ebook img

Segmented African lithosphere beneath the Anatolian region inferred from teleseismic Pwave ... PDF

21 Pages·2011·3.42 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Segmented African lithosphere beneath the Anatolian region inferred from teleseismic Pwave ...

Geophysical Journal International Geophys.J.Int. (2011)184,1037–1057 doi:10.1111/j.1365-246X.2010.04910.x Segmented African lithosphere beneath the Anatolian region inferred P from teleseismic -wave tomography C. Berk Biryol,1 Susan L. Beck,1 George Zandt1 and A. Arda O¨zacar2 1DepartmentofGeosciences,UniversityofArizona,Tucson,AZ,USA.E-mail:[email protected] s c 2GeologicalEngineeringDepartment,MiddleEastTechnicalUniversity,Ankara,Turkey ni o t c e t Accepted2010November29.Received2010November19;inoriginalform2010July9 d nD ao w sn SUMMARY micloa d LithosphericdeformationthroughoutAnatolia,apartoftheAlpine–Himalayanorogenicbelt, ae iscontrolledmainlybycollision-relatedtectonicescapeoftheAnatolianPlateandsubduction dynd from roll-back along the Aegean Subduction Zone. We study the deeper lithosphere and mantle eo h structure of Anatolia using teleseismic, finite-frequency, P-wave traveltime tomography. We Gttp s uAspepdroaxtaimfarotemlys3e4ve0r0a0l tPem-wpaovrearryelaatnivdepterramvealntiemnet sreesisidmuiaclsn,emtweoasrkusreddeipnlomyeudltiipnlethfreeqreugeinocny. GJI://aca d bands, are inverted using approximate finite-frequency sensitivity kernels. Our tomograms e m revealsegmentedfastseismicanomaliesbeneathAnatoliathatcorrespondstothesubducted ic .o portion of the African lithosphere along the Cyprean and the Aegean trenches. We identify u p theseanomaliesasthesubductedAegeanandtheCyprusslabsthatareseparatedfromeach .co m other by a gap as wide as 300 km beneath Western Anatolia. This gap is occupied by slow /g velocityperturbationsthatweinterpretashotupwellingasthenosphere.Theeasterntermina- ji/a tionofthesubductingAfricanlithosphereislocatednearthetransitionfromcentralAnatolia rtic le totheEasternAnatolianPlateauorArabian–Eurasiancollisionfrontthatisunderlainbylarge -a b volumesofhot,underplatingasthenospheremarkedbyslowvelocityperturbations.Ourtomo- stra gramsalsoshowfastvelocityperturbationsatshallowdepthsbeneathnorthwesternAnatolia c t/1 that sharply terminates towards the south at the North Anatolian Fault Zone (NAFZ). The 8 4 associatedvelocitycontrastacrosstheNAFZpersistsdowntoadepthof100–150km.Hence, /3 /1 ourstudyisthefirsttoinvestigateandinterprettheverticalextentofdeformationalongthis 0 3 7 nascenttransformplateboundary. /6 2 Overall,theresolvedupper-mantlestructureofAnatoliaisdirectlyrelatedwiththegeology 3 6 3 and tectonic features observed at the surface of the Anatolian Plate and suggest that the 6 b segmentednatureofthesubductedAfricanlithosphereplaysanimportantroleintheevolution y g ofAnatoliaanddistributionofitstectonicprovinces. u e s Key words: Mantle processes; Seismic tomography; Transform faults; Subduction zone t on processes;Continentalmargins:convergent;Dynamicsoflithosphereandmantle. 29 M a rc h 2 0 1 9 tantroleinthetectonicdevelopmentoftheregion(Bozkurt2001, 1 INTRODUCTION Fig.1). AnatoliaisapartoftheAlpine–Himalayanorogenicbelt,formed The processes of collision-related tectonic escape of the Ana- bydiscretecoalescedpiecesofcontinentallithosphereamalgamated tolian Plate and the subduction roll-back taking place along the duringtheCenozoicclosureandterminalsuturingofthenorthern AegeanSubductionZone(ASZ)resultedindifferentstylesoflitho- andsouthernbranchesoftheNeotethysOcean(S¸engo¨r&Yılmaz sphericdeformationthroughouttheregion.Basedonthesedeforma- 1981; Go¨ru¨r et al. 1984; Robertson & Dixon 1984; S¸engo¨r et al. tionstyles,theAnatolianregioncanbesubdividedintofourtectonic 1984). The recent tectonics of the region is controlled by north- provincesasdescribedbyS¸engo¨retal.(1985):theEastAnatolian wardcollisionoftheArabianPlateandwestwardextrusionofthe contractional,theNorthAnatolian,theCentralAnatolianandthe AnatolianPlatealongtheNorthAnatolianandEastAnatolianFault WestAnatolianextensionalprovinces(Fig.1). Zones(NAFZandEAFZ,respectively).Inaddition,thenorthward Intheframeworkoftheseprovinces,theAegeanandtheCyprean subductionofAfricanlithospherealongthesouthwestwardretreat- trenchesplayakeyroleinthedistributionofthetectonicregimes ingAegeantrenchandobstructedCypreantrenchplaysanimpor- withintheEasternMediterraneanregion.Studiesshowedthatthe (cid:2)C 2011TheAuthors 1037 GeophysicalJournalInternational(cid:2)C 2011RAS 1038 C.B.Biryoletal. D o w n lo a d e d fro m h ttp s ://a c a d e m ic .o u p .c o m Figure1. Locationmapofthestudyareaandthemajortectonicandgeologicalfeaturesoftheregion.Thedistributionoftheseismicstationsusedinourstudy /g isalsoshown.ThethickwhitearrowsshowsthemotiondirectionsoftheassociatedplateswithrespecttoEurasia(McCluskyetal.2003).Theapproximate ji/a boundariesbetweenzonesofdifferenttectonicdeformationstyles(differenttectonicprovinces)areindicatedwiththickdashedlines.Theseprovincesare rtic EACP,EasternAnatolianContractionalProvince;CAP,CentralAnatolianProvince;WAEP,WesternAnatolianExtensionalProvince;NAP,NorthAnatolian le-a Province(modifiedfromBarka&Reilinger1997;Bozkurt2001).TheyellowregionshowstheIspartaAngle(IA)andthegreyregionsshowtheAntalya b s andCiliciaBasins(ABandCB,respectively).NAFZ,NorthAnatolianFaultZone;EAFZ,EastAnatolianFaultZone;DSFZ,DeadSeaFaultZone;FBFZ, tra c Fethiye-BurdurFaultZone;SF,Sultandag˘Fault. t/1 8 4 /3 Cypreantrenchislessactiveintermsofseismicitycomparedtothe EurasianPlatetothenorth.Followingtheclosureofthesouthern /1 0 Aegeantrench(Wdowinskietal.2006).Basedonthelarge-scale branchofNeotethysduringthemiddleMioceneN–Scontractionin 3 7 tomographicmodelofPiromallo&Morelli(2003),Faccennaetal. theregiongavewaytotheformationandwidespreaddistribution /6 2 3 (2006)describedthesubductingportionoftheAfricanlithosphere ofleft-andright-lateralconjugatestrike-slipfaultsduringtheearly 6 3 betweensouthwesternAnatoliaandtheCyprusIslandaslesswell Pliocene(∼5Ma).Recentgeophysicalinvestigationsintheregion 6 b definedandverticallydiscontinuous.Faccennaetal.(2006)further revealedthincrustandmantlelithospherebeneaththeEasternAna- y g observedthattheseismicvelocityanomalyrelatedwiththisslab- tolianPlateau(EAP,Fig.1,Tu¨rkellietal.1996;Sandvoletal.1998; u e likestructuredisappearscompletelyeastofCyprus.Manystudies Go¨ketal.2000;Al-Lazkietal.2003;Zoretal.2003;Angusetal. st o point out that subduction along the Cyprus section of the trench 2006;O¨zacaretal.2008,2010b).Basedontheseobservationsand n 2 isinfluencedbythecollisionoftheEratosthenesSeamount(apart geochemicalanalysisofigneousrocksexposedintheEAP,ithas 9 M of the African promontory) with the Cyprean trench (Robertson beenproposedthattheupliftoftheplateauisassociatedwiththe a 1994,1998;Robertson&Grasso1995;Glover&Robertson1998, steepeningandbreak-offofthenorthwardsubductingArabianlitho- rch Fig.1). sphere(∼11Ma).Consequently,theupwellinghotasthenosphere 20 1 To investigate the relationship between the distribution of the replaced theslab,givingway torecent volcanismand supporting 9 majorgeologicalandtectonicfeaturesassociatedwiththetectonic the 2-km-high plateau (Keskin 2003; S¸engo¨r et al. 2003). This provincesandtheupper-mantlestructurebeneathAnatolia,wecar- eventalsomarksadramaticchangeinthestressfieldthroughout ried out seismic tomography analysis in this region. Our aim in theEAP,assuggestedbyKoc¸yig˘itetal.(2001)andO¨rgu¨lu¨ etal. thisstudywastoprovidebetterconstraintsonthestructureofthe (2003).TeleseismictomographystudiesbyLei&Zhao(2007)indi- subductingAfricanlithospherealongboththeAegeantrenchand catedthepresenceofadetachedslablocatedatdepthsasshallowas particularlytheCypreantrench. 180kmbeneaththeEAP.However,amorerecentteleseismictomog- raphystudybyZor(2008)indicatedthepresenceofthedetached slabat∼600kmdepth. TheNorthAnatolianProvince(NAP)isthearealocatedtothe 1.1 Tectonicsetting northoftheNAFZandischaracterizedbynearlyE–Wstrikingdex- TheEastAnatolianContractionalProvince(EACP)ischaracterized tralstrike-slipfaults.ThebasementoftheNorthernAnatoliancrust byN–SconvergencebetweentheArabianPlatetothesouthandthe isrelativelyold,withvariablymetamorphosed,intenselydeformed (cid:2)C 2011TheAuthors,GJI,184,1037–1057 GeophysicalJournalInternational(cid:2)C 2011RAS SegmentedlithospherebeneathAnatolia 1039 and imbricated Precambrian to Late Palaeozoic rocks associated theAksufaultcontrolstheNEmarginoftheAntalyaforearcbasin with the closure of Paleotethys (Aydın et al. 1986; Okay 1996; onthewestsideandthesouthernmarginoftheCiliciaforearcbasin Go¨ru¨retal.1997;Deanetal.2000).Itiscommonlyagreedthatthe ontheeastside(Aksuetal.2005;˙Is¸leretal.2005,Fig.1).Recent NAFZfollowstheNeotethyansuturealongthenorthernmarginof onshoreandoffshoreanalysisofthestructuresandsedimentshosted the Anatolian Plate (Koc¸yig˘it, 1996; Bozkurt 2001; S¸engo¨r et al. bythesebasinsdocumentedachangeinstressfieldintheregion 2005).Therearemanystudiesontheageandthetotaloffsetofthe duringthelatestphaseofdeformation. dextralNAFZ.ThelateststudiesindicatesthatNAFZisfairlyyoung The northern tip of the Isparta angle defines the boundary be- (∼5–7Ma)andaccommodatesoffsetsintherangeof∼25–85km tween the Western Anatolia Extensional Province (WAEP) and along its different segments (Koc¸yig˘it 1991; Bozkurt & Koc¸yig˘it the Central Anatolia Province (Barka & Reilinger 1997; Glover 1996;Barkaetal.2000;Bozkurt2001;S¸engo¨retal.2005).Several & Robertson 1998; Bozkurt 2001, Fig. 1). The Western Anatolia geophysicalstudiesfromthewesternNAParoundtheMarmaraSea ProvinceischaracterizedbyN–Sextensionandrelatedformationof (Fig.1)reportedcrustalthicknessestimatesrangingbetween25and grabensboundedbyroughlyE–Wstrikingnormalfaults(Taymaz 30kmaroundtheMarmaraSea(Gu¨rbu¨z&U¨c¸er1980;Laigleetal. etal.1991;Jacksonetal.1992;Jackson1994).Theageandcause 2008; Becel et al. 2009). Karahan et al. (2001) reported crustal of the crustal extension in Aegean region is a subject of ongoing D thicknessestimatesof39kmfromtheeasternMarmararegion.In debate. Proposed explanations include tectonic escape (Dewey & o w arecentstudy,O¨zacaretal.(2010a)reportedcrustalthicknessesin S¸engo¨r1979;S¸engo¨r1979;S¸engo¨retal.1985;Go¨ru¨retal.1995), n lo theorderof35–40kmforthecentralNAP.UnliketheEAPandthe subductionroll-back(Mckenzie1978;LePichon&Angelier1979) a d EACP,thedeeperstructureoftheremainingpartsoftheNAPisnot and orogenic collapse (Seyitog˘lu & Scott 1991; Seyitog˘lu et al. ed wellconstrainedduetothelackofgeophysicalinvestigations. 1992).Thetectonicescapemodelsuggeststhattheextensioninthe fro m The Central Anatolian Province (CAP) is a wedge-like region westiscontrolledbythewestwardextrusionoftheAnatoliaPlate h thatisboundedbytheNAFZtothenorthandEAFZtothesouth- alongtheNAFZandEAFZsince12Ma(Bozkurt2001,Fig.1).The ttp s east,andthatextrudeswestwardalongthesestructures(Fig.1).The subductionroll-backmodelsuggeststhatSWretreatoftheAegean ://a central part of this region is characterized by generally SW–NE trenchresultsinbackarcextensioninAegeanregionandWestern c a striking,widelyspaced,oblique-slipfaultswithdextralandsinis- Anatolia (Fig. 1). The orogenic collapse model proposes that the de m tralcomponents.Someofthesestructuresarethoughttoberelated extensionisduetothecollapseandthinningofthethickenedcrust ic toearlierdeformationphasesthatwerereactivatedduetotheN–S following the closure of the Neotethys ocean. The controversial .o u convergencebetweentheAfricanandAnatolianPlatesandthean- agesfortheextensionrangesbetween5and60Madependingon p.c ticlockwise rotation of the Anatolian block (S¸engo¨r et al. 1985; thecontrollingmechanisminvoked(Bozkurt2001).Severalstud- om Reilingeretal.1997;Bozkurt2001;Taymazetal.2007a,b).The iesonthecrustalseismicpropertiesoftheWAEPindicatedcrustal /g presenceofdiffusefaultzonesinthecentralpartofthisprovince thicknesses ranging between 28 and 35 km (Kalafat et al. 1987; ji/a manifestsitselfwithaflattertopographycomparedtoWesternAna- Saunders et al. 1998; Sodoudi et al. 2006; Zhu et al. 2006). Re- rtic le tolianExtensionalProvinceandEACP.Thisregionisalsocharac- sultsofregionalseismictomographyindicatethepresenceofthe -a b terizedby∼13MatoRecentpost-collisionrelatedvolcanismthat steeplydippingEasternMediterraneanlithosphereunderneaththe stra wasfollowedbyemplacementofseveralstratovolcanoes(Pasquare Aegeanregion,favouringtheideathatsubductionroll-backplays c etal.1988;Notsuetal.1995).Recently,thenorthernandcentral an important role in the evolution of the region (Spakman et al. t/1 8 4 partsofthisprovincewerestudiedindetailusingPn tomography. 1988;Faccennaetal.2003;Piromallo&Morelli2003;Faccenna /3 Results indicate the presence of anomalously slow P velocities etal.2006).ThecentralpartofthisprovinceischaracterizedbyLate /1 n 0 (<7.8 km s−1) located at the eastern edge of this province (Gans MioceneandPliocenevolcanism(Yılmaz1990;Delaloye&Bingo¨l 37 etal.2009).Thesouthwesternedgeofthisprovinceisknownasthe 2000;Yılmazetal.2001).Recentgeochemicalstudiesshowedthat /62 3 ‘IspartaAngle’(IAonFig.1). theevolutionofthesevolcanicscouldbeassociatedwithavertical 6 3 TheIspartaAngleisatectonicallycomplexzoneconsistingof tearinthesubductingMediterraneanlithosphere(deBoorderetal. 6 b SE-andSW-vergentallochthonsthatwereemplacedduringmultiple 1998; Tokc¸aer et al. 2005; Dilek & Altunkaynak 2009; Dilek & y g tectonicphasesbetweentheLateCretaceousandtheLateMiocene Sandvol2009). ue s (S¸engo¨r & Yılmaz 1981; Robertson et al. 2003; Robertson et al. t o 2009).ThiszoneisboundedbytheNW–SEstrikingSultandag˘Fault n 2 (SF)tothe east(Boray etal. 1985) and transtensional left-lateral 2 DATA AND METHOD 9 M NE–SW trending Fethiye-Burdur Fault Zone (FBFZ) to the west a rc (Dumont etal. 1979;Taymaz &Price1992;Price&Scott1994, Seismictomographyisanimportanttoolininvestigatingtheman- h 2 Fig. 1). The southernmost, offshore part of the Isparta angle is tle structure beneath an array of seismic stations. The mantle 0 1 markedbytheAnaximanderMountains.Thisregionofpronounced structure beneath the Mediterranean region has been studied by 9 sea floor relief with an anticlinal core is a part of the Anatolian Spakman(1985),Bijwaardetal.(1998)andPiromallo&Morelli Plate and is located at the cusp where the Aegean and western (2003)usingseismictomography.Thesestudiescoveredbroadre- Cyprustrenches(FlorenceRise)meet(Zitteretal.2003;tenVeen gionsandhence,hadlimitationsinresolvingfiner-scalestructures. etal.2004,Fig.1).Inadditiontothesestructures,thecomplexity TherecentimprovementsinthegeographicalcoverageofNational of the region is further accentuated by the presence of the Late EarthquakeMonitoringCenter(NEMC)seismographicnetworkof Pliocene–Recent Aksu-Kyrenia thrust at the centre of the Isparta Turkey(Kalafatetal.2008)andseveraltemporaryseismicdeploy- Angle(McCallum&Robertson1995;Poissonetal.2003,Fig.1); mentshavemadeitpossibletoimprovetheresolutionandquality thismarksthelatestchangeintectonictranslationdirectionswithin oftheseismicstudiesfortheAnatoliaregion.Westudiedasmaller thiszone(Poissonetal.2003).TheregionoftheIspartaAnglehosts partoftheEasternMediterraneanregionatafinerscaleusingtele- several basin bounding grabens, half-grabens and transtensional seismic P-wave tomography with finite-frequency approximation faults of various sizes (ten Veen et al. 2004; Alc¸ic¸ek et al. 2005; (Fig. 1). Although the narrower geographical span of the studied Verhaertetal.2006,Fig.1).Inthesouth,theoffshoresegmentof regionlimitsthemaximumdepthfortheresolvablestructures,we (cid:2)C 2011TheAuthors,GJI,184,1037–1057 GeophysicalJournalInternational(cid:2)C 2011RAS 1040 C.B.Biryoletal. Events Ray Coverage Hypocenter depth N (km) 0 50 100 150 30° 200 W E 250 300 90° D S 1000 ow 150° Number n of Rays loa Events used for picking P arrivals de d Events used for picking PKPdf arrivals fro Location of the study area m h Figure2. (a)Globaldistributionoftheteleseismiceventsusedinourstudy.(b)Thebackazimuthalcoverageofallthearrivals(rays)picked. ttps ://a c a d cangetfinerresolutionatshallowerdepthswhencomparedtolarger residuals).Thisisinagreementwiththermsvaluesforindividual e m regionalstudies. frequencybandsthatareallwithin0.54–0.58s. ic Ray theory is used to calculate traveltime corrections for the .ou p observedrelativetraveltimeresidualstoaccountforcrustalhetero- .c o geneities(Schmandt&Humphreys2010).Weincorporatedcrustal m 2T20.h11ebDtrraoavatedalbtiamneddanatdasthhoartt-wpeerhioadveseuissemdicinstoautiroannsablyelsoisngcionmgetsofmrouml- &tshtuiUcd¨kic¸enesersa1sn9ad8n0fdr;ovKmelaolrcaeifctayetievesettriamflu.an1tec9st8ifo7rn;oGmanu¨sareblvyu¨eszrisa&lfdoEerevtphanesesrie1sgm9i9oic1n;s(oTGuu¨nu¨rdrkbienu¨llgzi /gji/article tipleseismographicnetworksoperatedintheregionbetween1999 etal.1996;Sandvoletal.1998;Saundersetal.1998;Karahanetal. -a b and2009.ThesenetworksaretheNationalEarthquakeMonitoring 2001;Zoretal.2003;Sodoudietal.2006;Zhuetal.2006;Laigle stra Centernetwork(NEMC)(bothshortperiodandbroadbanddeploy- etal.2008;Beceletal.2009;O¨zacaretal.2010a,b)tocalculate c ments)(Kalafatetal.2008),GlobalSeismographicNetwork(GSN), correctiontimes.Thermsforthesecrustalcorrectionsis0.08and t/18 4 EasternTurkeyPassiveSeismicExperiment(ETSE)(Tu¨rkellietal. afterthecorrectionsthermsoftherelativetraveltimeresidualsis /3 2003),Geophone(GE),WesternAnatoliaSeismicRecordingEx- 0.55,whichisnearlythesamevalueasthermsbeforethecrustal /10 periment (WASRE) (Zhu et al. 2006) and our North Anatolian corrections. This might be due to the lack of a direct correlation 37 Faultpassiveseismicexperimentnetwork(NAF)(Gansetal.2009, betweenobservedtraveltimeresidualsandthecrustalcorrections. /62 3 Fig.1). Inaddition,thisalsoshowsthatthemajorpartoftheseismic-speed 63 Weusedarrivaltimedatafrom409teleseismiceventswithmag- anomalyexistsinthemantle. 6 b nitudesMw>5.0locatedatdistancesof30–90◦fordirectPphases y g and155–180◦forPKPdfphases(Fig.2a).Weusedthemultichannel ue s carrorisvsa-lcsorarnedlactiaolncutleacthendiqreuseidoufaPlatvimlises&wVitehrnroensp(e2c0t1t0o)IfAorSpPi9c1k.inAg 2.2 Method t on 2 totalof33771directPand219PKPdfphaseswerepickedonver- The seismic arrivals observed on seismic records have a finite- 9 M ticalcomponentsofbroadbandrecordsinthreefrequencybands,to frequencybandwidthandtheirtraveltimesaresensitivetoseismic a rc incorporatethemeasuredtraveltimeresidualsinafinite-frequency speedvariationswithinthevolumesurroundingthegeometricalray h 2 approximation.Thepassbandfiltersthatweusedhavecornerfre- path(Woodward1992;Marqueringetal.1999;Dahlenetal.2000; 0 1 quencies of 0.2–0.8 Hz (short period), 0.1–0.4 Hz (intermediate Hungetal.2000;Zhaoetal.2000).Theseismicwaveswithdifferent 9 period)and0.04–0.16Hz(longperiod)forbroadbandrecords.The frequencycontentshavedifferentFresnelzonewidthsandthusthey picksassociatedwiththeshort,intermediateandlongperiodbands sampledifferentvolumesofmediumsurroundingthegeometrical constitute34,36and27percentoftheentiredataset,respectively. raypath. Thedatafromshort-periodstationsarefilteredonlywithapassband Inthisstudy,weusedtheteleseismictomographyalgorithmof filterwithcornerfrequencies0.5–1.5Hzandthissubsetconstitutes Schmandt&Humphreys(2010),whichincorporatestheuseoffre- only3percentoftheentiredatasetduetothelowerqualityofthe quencydependent3-Dsensitivitykernels.Theuseofthesekernels teleseismicrecords.Toavoidanydirectionalbiasinourresults,we helpsustoaccountforvolumetricvariationsinwavespeedswhen optimizedthebackazimuthaldistributionoftheobservedresiduals calculatingthevelocityperturbationsinthetomographymodel.The (Fig.2b).Themeasuredtraveltimeresidualswerethendemeaned usageofsensitivitiesislimitedtothefirstFresnelzone.Bornthe- foreacheventtoobtaintherelativetraveltimeresiduals.Thermsof oretical‘banana–doughnut’kernelapproximationofDahlenetal. theobservedrawrelativeresidualsis0.56s(alsoseeAppendixA1, (2000)isusedtocalculatethesesensitivities.Thesensitivityker- intheSupportingInformation,fordistributionofrelativetraveltime nelsareapproximatedasafunctionofthedominantperiodofthe (cid:2)C 2011TheAuthors,GJI,184,1037–1057 GeophysicalJournalInternational(cid:2)C 2011RAS SegmentedlithospherebeneathAnatolia 1041 seismicarrival,epicentraldistance,distancesnormaltotheraypath eventtermsis∼0.02,alsosmallcomparedtotheoverallrmsofthe and along the ray path and ray centred azimuth. Details of this dataset. algorithm are explained in Schmandt & Humphreys (2010). We preferthistomographicalgorithmbecauseitallowsustoincorpo- ratemeansofinterpretingthefrequencydependenceoftraveltime 2.3 Modelparametrization data,makingbetteruseofbroadbandrecordsanditintroducesan intrinsicsmoothnessconstraintfortomographythroughtheuseof Theregionthatwestudiedcoversanareaapproximately1100km approximate sensitivity kernels (see Appendices C1, C2 and C3, (E–W)×900km(N–S)andouraveragestationspacingisroughly inSupportingInformation,forcomparisonofsingle-frequencyand 50 km (Fig. 1). This region is parametrized with an irregularly integratedthree-bandfrequencytomographicmodelsforourdata spaced3-Drectangulargridthatstartsat35kmdepthandextends set).Inaddition,thesensitivitykernelapproximationusedinthis downto655kmdepth.Thelateralnodespacingatthetopofthis algorithmhasahighcomputationalefficiency. volume varies from 35 to 50 km, with denser spacing (35 km) Smoothingisappliedontheapproximatedsensitivitykernelsto present only at the central to outer central parts of the seismic accountforgeometricalraylocationuncertaintynormaltotheray array.Towardstheedgesofthemodelledvolume,thenodespacing D andalongtheraypath.Gradientandnormdampingarealsoused increasesgraduallyupto50kmtoaccountfortheeffectsofreduced o w toregularizetheinverseproblem.Thegradientdampingalgorithm resolutionpowerattheedges(Fig.3a).Theverticalnodespacing n lo incorporates variations of ray path-normal damping weights as a increases from 35 to 50 km with increasing depth. Similarly, the a d functionofdepthtoaccountfortheincreasingangleofinclination horizontal node spacing gradually increases from 35 to 48 km at ed ofthemeanraypath.Normdamping,ontheotherhand,attempts thecentreofthemodel(50to70kmattheedges)fromthetopof fro m to obtain the model with smallest possible perturbations satisfy- themodeltothebottom(Fig.3b).Suchdilationsinnodespacing h ingthetraveltimedata,whilestronglydown-weightinganomalies as a function of depth constitute a more efficient parametrization ttp s thatareweaklysampledbytheobservedsetofrays(Schmandt& approach,astheFresnelzonewidthincreaseswithdepthwhereas ://a Humphreys2010).TheinverseproblemissolvedusingtheLSQR the resolution decreases. Our parametrized model has a total of c a methodofPaige&Saunders(1982)withanobjectiveofminimizing 41 808 nodes with 67 (latitudinal)-by-39 (longitudinal) nodes in de m theleast-squaresmisfitbetweencalculatedandobserveddatainan 16layers. ic iterativesequence.Weperformedtrade-offanalysisbetweenEuclid- Toestimatetheresolvingpowerofourinversionwithourdataset, .o u ianmodelnormandvariancereductiontodeterminethesmoothing weinvestigatedoursamplingofthemodelspace.Forthispurpose, p.c weightandtheoveralldampingfactor(Menke1989).Indeed,our we calculated hit quality maps for each depth layer of our model om testsshowedthatthevariationinvariancereductionsforinversions space(Figs4a–d).Thesenormalizedhitqualitymapsarebasedon /g withslightlyvarying(±1.0)dampingandsmoothingweightswere densityofsamplingofeachnodeinagivenlayer,wherethequality ji/a small (see Appendix A4, in Supporting Information, for various isalsoafunctionofthebackazimuthaldistributionofthesampling rticle smoothing/damping trade-off plots and Appendix B1 and B2 for rays. The function governing the assignment of hit quality index -a b comparisonofresultsobtainedusingdifferentsmoothing/damping iscustom-builtbasedontheideathatbetterresolutioninseismic stra parameters).Weobtainedanrmsof0.1fortheresidualsafterthe tomographyisprovidedbyraysfromvariousdirectionsintersecting c inversionwithfavouredvaluesofdamping(6)andsmoothening(7), at high angles (Schmandt & Humphreys 2010) (see Appendix D, t/18 achievingavariancereductionof∼81percent. in Supporting Information, for a summary table). Thus, a quality 4/3 Eventhoughcrustalcorrectionsareappliedtotheobservedrela- of1indicatesthattheassociatednodeissampledbyatleastfive /1 0 3 tivetraveltimeresiduals,stationtermsareincludedforeachstation rays from each of the four geographical quadrants (NE, SE, SW 7 intheinversiontoaccountforthesmall-scalelocalvariationsand andNW)andaqualityof0indicatesthattheassociatednodeisnot /62 3 errorsinincorporatedcrustalthicknessesandvelocities.Therms sampled.ThemapsinFig.4showusthatbetternodesamplingis 6 3 for these terms is ∼0.09, which is small compared to the rms of restrictedtonodeslocateddirectlybeneaththeindividualstations 6 b the entire data set (0.55), showing that these terms explain only atshallowerdepths(Fig.4a),particularlyforthetoplayer(35km y g asmallfractionof thedata. Indeed, strongdamping isapplied to depth), due to the near vertical incidence of teleseismic arrivals ue s stationtermstoavoidanyabsorptionofmantlestructurebythese thatclusteraroundthestations.Thus,thebroad-scaleresolutionis t o terms. We tested the case where no crustal traveltime corrections poorforthistoplayer.Further,thislayercompensatesfortheerrors n 2 wereappliedtotherawdata.Inthiscase,weobservedthattherms in crustal corrections and poorly constrained variations in upper 9 M forthestationstatictermsincreasedby∼0.05.Thisindicatesthat mantle. Hence, in the following sections where we discuss and a rc thestationstatictermseffectivelyaccountsforthevaryingshallow interpret the resolved perturbations in our model, we will ignore h 2 structureinthestudyarea. anomalies resolved in this layer. In deeper parts of the modelled 0 1 Eventtermsarealsocalculatedrepresentingtheadjustmentofthe volume,the‘good’hitqualityregionsspreadouttocoveralmost 9 meanarrivaltimeforthesetofstationsthatrecordedeachevent(see theentirestudyregion(Figs4bandc).Atthebottomofthemodel, AppendicesA2andA3,inSupportingInformation,fordistribution however,duetothereductioninsamplingdensityattheedgesofthe ofstationandeventterms).Ourdatasetiscomposedoftraveltime model,thebettersampledportionsarelimitedtothecentralparts datafrompatchworkofregionalseismicnetworkssomeofwhichare ofthestudyarea(Fig.4d).Wealsoobserveapersistentpatternof notconcurrentintime.Thismightintroducetheproblemofshifts relativelylowerqualitiesincentralpartsatshallowerdepths(Figs4a in calculated mean traveltime residuals between these networks andb),whichisanartefactofwiderstationspacingintheseportions that were deployed at geographically different parts of the study ofthestudyarea. area. However, both the incorporation of the event terms in the Inadditiontothequalityofsamplingofmodelspace,weinves- inversion and usage of data from long-operating, spatially well- tigated the resolution in our model area through synthetic tests. distributed/envelopingnetworkssuchasNEMCandGSN(Fig.1) Our synthetic tests involve layers with ‘checkerboard’ type ve- helpustoaccountforvariationsorshiftsinmeanvelocitystructure locity anomalies embedded in a neutral background. With this indifferentportionsofthestudyarea.Thecalculatedrmsforthe setup,weaimedtoplaceconstraintsonthelateral(Figs5a–d)and (cid:2)C 2011TheAuthors,GJI,184,1037–1057 GeophysicalJournalInternational(cid:2)C 2011RAS 1042 C.B.Biryoletal. km 42° N 60 55 40° N 50 45 38° N 40 36° N 35 30 34° N D 25° E 30° E 35° E 40° E 45° E ownlo a d e d fro m h ttp s ://a c a d e m ic .o u pth p.co e m D /g ji/a rtic le -a b s tra c t/1 8 10 15 20 25 30 35 40 45 50 55 60 4/3 Longitude /1 0 3 7 Figure3. Nodeandlayerspacinginourparametrizedmodel.(a)Lateralnodespacingat60kmdepth.(b)Layersandnodespacingofourparametrizedmodel /6 onaverticlesectionalong39◦latitude.Reddiamondsshowsthestationsusedinthisstudy.Notethedilationinnodespacingbothtowardstheedgesandwith 23 6 increasingdepth. 3 6 b y vertical(Figs5eandf)resolvingpowerofourdatasetwithinthe is recovered as an anomaly of ±1.8 per cent within the resolved gu e parametrized model. The volume of each perturbation in the lay- model.Thepeakamplituderecoveryis78percent.Thelossesin s ers of the checkerboard is defined by cube of two nodes (eight amplituderecoveryduringtheinversionprocessarealsoaconse- t on nodestotal).Hence,thelateralandverticalextentsoftheindividual quenceofapplieddamping,smoothingandimperfectraycoverage. 29 anomalies vary as a function of position in the model and dilate Theverticalcross-sectionsalsoshowsomedilationandstreaking M a with depth (Figs 5e and f) and towards the edges in accord with of the recovered perturbations at the edges of the model due to rc h the dilation in node spacing within the model (Figs 3 and 5a–d). sparse sampling. Although the reliability of these resolution tests 2 0 Theintensitiesoftheinputperturbationsare−3and+3percent islimitedbythebasictomographicassumptions(i.e.isotropicand 19 forslowandfastanomalies,respectively.Theseanomaliesaresep- elastic mantle, well constrained ray locations at depth, accurate arated by a cube of two nodes belonging to neutral background. traveltime sensitivity kernels), the recovery of the pattern of per- Figs5(a1–f1)showstheinputsyntheticstructureandrecoveryof turbationsinourresolutiontestindicatesthatweshouldbeableto it after inversion (Figs 5a2–f2). The results of this test show that retrievemajorupper-mantlestructures(i.e.subductedlithosphere, our resolution is good within the modelled volume and the study plumes)usingthedatasetathandandthepreferredparametrized area. However, there is some amplitude decay and dilation in re- model. In the following section, we will show results from addi- covered perturbations due to minimum-length solution objective tional resolution tests on specific features that emerge from the of the inversion procedure and subvertical incidence of teleseis- inversion. mic rays (Schmandt & Humphreys 2010). The inversion for the Itisimportanttokeepinmindtheresultsofthehitqualityand synthetic model achieved 60 per cent amplitude recovery of the checkerboardresolutiontestswheninterpretingthemodelledveloc- inputperturbationswithinthecentralpartsofthemodel.Inother ityperturbations,toavoidmisinterpretationofanomalieslocatedin words, a ±3.0 per cent perturbation in the input synthetic model regionsofthemodelthatarepoorlyresolved. (cid:2)C 2011TheAuthors,GJI,184,1037–1057 GeophysicalJournalInternational(cid:2)C 2011RAS SegmentedlithospherebeneathAnatolia 1043 42° N N 42° N N 40° N 40° N 38° N 38° N 36° N 36° N 60 km depth 130 km depth 34° N 25° E 30° E 35° E 40° E 45° E NHoitr-qmuaalliiztey1d.0 34° N 25° E 30° E 35° E 40° E 45° E 0.8 0.6 42° N N 0.4 42° N N D o 40° N 0.2 40° N wnlo a 38° N 0.0 38° N ded 36° N 36° N from 34° N 25° E 30° E 35° E 40° E2 40 km 4d5e° Ep th 34° N 25° E 30° E 35° E 40° E5 55 km d45e° pEt h https://a c a Figure4. Normalizedhitqualitymapsforourdatasetandparametrizedmodelatvariousdepths(plotsa–d).Hitqualityisbasedonthenumberandazimuthal de distributionofrays.Redshadingindicatesgoodhitquality(1onscale)andblueshadingshowspoorhitquality(0onscale)foreachnode.Whitediamonds m ic showthestationsusedinthisstudy.Notethatthespreadingofthepatternofbetterhitqualitiesatdeeperpartsofthemodel. .o u p .c o m 3 RESULTS featuresoftheresolvedmodelandresultsoftherealisticanomaly /g recoveryanalysisfortestingtherobustnessofresolvedfeatures. ji/a 3.1 Inversion The most significant feature of the resultant model is the fast rtic le The data variance reduction is a common way of assessing the anomalies located to the north of the Aegean and the Cyprean -ab trenches (Figs 6a–d and 7b and c). Overall, these fast anomalies s quality of the least squares solution to the tomographic inverse haveameanperturbationof+1.7percentwithintheentiremodel tra problem. As pointed out by Schmandt & Humphreys (2010), the and they shift in a northerly direction as a function of increasing ct/1 overallvariancereductionfortheentiremodelledvolumegivesa 8 depth.ThegeneralstrikesoftheseanomaliesareroughlyNWonthe 4 ratheroptimisticestimateowingtothefactthatthesetupofthefor- /3 AegeansideandE–WontheCypreanside.Theindividualmean /1 wardproblemheavilyreliesontheaprioriassumptions(i.e.elastic, 0 perturbations for Aegean and Cyprean anomalies above 450 km 3 isotropic upper mantle, accurate ray locations) and the resolution depthare+1.8and+1.7percent,respectively.Thesetwoanoma- 7/6 ofthesolutionshowsvariationsthroughoutthemodelledvolume. 23 liesareseparatedbyanN–Strendingvolumeofslowperturbation 6 Asreportedearlier,weobtainedanoveralldatavariancereduction locatedbetween28◦ and30◦ longitudes(Figs6a–eand7eandf). 36 of 81 per cent after the inversion. This indicates that the resul- Thisslowanomalyhasameanperturbationof−1.4percent.We by tant model successfully explains most of the observed traveltime g can also observe relatively fast anomalies (mean perturbation of u rtheseidoubaslesr.vTedo dteastta,hsoawmpsulicncgestshfeulwlyelol-urresroelsvoeldvepdarmtso,dweleeaxdpolpatiends +1.6 per cent) located to the north of the NAFZ at the western est o andeasternpartsofthestudyarea(Figs6aandb).However,these n the same approach as Schmandt & Humphreys (2010), calculat- 2 anomalies are only observed at shallower depths (Figs 7c and d). 9 ing the variance reduction for the portions of the model that are M The rest of the resultant model mostly contains scattered, small- a denselysampledandwellresolvedwithahitqualitygreaterthan scaleandweakerslowvelocityperturbations.Thepatternsofslow rch 0.4 (i.e. rays from at least two backazimuth quadrants, excluding anomalies, however, are more persistent and continuous beneath 20 thetopandbottomtwolayers).Weobtainedavariancereductionof 1 eastern Anatolia (Figs 6a–d and 7d and e). The mean amplitude 9 73percentforthe‘highquality’partsoftheresolvedmodel.This of the ‘blob’ of slow velocity anomaly beneath the EAP is −1.5 shows that major portion of the observed traveltime residuals is per cent. At depths below 500 km, the separated fast anomalies explainedwithinthewell-sampled,well-resolvedpartofthemodel, throughoutthestudyareamergetoformacontinuous,WNW–ESE althoughaminorportionofitisresolvedasprobableartificialhet- trendingbelt(meanperturbationof+1.7percent)thatoccupiesthe erogeneitiesatthepoorlysampled,poorlyconstrainedpartsofthe deeper,northernportionsoftheresolvedmodel(Figs6f–hand7e). model(i.e.edgesofthemodel),duetotheobjectiveofleastsquares Theverticalslices(cross-sections)thatcutacrossthestudyarea inversiontominimizethelengthofthesolution. showthedippingfastanomaliesassociatedwiththeAegeanandthe Cypreantrenches(Figs7bandc).Wealsoobserveacleareastern terminationofthefastanomalyassociatedwiththeCypreantrench 3.2 Tomograms at∼34◦Elongitude(Fig.7f).Alonglatitude37◦N,theslowanomaly The resultant tomograms are shown in Figs 6 (map views) and 7 thatseparatestheAegeanandtheCypreananomaliesextenddown (cross-sections).Inthissection,wesummarizethemostprominent todepthsof300km(Fig.7f).Itbecomesclearonthecross-sections (cid:2)C 2011TheAuthors,GJI,184,1037–1057 GeophysicalJournalInternational(cid:2)C 2011RAS 1044 C.B.Biryoletal. D o w n lo a d e d fro m h ttp s ://a c a d e m ic .o u p .c o m /g ji/a rtic le -a b s tra c t/1 8 4 /3 /1 0 3 7 /6 2 3 6 3 6 b y g u e s t o n 2 9 M a rc h 2 0 1 9 Figure5. Resultsoftheresolutiontestspresentedintheformofhorizontalslices(plotsa–d)andvertical(latitudinal)cross-sections(plotseandf).Theeffects ofverticalstreakingcanbeseenatshallowerdepths(a1anda2).Thelateralresolutionisgenerallygoodbutthereissomeamplitudedecay.Theopentriangles showthelocationofstations. (cid:2)C 2011TheAuthors,GJI,184,1037–1057 GeophysicalJournalInternational(cid:2)C 2011RAS SegmentedlithospherebeneathAnatolia 1045 D o w n lo a d e d fro m h ttp s ://a c a d e m ic .o u p .c o m /g ji/a rtic le -a b s tra c t/1 8 4 /3 /1 0 3 7 /6 2 3 6 3 6 b y g u e s t o n 2 9 M a rc h 2 0 1 Figure6. Horizontalslicesatdepthsbetween60and605km(plotsa–h)fromtheresultanttomographymodel.Openstarsindicatethestationsusedinour 9 study.Thedark-shadedareasremainingoutsideofthewhitedashedlinearepoorlyresolvedportionsofthemodelwithhitqualitieslessthan∼0.2. thatthesedippingfastanomaliesmergeatdepthsof∼500kmand indicatedthepresenceofadiscontinuous,northwarddippingfast starts flattening out close to the bottom of the mantle transition anomalyinthisregion.Althoughourresolvingpowerandhitquality zone(660km)(Figs6gandhand7f).Atthewesternpartofthe isgoodinthisportionofthestudyarea,wedonotobservesuchafast studyarea,theshallowfastanomalieslocatednorthoftheNAFZ structure. This discrepancy between the two tomographic models extendtodepthsof100–150kmandterminaterathersharplyatthe mightbeduetothedifferencesinstylesofsamplingofthemodelled downwardprojectedtraceoftheNAFZ(Figs6aandb).Intheeast, volumeofuppermantle.Asitismentionedearlier,wehomogenized weobserveconsistentslowanomaliesbeneaththeEAPthatextend thebackazimuthalraycoverageofourdatasettoavoidunwanted to depths of 300–400 km (Figs 6d and f). This is in agreement inversionartefactssuchassmearingofimagedseismicanomalies withtheresultsfromarecentteleseismictomographystudybyZor alongtheraypaths.Intheirstudy,Lei&Zhao(2007)usedraysfrom (2008).AnearlierseismictomographystudybyLei&Zhao(2007) dominantlyeastbackazimuthswhichmighthaveintroducedsome (cid:2)C 2011TheAuthors,GJI,184,1037–1057 GeophysicalJournalInternational(cid:2)C 2011RAS 1046 C.B.Biryoletal. D o w n lo a d e d fro m h ttp s ://a c a d e m ic .o u p .c o m /g ji/a rtic le -a b s tra c t/1 8 4 /3 /1 0 3 7 /6 2 3 6 3 6 b y g u e s t o n 2 9 M a rc h 2 0 1 9 Figure7. Theresultanttomographymodelalongvariouslongitudinal(plotsb–d)andlatitudinalcross-sections(plotseandf).Topographicprofilesarealso shownatthetopofeachslice(with10×verticalexaggeration).Numberedredlinesonthemapinthetoppanel(plota)showlocationsofthecross-sections. (cid:2)C 2011TheAuthors,GJI,184,1037–1057 GeophysicalJournalInternational(cid:2)C 2011RAS

Description:
during the Cenozoic closure and terminal suturing of the northern is good in this portion of the study area, we do not observe such a fast structure.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.