ebook img

Seed-dispersal networks on the Canaries and the Galápagos archipelagos PDF

27 Pages·2015·3.91 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Seed-dispersal networks on the Canaries and the Galápagos archipelagos

GlobalEcologyandBiogeography,(GlobalEcol.Biogeogr.)(2015) bs_bs_banner Seed-dispersal networks on the Canaries SPECIAL ISSUE and the Galápagos archipelagos: interaction modules as biogeographical entities M.Nogales1*,R.Heleno2,B.Rumeu1,3,A.González-Castro1,4,A.Traveset5, P.Vargas3andJ.M.Olesen6 1IslandEcologyandEvolutionResearchGroup ABSTRACT (CSIC-IPNA),LaLaguna,Spain,2Centrefor Aim Mutualistic network parameters, such as modularity and nestedness, show FunctionalEcology,DepartmentofLife non-random linkage patterns. Both increase network stability in different ways. Sciences,UniversityofCoimbra,Coimbra, Modularity hampers extinction cascades,whereas nestedness resists network dis- Portugal,3RealJardínBotánico(CSIC-RJB), assembly.Weexploretheseparametersinseed-dispersalnetworksintwoarchipela- Madrid,Spain,4DepartamentodeCienciasde gosandthesignificanceoflifehistory,habitat,geographyandphylogenyasdrivers laTierra,UniversidadEstatalAmazónica, Puyo,Ecuador,5InstitutMediterranid’Estudis oflinkagepatternsandtheapplicabilityofmodulesasbiogeographicalentities. Avançats(CSIC-UIB),PalmadeMallorca, Location Canaries(AtlanticOcean)andGalápagos(PacificOcean). Spain,6DepartmentofBioscience,Aarhus University,Aarhus,Denmark Methods We compiled data on plant–seed disperser interactions from own observationsandtheliterature,estimatednetworkparametersdescribinginterac- tion patterns (connectance,nestedness and modularity) and constructed a back- bonephylogenyfortheanalyses. Results The Canarian network was highly nested but weakly modular,whereas the Galápagos network showed the opposite characteristics. Most key network species are native and have a favourable conservation status. Modularity in the Canariesiscorrelatedwithhabitats(indirectlyaffectedbyaltitudeandorientation), whereasintheGalápagositmainlyreflectsthefunctionalrolesofspecies. Mainconclusions Thedivergentlinkpatternsforthearchipelagosimplythatthe highlynestedCanariannetworkisstableagainstdisassembly,whereasthemodular Galápagos network may show strong resistance against extinction cascades.This differencemaybedrivenbythespecificevolutionarydynamicsonthearchipelagos. *Correspondence:M.Nogales,IslandEcology andEvolutionResearchGroup(IPNA-CSIC), Keywords C/AstrofísicoFco.Sánchezno.3,38206La Animal–plant interaction, fleshy fruit, food web, frugivory, insular network, Laguna,Tenerife,CanaryIslands,Spain. E-mail:[email protected] modularity. andmodularity(Olesenetal.,2007).Theirapplicabilityinthe INTRODUCTION context of biogeography and system stability is the focus of Biodiversityismuchmorethanmerespecieslists,particularly this paper. asitalsoincludesthemyriadofwaysinwhichspeciesinteract Ifanetworkhasahighlyheterogeneousstructureofspecies (Pococketal.,2012)andformspatio-temporallydynamicnet- andtheirinteractions,itismostoftenbothnestedandmodular. works (e.g. Rasmussen etal., 2013). During the last two Inanestedlinkpattern,acoreofgeneralistspeciesinteractwith decades, this upscaling in focus from species to networks each other and with specialists (Bascompte etal., 2003). In a has contributed significantly to our comprehension of the modularlinkpattern,eachmoduleisagroupof highlyinter- complexity of biodiversity (Bascompte & Jordano, 2013). connected species, often sparsely linked together into a larger There are plenty of important milestones along this route, network(Olesenetal.,2007).Inecology,modulesareextremely especially the concepts of nestedness (Bascompte etal., 2003) useful for our understanding of mutualistic systems such as ©2015JohnWiley&SonsLtd DOI:10.1111/geb.12315 http://wileyonlinelibrary.com/journal/geb 1 M.Nogalesetal. Table1 GeneralcharacteristicsoftheCanarianandGalápagosarchipelagosandpotentialconsequencesforbiodiversity. Characteristics Canaries Galápagos Biodiversityconsequences Abioticcharacteristics Landarea(km2) c.7900 c.7500 Largeareaforimmigration Numberofislands(>10km2) 9 13 Largeareaforallopatricspeciation Highestpeak(masl) 3718 1707 Largetopographicareaforimmigration andspeciation Maximumageofcurrentislands(Ma) 21 4–6 Widespanofgeologicalage Currentminimumdistancebetweenarchipelago c.98 c.1000 Verydifferentlevelofisolation andmainland(km) Volcanicactivityinthelastcenturies High High Recurrentextinctionevents Climate Subtropical Equatorial Hotspotsofdiversity Mediterranean Bioticcharacteristics Mainbiomes 5 3 Highhabitatdiversity Biodiversity(no.ofspecies) High Medium Highinteractionpotentiality No.ofseed-plantendemicspecies(%)withrespecttonatives 537(40.3%) 168(38%) Strongsignalforuniqueinteractions No.offleshyfruitedspecies(%)withrespecttonatives 76(5.7%) 34(7.6%) Importantplantcomponentfor ecologicalnetworks No.ofvertebratedisperserspecies(%)withrespect 30(35.7%) 28(65%) Importantanimalcomponentfor tonativelandvertebrates ecologicalnetworks plant–pollinator(Travesetetal.,2013)andplant–seed-disperser Hereweintegratenetworktheoryandbiogeographyinastudy networks(Donattietal.,2011),butalsoinantagonisticsystems of seed-dispersal networks on two oceanic archipelagos, the suchasfoodwebs(Dunneetal.,2002)andhost–parasitenet- Canaries (Atlantic Ocean) and the Galápagos (Pacific Ocean). works(Anderson&Sukhdeo,2011).Withinamodule,species Thesearchipelagosdifferingeographicalpositionandisolation, operateindynamicecological–evolutionarysynchronybecause age,elevationandmainlandspeciessource,buthavequiteasimi- of theirhighinterconnectivity.Thusif modularityisstrong,a larlandsurfaceareaandhighinteractionpotentiality(Table1). morerelevantscaleofanalysismightbethemoduleandnotthe Wefocuseduponseed-dispersalmodulesinordertoshowtheir individualspeciesorthewholenetwork.Amodulemaybeseen valueasfunctionalentitiesinbiogeographicalanalyses. asacoevolvingniche(Gómezetal.,2015),aconceptwithwide The aims of our study were to: (1) estimate levels of implications for the study of coevolution, ecological conver- nestedness and modularity, identify modules and quantify gence,localco-occurrence,systemstability,invasion/extinction, intermoduledistances;(2)comparespeciesandlinkcomposi- migration/dispersal, geography and phenological uncoupling/ tionofmodulesfromthetwoarchipelagos;and(3)identifylocal climate change (Thébault & Fontaine, 2010; Stouffer & andregionaldriversofmodularity.Finally,wediscusstheresults Bascompte, 2011; Aizen etal., 2012; Høye etal., 2013; for a inrelationtosystemstabilityandtheapplicabilityofthemodule reviewofmodularity,seeBascompte&Olesen,inpress).Thus, conceptasabiogeographicalentityinstudiesoftheecologyand insightintothelinkstructureallowsadeeperunderstandingof evolutionofislandinteractions. biodiversity,forexamplewithrespecttoregional/geographical patterns (e.g. Carstensen & Olesen, 2009; Dalsgaard etal., METHODS 2013), the impact of alien species (Valdovinos etal., 2009; Rodriguez-Cabal etal., 2013; Traveset etal., 2013) and system Studysites stability (Stouffer & Bascompte, 2011; Bascompte & Jordano, ThearchipelagosoftheCanariesandtheGalápagos(Appendi- 2013;Rodriguez-Cabaletal.,2013). cesS1 & S2 in Supporting Information) differ in several Seeddispersalisanessentialphaseintheprocessofregenera- respects, but also show important similarities (Table1), for tionofplantcommunitiesandastrongdriveroflocalbiodiver- exampleintotallandsurface(7900vs.7500km2,respectively) sity (Bascompte & Jordano, 2007).At the network level,most and number of islands (9 vs. 13 islands >10km2) and studies of seed dispersal have been carried out in mainland palaeoislands (6 vs. 7); however, the Canaries are older and communities(Jordanoetal.,2003),andonlyafewonoceanic richer in plant species and main biomes (see Heleno etal., islands (Heleno etal., 2011a, 2013; González-Castro etal., 2011b;Padillaetal.,2012)(AppendixS3). 2012). This retards rigorous island–mainland comparisons (Schleuningetal.,2014),althoughasageneralpatternweknow Interactionmatricesandnetworkparameters birds and mammals are major mainland biotic dispersers (Herrera,1995)whereasbirdsandreptilesoftenplaythisroleon We compiled data about interactions from own field observa- oceanicislands(Nogalesetal.,2005). tionoffrugivory(overatimespanof10yearsintheCanaries 2 GlobalEcologyandBiogeography,©2015JohnWiley&SonsLtd Modularityofseed–dispersalnetworksonoceanicislands and6yearsinGalápagos)andalsoincludedallrecordsfroman fornetworkcohesionbygluingmodulestogether;(3)module exhaustiveliteraturereview(Helenoetal.,2011bandreferences hubs(z≥2.5,c<0.62)havemanylinkstootherspeciesintheir therein).Wealsoincludedallinteractionsinvolvingnon-native ownmodule,andareimportantformodulecohesion,and(4) species,withtheexceptionofcaptive/cultivatedspecies.Aseed- network hubs or super-generalists (z≥2.5, c≥0.62) are both dispersal interaction was recorded if fruit was swallowed or connectorsandmodulehubs(Olesenetal.,2007). removedfromaplantbyananimal,if undamagedseedswere Networks were visualized using the software Pajek v.2.05 foundindroppingsorpelletsorifgutsampleswithintactseeds (Batagelj & Mrvar, 1998). The basic principle behind Pajek were obtained. In the Canaries, predatory birds such as the visualization is that distance between species expresses their kestrelandthemeridionalshrikeindirectlydispersemorethan numberoflinkstootherspecies. 60 species by their predation of frugivorous lizards (Padilla etal.,2012).Suchrecordsofseedsinregurgitationpelletswere Testingforphylogeneticsignalin alsoincludedinthenetwork.Onbotharchipelagos,interactions networkcomposition were gathered all year round with a greater effort during the mainfruitingseasons. Thephylogeneticsignalofatraitinasampleofspeciesexpresses Interactionswerecompiledintotwo-modebinaryadjacency theextenttowhichthephylogeneticstructureofthecommunity matricesofAanimalspecies(matrixcolumns)interactingwith accountsformorphologicalcharactersofthespecies.Inorderto Pfleshyfruitedplantspecies(matrixrows)(TablesS1&S2).If estimatetheimportanceofthephylogenyinexplainingthevari- aninteraction Ibetweenaplantandananimalspeciesisrec- ationof traitvaluesof ourfourcommunities(plantsanddis- orded,itspresenceinthematrixcellisscoredas‘1’,ifnotas‘0’. persersintheCanariesandintheGalápagos),weconstructeda We estimated three network parameters: connectance, backbone phylogeny for each community. Plant phylogenies nestedness and modularity. Connectance C=100I/AP is the were based on the supertree from APG III (Angiosperm percentageofrealizedinteractionsoutofthetotalpossibleinter- Phylogeny Group, III, 2009), bird phylogenies from http:// actionsinthenetwork.Levelofnestednesswasmeasuredwith birdtree.org/ and Gallotia lizard phylogenies from Cox etal. the NODF algorithm (Almeida-Neto etal., 2008), and the (2010).Asinformationonbranchlengthwasnotavailableforall NODFvaluebelongstotheinterval[0(not-nested);1(perfectly taxa and phylogenies, we used a taxonomic proxy, equalizing nested)].EmpiricalNODFvalueswerecomparedwithdistribu- branchlengthsbetweenspecies,generaandfamilies.Inorderto tionsof NODFvaluesfrom1000randomnetworksof similar runtheRscripts,afewpolytomieswereresolvedtaxonomically size(Almeida-Netoetal.,2008).Totestformodularityweused intodichotomiesusingbranchlengths<<1. the software netcarto (Guimerà & Amaral, 2005), which We used two measures of phylogenetic signal, K and λ. assigns all plants and seed dispersers to modules.The level of Blomberg’sKcomparestheobservedtraitsignalwithasignal modularityMofanetworkexpresseshowstronglythenetwork underaBrownianmotion(BM)evolutionarymodel(Blomberg ispartitionedintomodules.AsMapproaches0or1,thelevelof etal.,2003).IfK≈1,thetraitisphylogeneticallyclusteredinthe modularitybecomesweakerorstronger,respectively.Empirical sample of species. K≈0 indicates a convergent or random M-values were compared with distributions of M-values from pattern, whereas K>1 indicates a strong phylogenetic signal. 100randomnetworksofsimilarsize(Olesenetal.,2007).The ThesignificanceofKistestedbycomparingtheobservedsignal nullmodelassumesthattherankingofthespecieslinkagelevels withthemeanofthesignalfromrandomizationsbasedonanull L (i.e.the number of links of each species) is like that of the model,which shuffles species randomly across the phylogeny. empiricalnetwork.Wealsorecordedthesizeandcompositionof KwascalculatedusingthepackagepicanteinR(Kembeletal., each module and the number of links between and within 2010). modules. We calculated the distance between each pair of Pagel’s λ measures how much trait correlations among modules (intermodule distance), defined as the number of speciestellusabouttheirsharedevolutionaryhistory.Thevalue sharedlinksbetweenapairofmodulesdividedbythesumofall of λrangesbetween0and1;if λ≈0,thetraitstructureisnot theirlinks.If amodule,onaverage,hasashortdistancetoall influenced by phylogeny, whereas λ≈1 implies that the trait othermodules,ithasahighmodulecentrality. followsaBMmodel.Thelowerandupperboundsof Kandλ Inaddition,netcartoalsoassignstopologicalnetworkroles (TableS3)indicatewhichofthetwoscenariosisthemostlikely. toallspeciesbasedontheirpatternof intra-andintermodule This analysis was performed using the packages picante and links (Guimerà & Amaral, 2005).The assignment of a role to geigerinR(Harmonetal.,2008). a species is determined by relative within-module degree or Wetestedforphylogeneticsignalineachofthefourcommu- hubability (z), quantifying how well connected a species is to nities with respect to the distribution of a set of five network otherspeciesinitsmodule,andamong-moduleconnectivity(c), traits(moduleaffinity,modulecentrality,linkagelevelL,con- whichquantifieshowwelldistributedthelinksofaspeciesare nectivity c and relative within-module degree or hubability z) amongmodules.Wesortedallspeciesintofourcategories:(1) andfivespeciestraits[bodyweight,fruitsize,preferredhabitat, peripherals (z<2.5, c<0.62) have few links inside their own origin (i.e. native or alien) and geographic distribution (i.e. module and rarely any to other modules; (2) connectors number of islands on which the species was present); see (z<2.5,c≥0.62)haveafewlinksbothtospeciesintheirown Table S3]. Species of the same module show module affinity, moduleandtospeciesinothermodules,i.e.theyareimportant whereas species of different modules do not. A phylogenetic GlobalEcologyandBiogeography,©2015JohnWiley&SonsLtd 3 M.Nogalesetal. Table2 Descriptiveparametersofseed-dispersalnetworksinthe Table3 Intermoduledistance.Distancebetweenmodulesiandj CanariesandGalápagos. calculatedastheirsharednumberoflinks×100/(theirtotal numberoflinks).Themodule“Geospizaconirostris-Opuntia Canary Galápagos helleri”isanunconnectedsatellitemoduletothemainnetwork Islands Islands andthereforeisnotpossibletocalculate“intermoduledistance” withtherestofmodules. Numberofseed-disperserspecies,A 30 28 Numberoffleshyfruitedplantspecies,P 65 34 Canarianmodules 1 2 3 4 5 6 Animalstoplantsratio(A/P) 0.46 0.82 Networksize(S=AP) 1950 952 1 Laurelforestandlargebirds 6.3 5.2 5.5 1.1 7.0 Numberofrecordedinteractions,I 325 153 2 Medium–largelizards 8.8 9.7 1.7 12 Modularity,M 0.31** 0.39** 3 Coastalshrubland 9.5 1.0 6.5 Numberofmodules,N 6 6 4 Secondaryseeddispersal 1.1 8.9 M Connectance,c(100I/AP) 16.7 16.1 5 Highmountain 1.7 NestednessNODF 27.8** 12.6** 6 Thermophilousforest Averagedistance 5.7 Modularity (based on 100 randomizations) and nestedness (1000 randomizations); significance indicated by **P<0.01 (Almeida-Neto Galápagosmodules 1 2 3 4 5 6 etal.,2008). 1 Geospizaconirostris–Opuntia – – – – – helleri signalwithrespecttomoduleaffinitytellsusthattaxonomically 2 Small–mediumdispersers/ 21 14 13 23 relatedspeciestendtobeinthesamemodule. SanCristóbal As a measure of the phylogenetic signal for plant origin, 3 Westernislands 3.0 12 15 we used Fritz and Purvis’ D (Fritz & Purvis, 2010), which 4 Tortoise–largemammals 5.0 7.8 was calculated using the R package caper (Orme, 2013): 5 Largefinches/endemicrodent 8.6 D=(d –mean d)/(mean d –mean d), where d is the 6 Smallfinches/passerines obs b r b obs Averagedistance 12.24 numberof characterstatechangesneededtogettheobserved characterstatedistributioninourphylogeny,d istheexpected b distributionof dunderaBMmodel(1000runs)andd isthe r expecteddistributionofdifcharacterstatesarerandomlydis- ‘laurelforestandlargebirds’modulewasthemostisolated.A tributedamongspecies.Wescaledd byd andd inordermake high proportion (49%) of all links were between modules obs r b comparisons possible across communities and archipelagos. (Table4),i.e.intermodule distance was low.The network was D=1ifthedistributionofatraitinacommunityisindepend- formed by two network hubs or super-generalists (the lizard ent of the phylogeny of the species; D>1 if the trait is Gallotiagalloti andthekestrelFalcotinnunculus),twomodule phylogenetically overdispersed; D=0 if the trait is distributed hubs(thepigeonsColumbabolliiandColumbajunoniae)and30 according to a BM model; and D<0, if the trait is more connectors (six seed dispersers and 24 fleshy fruited plants) phylogenetically clustered than expected according to a BM (Figs1a & 2, AppendixS5). Besides, four of the six modules model(Nunn,2011). were habitat-specific, namely high mountain, laurel forest, We also tested for any correlations between traits using thermophilousforestandcoastalshrubland.Thus,anextensive phylogeneticallyindependentcontrasts(PIC),bymeansofthe elevational habitat zonation enforced modularity (Appen- apepackageinR(Paradisetal.,2004). dixS3).Theothertwomodulesweredominatedbylizardsand secondaryseeddispersers(shrikesandkestrels;AppendixS5). TheGalápagosnetworkalsoconsistedofsixmodules(Fig.1b; RESULTS seeTableS5forinformationaboutmodulesandAppendixS6for TheCanarianandGalápagosnetworkshadsimilarconnectance informationaboutspeciesincludedinFig.1b).Onlythemodules (Table2).However,speciesrichnessandnestednesswerehigher ‘small–medium dispersers/San Cristóbal Island’ and ‘western intheCanaries,whereasmodularityandintermoduledistance islands’and‘small-mediumdispersers/SanCristóbal’and‘small were higher in the Galápagos (Tables2 & 3; see also Appen- finches/passerines’ were strongly connected to each other. By dixS4). In other words, the different modules operated more contrast, the modules ‘western islands’ and ‘tortoise/large independently in the Galápagos.We also confirm the value of mammals’,andthe‘tortoise/largemammals’and‘largefinches/ theseed-dispersalmodulesasstudyentitiesinbiogeographical endemicrodentandlarge-seededplants’moduleswerepoorly analyses. connected. The cactus Opuntia helleri and the finch Geospiza The Canarian network consisted of six interconnected conirostrismadeanindependentsmallsatellitemodule,uncon- modules (Fig.1a;see TableS4 for information about modules nectedtothemainnetwork.Only37%ofalllinkswerebetween and AppendixS5 for information about species included in modules(Table4).ThegianttortoiseChelonoidisnigrawasthe Fig.1a). The‘medium–large-sized lizards’and‘thermophilous onlynetworkhub,theplantMiconiarobinsonianawastheonly forestandpasserines’moduleswerecloselyconnected,whilethe modulehub,and10specieswereconnectors(fourdispersersand 4 GlobalEcologyandBiogeography,©2015JohnWiley&SonsLtd Modularityofseed–dispersalnetworksonoceanicislands (A) * * * * * MODULES Medium-large lizards * * High mountain * * Thermophilous forest & passerines * * Coastal xerophytic shrubland * & bird/mammal * Laurel forest & large birds * Secondary seed dispersal * * (B) * * MODULES Figure1 Modularstructureofthe Tortoise/large mammals seed-dispersalnetworkintheCanary * * Islands(A)andtheGalápagos(B).The * * Geospiza conirostris- outerringofnodesrepresentfleshy * * Opuntia helleri (satellite) * fruitedplantspeciesthatareconnectedto Small-medium dispersers/ seed-disperserspecies(innerring)by S. Cristóbal Island links,representingfrugivorous Large finches/endemic interactions.Modulesareshownin rodent & large-seeded plants differentcolours/shadesandspeciesroles * Western islands arelabelledbydifferentsymbols. Asterisksindicateintroducedspecies.For Small finches/passerines alistofthespeciesincludedinthe & small-seeded plants interactionnetworksseeAppendicesS5& * S6fortheCanaryIslandsandthe Galápagos,respectively. peripherals connectors module hubs network hubs sixplants)(Figs1b&2,AppendixS6).Onemodulewasdomi- Othertraitsshowedphylogeneticsignals,e.g.fruitsize(‘fruit natedbythegianttortoise,togetherwithcattle,pigsandgoats, dm’).Phylogenyalsoinfluencedgeographicdistribution(‘no.of whiletheothermoduleswerecharacterizedbybirdandreptile islands’) of Canarian seed dispersers and Galápagos fruiting seed dispersers. Thus, in contrast to the Canaries, functional plants. group affinity in the Galápagos disperser guild was a stronger In the phylogenies of Canarian plants and dispersers, and driverthanhabitatspecificity. Galápagosdispersers,thetrait‘nativeversusalien’wasdistrib- Withregardtothedriversofmodularity,Kandλgavequali- uted according to a Brownian motion model of evolution tativelysimilarresults;networktraitsonlyshowedsomesignifi- (D≤0),indicating a phylogenetic signal.However,native and cant phylogenetic signals (TableS3). Canarian plants showed alienGalápagosplantspeciesweredistributedindependentlyof phylogeneticclusteringwithrespecttotheirabilitytolinkdif- theirphylogeny(Dwascloserto1thanto0). ferentmodules(relatedplanttaxawereimportantconnectors), Severaltraitswerecorrelatedaftercorrectingforphylogenetic andrelatedtaxa(e.g.speciesoffinches)inGalápagoshadahigh dependency(Table5),butthepatterndifferedstronglybetween linkagelevel.Bodyweightwasatraitthatwasaffectedbyphy- communitiesandbetweenarchipelagos.IntheGalápagos,dis- logeny among both Canarian and Galápagos dispersers; the perserspeciessharingamodule(‘moduleaffinity’)hadamore ‘tortoise/largemammals’modulefromGalápagosstronglycon- similarextentofgeographicaldistribution(‘no.ofislands’)than tributed to this.Habitat specificity (‘main habitat’) was influ- arandomspeciesset;bycontrast,theothercommunities(Galá- encedbyphylogenyintheCanariandispersercommunityand pagosplantsandCanarianplantsanddispersers)didnotshow boththeplantandthedispersercommunitiesontheGalápagos. this correlation. The Canarian modules were more associated GlobalEcologyandBiogeography,©2015JohnWiley&SonsLtd 5 M.Nogalesetal. Table4 Numberofspeciesandlinksinmodulesofseed-dispersalnetworksoftheCanaryIslandsandtheGalápagos.Moduleconnectance C istheproportionofrealizedlinksinsidethemodule(i.e.numberofobservedlinks/numberofpossiblelinksinthemodule,excluding M linkstoothermodules). No.of No.of No.of No.of within- between- plant disperser module module Module species species links links C M CanaryIslands Medium-largelizard 20 3 34 76 0.57 High-mountain 2 1 2 7 1.00 Thermophilousforestandpasserines 11 4 37 70 0.84 Coastalxerophyticshrublandandbird/mammals 8 12 36 58 0.38 Laurelforestandlargebirds 14 7 35 44 0.36 Secondaryseeddispersal 10 3 22 63 0.73 Total 65 30 166 318* − GalápagosIslands Tortoise–largemammaldispersers 8 4 13 11 0.41 Geospizaconirostris–Opuntiahelleri 1 1 1 0 1.00 Small–mediumdispersers/SanCristóbalIsland 9 4 27 36 0.75 Largefinches/endemicrodentandlarge-seededplants 2 3 4 13 0.67 Especiallytwopasserines(GeospizascandensandMimusparvulus),onedove 8 6 26 25 0.54 (Zenaidagalapagoensis),theiguanaConolophussubcristatusandrichflora Especiallyfivesmallpasserines(Certhideaolivacea,Certhideafusca,Camarhynchusparvulus, 6 10 26 27 0.43 Geospizafuliginosa,Dendroicapetechia)andendemictree-likeMiconiarobinsoniana Total 34 28 97 112* − *Numberofbetween-modulelinksisequaltothehalfofthesevalues,becauseeachbetween-modulelinkiscountedtwice,i.e.frommodulesAtoB,and fromBtoA. Canaries Galápagos 8 Module hubs Network hubs Module hubs Network hubs ze ()6 Figure2 Distributionofseeddispersers e gr andfleshyfruitedplantsaccordingto e de4 theirnetworkrole(symbolsasinFig.1) dul intheCanarianandGalápagos o2 m archipelagos.Cut-offvalues(2.5forzand n- hi 0.62forc,seeMaterialandMethods); Wit0 eachdotrepresentsaspecies;whitedots -2 Peripherals Connectors Peripherals Connectors arefleshyfruitedplantsandgreydots 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 Among-module connectivity (C) Among-module connectivity (C) frugivores. with habitats within islands.Large Canarian dispersers (‘body DISCUSSION weight’) had a central position in their modules (high z), whereas those specific large Galápagos dispersers had a high Althoughbothoceanicarchipelagosharbourrichcommunities habitat preference (‘main habitat’) and were dominated by with similar diversity of dispersers,connectance level,and the invasive alien mammals. The three main network parameters samenumberofmodules,theydifferedconsiderablyonoverall (l,candz)werepositivelycorrelatedinallcommunitiesexcept plantdiversityandonnetworktopology.Therobustnessagainst candzfortheGalápagosplants.ThemostwidespreadCanarian disturbancesofanetworkisinfluencedbylevelsofnestedness, fruitingplants(‘no.ofislands’)hadmorelinks(L)andshowed modularity and connectance. High nestedness (Thébault & more connectivity (c). Thus we see relationships between Fontaine,2010),andalsohighmodularity,mayaddstabilityto modular structure and body weight, habitat preference and a mutualistic network, but they do it in different ways native/alienstatus,andalsobetweennetworkcharacteristicsand (Sebastián-González etal., 2015). The Canarian network was geographicaldistribution. highlynestedandthusstronglycoherent,resistingcommunity 6 GlobalEcologyandBiogeography,©2015JohnWiley&SonsLtd Modularityofseed–dispersalnetworksonoceanicislands Table5 Coefficientofdeterminationbetweentraits(continuous/categorical)incommunitiesofseeddispersersandtheirfruitingplantsin theCanaryIslandsandtheGalápagosaftercorrectingfortheinfluenceofphylogeny(includingintroducedspecies). Module log(body Main Native/ log(linkage Connectivity, Hubability, No.of centrality weight) habitat invasive level,L) c z islands CanaryIslands Seeddispersers Moduleaffinity – n.s. n.s. n.s. 0.16* 0.27** n.s. n.s. Modulecentrality n.s. (−)0.46*** n.s. 0.14* 0.20** n.s. n.s. log(bodyweight) n.s. n.s. n.s. n.s. 0.19* n.s. Mainhabitat n.s. n.s. (−)0.11* n.s. n.s. Native/invasive n.s. n.s. n.s. n.s. log(linkagelevel,L) 0.87*** 0.75*** n.s. Connectivityc 0.48*** n.s. Hubability,z n.s. GalápagosIslands Seeddispersers Moduleaffinity – n.s. n.s. n.s. n.s. n.s. n.s. 0.30** Modulecentrality (−)0.40*** n.s. (−)0.18* 0.14* 0.21** n.s. 0.14* log(bodyweight) 0.34*** 0.31** n.s. n.s. n.s. n.s. Mainhabitat 0.36*** n.s. n.s. n.s. n.s. Native/invasive (−)0.34*** (−)0.37*** (−)0.17* n.s. log(linkagelevel,L) 0.82*** 0.82*** n.s. Connectivity,c 0.63*** n.s. Hubability,z n.s. CanaryIslands Fruitingplants Moduleaffinity – (−)0.07* n.s. n.s. 0.16*** 0.17*** n.s. n.s. Modulecentrality n.s. (−)0.12** n.s. (−)0.28*** (−)0.21*** n.s. (−)0.05* Fruitdm n.s. 0.12** n.s. n.s. n.s. n.s. Mainhabitat n.s. n.s. n.s. (−)0.10** n.s. Native/invasive n.s. (−)0.08* n.s. n.s. log(linkagelevel,L) 0.80*** 0.22*** 0.30*** Connectivity,c n.s. 0.15** Hubability,z n.s. GalápagosIslands Fruitingplants Moduleaffinity – n.s. n.s. n.s. n.s. n.s. n.s. n.s. Modulecentrality (−)0.11* n.s. n.s. 0.16* n.s. n.s. n.s. Fruitdm n.s. 0.13* n.s. (−)0.13* n.s. (−)0.48*** Mainhabitat 0.14* n.s. n.s. n.s. n.s. Native/invasive n.s. n.s. n.s. n.s. log(linkagelevel,L) 0.64*** 0.45*** n.s. Connectivity,c n.s. n.s. Hubability,z (–)0.09* Significancelevel:*P<0.05;**P<0.01;***P<0.001;n.s.,notsignificant.Moduleaffinityisabinaryvariable,indicatingifaspeciesismemberofthe samemoduleornot;modulecentralityisthenumberofbetweenlinksofamodule/(totalnumberoflinksinamodule),i.e.linksfromagivenmodule toallothermodules,dividedbythetotalnumberoflinksofthemodule(no.linkstoothermodules+no.linkswithinthemodule).Minussignsin bracketindicatethedirectionofthecorrelation. disassembly,especiallytheextinctionofrarespecies(Bascompte press).ThestrongcoherenceoftheCanariannetworkisdueto etal.,2003;Rodriguez-Cabaletal.,2013),whereastheGalápa- itsmanyconnectors(threetimesasmanyasintheGalápagos); gosnetworkconsistedofwell-separatedmodules(intermodule these are animals moving between habitats,and plants with a distancewastwiceaslargeastheCanarianandtheproportionof wide elevational range. In general, the Galápagos network is between-module links was considerably lower). According to functionallystructured(assemblagesof birds,lizards,tortoises that,thedifferentmodulesoperatemoreindependentlyinthe andtheirplants,andoneintroducedmammalmodule),whereas Galápagos. This pattern reduces the risk of coextinction cas- the Canarian network mainly reflects the underlying habitat cades (Rodriguez-Cabal etal., 2013; Bascompte & Olesen, in diversity(elevationalzones:mountains,forests,coastland).Both GlobalEcologyandBiogeography,©2015JohnWiley&SonsLtd 7 M.Nogalesetal. aregeographicallywellstructured,andeachmodulewasoften fortunatelystillmostlyintact,withtheexceptionoflocalextinc- locatedononeorafewislands. tionsofgianttortoisesonGalápagos.However,acloserlookat theinfluenceofdifferencesinnetworkstructure,asobservedon the Canaries and the Galápagos, upon extinction dynamics, Seed-dispersalnetworksandmodules mightbeafruitfulfutureresearchprogrammethatmayexpose The general trend that more diverse networks have more differentcolonization–extinctiondynamics. modules (Olesen etal., 2007) was not observed in our study, even though the Canarian network had twice as many plant speciesastheGalápagosone.Thereasonsforthisare:(1)the Thedriversofmodularity largeintermoduledistanceandthushighmodularitylevelofthe Galápagosnetwork;and(2)thehighertopologicalrank(con- The drivers of modularity appear to be quite different on the nectors,moduleandnetworkhubs)ofCanarianspeciesinpar- twoarchipelagos.Habitatdiversityandnumberof biomesare ticular–Canarianconnectorsweremorefrequent.Bothfeatures higher on the Canaries,perhaps due to a considerably higher tendtoreducethenumberofmodules.Ifweregardamoduleas elevationcoupledwithamuchwidergeologicalagespan.Fleshy a kind of niche shared by a set of strongly interacting species fruitedplantswerewellrepresentedinallhabitats,exceptinthe (Gómez etal., 2015), then our results demonstrate that the pineforest.Birdsweremoreimportantinforestenvironments, Galápagoshaveamoreclearlydelimitedandfine-grainedniche whilelizardsweremoresointheopenhabitatmodules,inboth structure than the Canaries. Finally, the stronger Galápagos coastalandhigh-mountainhabitats(Validoetal.,2003;Rumeu modularity was further enhanced by invasive alien mammals, etal.,2011).Thetwomodulesdifferedbecausetheywereorgan- whichformedtheirownmodule. izedaroundlizardsandsecondaryseeddispersers,confirming In the Canaries, the kestrel and the lizard G.galloti were theroleoftheseanimalsinmutualisticinsularsystems(Olesen network hubs.The wide foraging range of the kestrel and the &Valido,2003;Nogalesetal.,2007;Padillaetal.,2012). wideelevationalrangeofthelizard(Padillaetal.,2012)circum- In the Galápagos,each module was formed by species with ventthehabitatspecificityof theirmodules,incontrasttothe somewhat similar traits,selecting similar functional groups of other four modules. A key role was also played by the two species,especially birds and lizards (but see the‘tortoise/large endemic laurel forest pigeons, both being hubs in the ‘laurel mammals’ module). Most modules included sauropsid repre- forest and large birds’module.Their central role (10–15 fruit sentativesandtheimportanceofseeddispersalbybirds,lizards plants)emphasizestheimportanceofthesebirdstothisunique andtortoisesiswellknownfromislands(e.g.Guerrero&Tye, forest.Furthermore,thepigeonswereresponsiblefortwo-thirds 2009;Helenoetal.,2011b,2013;Blakeetal.,2012). ofalldispersallinksintheforestandsuchamodularstructure Ingeneral,thepaucityofwell-resolvedstudiesofseeddisper- couldperhapsbesaidtohavethesignatureofboththeconsid- sal modularity (two exceptions from mainland environments erableageoftheforestandthestrongelevationalzonationofthe being Donatti etal., 2011; and Schleuning etal., 2011) still islands.Fortunately,bothspeciesofpigeonhavehealthypopu- hampers comparisons of island and mainland networks. lationsandnoimmediatethreatsareknown. However, we hypothesize that modularity could be higher in In the Galápagos, the tortoise C.nigra constituted the sole continents, where rich species assemblages tend to have been networkhub,whiletheplantMiconiarobinsonianawastheonly interacting for longer evolutionary periods, forcing species to module hub, and both are endemic. The role played as seed specialize and occupy smaller realized niches. In contrast, the disperser by C.nigra (see Blake etal., 2013) is due to its large poorer biodiversity of oceanic islands allows some species to bodysize,homerangeandcapacitytodispersebothsmallseeds become very common (density compensation), broadening and the largest fleshy fruited plants such as Hippomane theirtrophicniche(interactionrelease;Travesetetal.,2015)to mancinella (Euphorbiaceae) (Blake etal., 2012; Heleno etal., becomesuper-generalists,andthustomakethenetworkmore 2013). Populations of this tortoise are, in general, recovering coherent.Inspiteofthisreasoning,thenumberofmoduleswas their former size with the eradication of competing feral rathersimilarbetweenourtwooceanicarchipelagosandthetwo mammalsoccupyingthesamemodule.Modularitywouldcer- mainland sites (Donatti etal., 2011; Schleuning etal., 2011), tainlyincreasefurtherifthepopulationsoftortoiseweretreated though the island networks were smaller.Detailed studies are taxonomically as distinct species (Jiménez-Uzcátegui etal., neededinordertodelvedeeperintotheinterpretationofmodu- 2014).Followingtherecentreleaseof tortoisestonewislands, laritybetweeninsularandcontinentalenvironments. forexamplePintaandSantaFe,wecanexpectstrongnetwork Irrespective of the two main causes of modularity in the changes,particularlywiththereintroductionofan‘extinctfunc- Canaries(environmentalheterogeneity)andGalápagos(species tion’ within these communities. Miconia robinsoniana is the functionalroles),thesixmodulesdetectedoneacharchipelago dominantplantthroughoutthehighlandMiconiazone.Here,it mayproducestrongisolationovertime.Ontheotherhand,itis isoneof thefewspeciesproducingfleshyfruits(Helenoetal., possiblethatislandshavehighmodularityduetotheimportant 2013) and is a key resource for most dispersers in its module habitat diversity in the different archipelagos and the strong (TableS5). temporaldynamics(e.g.vulcanism).Thesetwofactorsareprob- Althoughhuman-inducedextinctionisrelativelycommonon ablythebasicdriversoffastspeciationoccurringwithinremote oceanicislands,thefrugivoreassemblageofbotharchipelagosis territories isolated in the middle of the two largest oceans. 8 GlobalEcologyandBiogeography,©2015JohnWiley&SonsLtd Modularityofseed–dispersalnetworksonoceanicislands Indeed,wesuggestthatislandstudiesfocusingupontheimpor- Bascompte,J.&Jordano,P.(2013)Mutualisticnetworks.Prince- tanceofmodularityforspeciationratecouldbeamostprom- tonUniversityPress,Princeton. isingresearchavenue. Bascompte, J. & Olesen, J.M. (in press) Mutualistic networks. Mutualism (ed. by J.L. Bronstein). Oxford University Press, Oxford. CONCLUDING REMARKS Bascompte, J., Jordano, P., Melián, C.J. & Olesen, J.M. (2003) This is the first detailed study of the modularity of seed- The nested assembly of plant–animal mutualistic networks. dispersal networks on oceanic islands. We demonstrate that Proceedings of the National Academy of Sciences USA, 100, insularseed-dispersalnetworksmaydifferprofoundlyintheir 9383–9387. linkage structure among oceanic archipelagos. In this sense, Batagelj, V. & Mrvar, A. (1998) Pajek: a program for large modulesformpromisingbiogeographicalentitiesforexploring networkanalysis.Connections,21,47–57. the interplay between ecology and evolution on islands and Blake, S., Wikelski, M., Cabrera, F., Guezou, A., Silva, M., elsewhere. Thus the evolutionary history of insular networks Sadeghayobi, E., Yackulic, C.B. & Jaramillo, P. (2012) Seed mightalsodifferwithimportantconsequencesforourgeneral dispersalbyGalápagostortoises.JournalofBiogeography,39, understanding of island biogeography,colonization/extinction 1961–1972. dynamicsandspeciationpatterns. Blake, S., Yackulic, C.B., Cabrera, F., Tapia, W., Gibbs, J.P., Kümmeth, F. & Wikelski, M. (2013) Vegetation dynamics drivesegregationbybodysizeinGalapagostortoisesmigrat- ACKNOWLEDGEMENTS ingacrossaltitudinalgradients.JournalofAnimalEcology,82, ManycolleaguesintheCanariessharedwithustheirobserva- 310–321. tionsoninteractionsbetweendispersersandfruitingplants,but Blomberg, S.P., Garland, T. & Ives, A.R. (2003) Testing for especially Alfredo Valido, Félix M. Medina, Juan D. Delgado, phylogeneticsignalincomparativedata:behavioraltraitsare DavidP.Padilla,PatriciaMarrero,AiramRodríguezandMarta morelabile.Evolution,57,717–745. López.IntheCanaries,wealsoexpressourgratitudetopublic Carstensen, D.W. & Olesen, J.M. (2009) Wallacea and its institutions at national (Parques Nacionales) and autonomic nectarivorousbirds:nestednessandmodules.JournalofBio- level (Gobierno de Canarias and Cabildos insulares). In the geography,36,1540–1550. Galápagos,we thank the Charles Darwin Foundation and the Cox, S.C., Carranza, S. & Brown, R.P. (2010) Divergence ParqueNacionaldeGalápagosforofferingusmuchinformation times and colonization of the Canary Islands by Gallotia andlogisticsupport.Theeditorsandtwoanonymousreferees lizards. Molecular Phylogenetics and Evolution, 56, 747– provided useful comments and suggestions to improve this 757. manuscript.R.H.wasfundedbyFCTgrantIF/00441/2013and Dalsgaard, B., Trøjelsgaard, K., Martín González, A.M., the Marie-Curie CIG-321794. This study is framed within a Nogués-Bravo, D., Ollerton, J., Petanidou, T., Sandel, B., biodiversityprojectintheGalápagosIslands,financedbyBBVA Schleuning, M., Wang, Z., Rahbek, C., Sutherland, W.J., Foundation (Spain) and by projects CGL2012-C02-01 and Svenning,J.C.&Olesen,J.(2013)Historicalclimate-change CGL2013-44386-P financed by Ministerio de Economía y influences modularity and nestedness of pollination net- Competitividad(Spain). works.Ecography,36,1331–1340. Donatti,C.I.,Guimarães,P.R.,Galetti,M.,Pizo,M.A.,Marquitti, F.M.D. & Dirzo, R. (2011) Analysis of a hyper-diverse seed REFERENCES dispersal network: modularity and underlying mechanisms. Aizen,M.A.,Sabatino,M.&Tylianakis,J.M.(2012)Specializa- EcologyLetters,14,773–781. tionandraritypredictnonrandomlossofinteractionsfrom Dunne,J.A.,Williams,R.J.&Martinez,N.D.(2002)Food-web mutualistnetworks.Science,335,1486–1489. structure and network theory: the role of connectance and Almeida-Neto,M.,Guimarães,P.,Guimarães,P.R.,Loyola,R.D. size.ProceedingsoftheNationalAcademyofSciencesUSA,99, &Ulrich,W.(2008)Aconsistentmetricfornestednessanaly- 12917–12922. sis in ecological systems: reconciling concept and measure- Fritz,S.A.&Purvis,A.(2010)Selectivityinmammalianextinc- ment.Oikos,117,1227–1239. tion risk and threat types: a new measure of phylogenetic Anderson, T.K. & Sukhdeo, M.V.K. (2011) Host centrality in signalstrengthinbinarytraits.ConservationBiology,24,1042– foodwebnetworksdeterminesparasitediversity.PLoSONE, 1051. 6,e0026798. Gómez, J.M., Perfectti, F., Abdelaziz, M., Lorite, J., Muñoz- Angiosperm Phylogeny Group, III (2009) An update of the Pajares, A.J. & Valverde, J. (2015) Evolution of pollination Angiosperm Phylogeny Group classification for the orders nichesinageneralistplantclade.NewPhytologist,205,440– andfamiliesoffloweringplants:APGIII.BotanicalJournalof 453. theLinneanSociety,161,105–121. González-Castro, A., Traveset, A. & Nogales, M. (2012) Bascompte, J. & Jordano, P. (2007) Plant–animal mutualistic SeeddispersalinteractionsintheMediterraneanregion:con- networks: the architecture of biodiversity.Annual Review of trasting patterns between islands and mainland. Journal of Ecology,EvolutionandSystematics,38,567–593. Biogeography,39,1938–1947. GlobalEcologyandBiogeography,©2015JohnWiley&SonsLtd 9 M.Nogalesetal. Guerrero,A.M.&Tye,A.(2009)Darwin’sfinchesasseedpreda- Olesen,J.M.&Valido,A.(2003)Lizardsaspollinatorsandseed tors and dispersers. The Wilson Journal of Ornithology, 121, dispersers:anislandphenomenon.TrendsinEcologyandEvo- 752–764. lution,18,177–181. Guimerà,R. & Amaral,L.A.N. (2005) Functional cartography Olesen,J.M.,Bascompte,J.,Dupont,Y.L.&Jordano,P.(2007) of complex metabolic networks. Nature, 433, 895– The modularity of pollination networks. Proceedings of the 900. NationalAcademyofSciencesUSA,104,19891–19896. Harmon,L.J.,Weir,J.T.,Brock,C.D.,Glor,R.E.&Challenger,W. Orme, D. (2013) The caper package: comparative analysis of (2008) Geiger: investigating evolutionary radiations. phylogeneticsandevolutioninR.Availableat:http://cran.r- Bioinformatics,24,129–131. project.org/web/packages/caper/vignettes/caper.pdf(accessed Heleno,R.,Ross,G.,Everard,A.M.Y.,Memmott,J.&Ramos,J.A. 25April2015). (2011a)Theroleof avian‘seedpredators’asseeddispersers. Padilla,D.P.,González-Castro,A.&Nogales,M.(2012)Signifi- Ibis,153,199–203. cance and extent of secondary seed dispersal by predatory Heleno, R., Blake, S., Jaramillo, P., Traveset, A., Vargas, P. & birdsonoceanicislands:thecaseoftheCanaryarchipelago. Nogales,M.(2011b)FrugivoryandseeddispersalintheGalá- JournalofEcology,100,416–427. pagos:whatisthestateoftheart?IntegrativeZoology,6,110– Paradis,E.,Claude,J.&Strimmer,K.(2004)APE:analysesof 129. phylogeneticsandevolutioninRlanguage.Bioinformatics,20, Heleno,R.,Olesen,J.M.,Nogales,M.,Vargas,P.&Traveset,A. 289–290. (2013)SeeddispersalnetworksintheGalápagosandthecon- Pocock,M.J.O.,Evans,D.M.&Memmott,J.(2012)Therobust- sequences of alien plant invasions. Proceedings of the Royal ness and restoration of a network of ecological networks. SocietyB:BiologicalSciences,280,20122112. Science,335,973–977. Herrera,C.M.(1995)Plant–vertebrateseeddispersalsystemsin Rasmussen,C.,Dupont,Y.L.,Mosbacher,J.B.,Trøjelsgaard,K.& the Mediterranean: ecological, evolutionary and historical Olesen,J.M.(2013)Strongimpactoftemporalresolutionon determinants.AnnualReviewof EcologyandSystematics,26, thestructureofanecologicalnetwork.PLoSONE,8,e81694. 705–727. Rodriguez-Cabal, M.A., Barrios-Garcia, M.N., Amico, G.C., Høye, T.T., Post, E., Schmidt, N.M., Trøjelsgaard, K. & Aizen,M.A.&Sanders,N.J.(2013)Node-by-nodedisassem- Forchhammer, M.C. (2013) Shorter flowering seasons and blyofamutualisticinteractionwebdrivenbyspeciesinterac- declining abundance of flower isitors in a warmer Arctic. tions. Proceedings of the National Academy of Sciences USA, NatureClimateChange,3,759–763. 110,16503–16507. Jiménez-Uzcátegui,G.,Márquez,C.&Snell,H.L.(2014)CDF Rumeu, B., Elias, R.B., Padilla, D.P., Melo, C. & Nogales, M. checklist of Galapagos reptiles – FCD lista de especies de (2011)Differentialseeddispersalsystemsofendemicjunipers reptilesdeGalápagos.CharlesDarwinFoundationGalapagos in two oceanic Macaronesian archipelagos: the influence of specieschecklist(ed.byF.Bungartz,H.Herrera,P.Jaramillo,N. biogeographic and biological characteristics. Plant Ecology, Tirado, G. Jiménez-Uzcátegui, D. Ruiz, A. Guézou and F. 212,911–921. Ziemmeck). Charles Darwin Foundation, Puerto Ayora, Schleuning, M., Blüthgen, N., Flörchinger, M., Braun, J., Galapagos. Available at: http://www.darwinfoundation.org/ Schaefer, H.M. & Böhning-Gaese, K. (2011) Specialization datazone/checklists/vertebrates/reptilia/ (last updated 23 andinteractionstrengthinatropicalplant–frugivorenetwork January2014). differamongforeststrata.Ecology,92,26–36. Jordano,P.,Bascompte,J.&Olesen,J.M.(2003)Invariantprop- Schleuning, M., Böhning-Gaese, K., Dehling, D.M. & Burns, erties in coevolutionary networks of plant–animal interac- K.C.(2014)Atalossforbirds:insularityincreasesasymmetry tions.EcologyLetters,6,69–81. inseed-dispersalnetworks.GlobalEcologyandBiogeography, Kembel, S.W., Cowan, P.D., Helmus, M.R., Cornwell, W.K., 23,385–394. Morlon, H., Ackerly, D.D., Blomberg, S.P. & Webb, C.O. Sebastián-González,E.,Sandel,B.,Dalsgaard,B.&Guimarães,P. (2010) Picante: R tools for integrating phylogenies and (2015)Macroecologicaltrendsinnestednessandmodularity ecology.Bioinformatics,26,1463–1464. ofseed-dispersalnetworks.GlobalEcologyandBiogeography, Nogales,M.,Nieves,C.,Illera,J.C.,Padilla,D.P.&Traveset,A. 24,293–303. (2005) Effect of native and alien vertebrate frugivores on Stouffer, D.B. & Bascompte, J. (2011) Compartmentalization seed viability and germination patterns of Rubia fruticosa increases food-web persistence. Proceedings of the National (Rubiaceae)intheeasternCanaryIslands.FunctionalEcology, AcademyofSciencesUSA,108,3648–3652. 19,429–436. Thébault,E.&Fontaine,C.(2010)Stabilityofecologicalcom- Nogales,M.,Padilla,D.P.,Nieves,C.,Illera,J.C.&Traveset,A. munitiesandthearchitectureofmutualisticandtrophicnet- (2007)Secondaryseeddispersalsystems,frugivorouslizards works.Science,329,853–856. and predatory birds in insular volcanic badlands.Journal of Traveset, A., Heleno, R., Chamorro, S., Vargas, P., McMullen, Ecology,95,1394–1403. C.K.,Castro-Urgal,R.,Nogales,M.,Herrera,H.W.&Olesen, Nunn, C.L. (2011) The comparative method in evolutionary J.M.(2013)InvadersofpollinationnetworksintheGalápagos anthropology and biology. University of Chicago Press, Islands:emergenceof novelcommunities.Proceedingsof the Chicago. RoyalSocietyB:BiologicalSciences,280,20123040. 10 GlobalEcologyandBiogeography,©2015JohnWiley&SonsLtd

Description:
modularity. *Correspondence: M. Nogales, Island Ecology and Evolution Research Group (IPNA-CSIC),. C/Astrofísico Fco. Sánchez no. 3, 38206 La.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.