfast starts flattening out close to the bottom of the mantle transition anomalyinthisregion.Althoughourresolvingpowerandhitquality zone(660km)(Figs6gandhand7f).Atthewesternpartofthe isgoodinthisportionofthestudyarea,wedonotobservesuchafast studyarea,theshallowfastanomalieslocatednorthoftheNAFZ structure. This discrepancy between the two tomographic models extendtodepthsof100–150kmandterminaterathersharplyatthe mightbeduetothedifferencesinstylesofsamplingofthemodelled downwardprojectedtraceoftheNAFZ(Figs6aandb).Intheeast, volumeofuppermantle.Asitismentionedearlier,wehomogenized weobserveconsistentslowanomaliesbeneaththeEAPthatextend thebackazimuthalraycoverageofourdatasettoavoidunwanted to depths of 300–400 km (Figs 6d and f). This is in agreement inversionartefactssuchassmearingofimagedseismicanomalies withtheresultsfromarecentteleseismictomographystudybyZor alongtheraypaths.Intheirstudy,Lei&Zhao(2007)usedraysfrom (2008).AnearlierseismictomographystudybyLei&Zhao(2007) dominantlyeastbackazimuthswhichmighthaveintroducedsome (cid:2)C 2011TheAuthors,GJI,184,1037–1057 GeophysicalJournalInternational(cid:2)C 2011RAS 1046 C.B.Biryoletal. D o w n lo a d e d fro m h ttp s ://a c a d e m ic .o u p .c o m /g ji/a rtic le -a b s tra c t/1 8 4 /3 /1 0 3 7 /6 2 3 6 3 6 b y g u e s t o n 2 9 M a rc h 2 0 1 9 Figure7. Theresultanttomographymodelalongvariouslongitudinal(plotsb–d)andlatitudinalcross-sections(plotseandf).Topographicprofilesarealso shownatthetopofeachslice(with10×verticalexaggeration).Numberedredlinesonthemapinthetoppanel(plota)showlocationsofthecross-sections. (cid:2)C 2011TheAuthors,GJI,184,1037–1057 GeophysicalJournalInternational(cid:2)C 2011RAS
Description: