Essays on the Economics of Energy Markets - Security of Supply and Greenhouse Gas Abatement Inauguraldissertation zur Erlangung des Doktorgrades der Wirtschafts- und Sozialwissenschaftlichen Fakult¨at der Universita¨t zu Ko¨ln 2012 vorgelegt von Diplom-Volkswirtin, CEMS-MIM Caroline Dieckho¨ner aus Langenfeld (Rhld.) Referent: Prof. Dr. Felix H¨offler Korreferent: PD. Dr. Christian Growitsch Tag der Promotion: 01.02.2013 Contents List of Figures ix List of Tables xi Abbreviations xiii 1 Introduction 1 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Some conceptual foundations . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2.1 Normative security of supply analyses . . . . . . . . . . . . . . . . 3 1.2.1.1 The TIGER model . . . . . . . . . . . . . . . . . . . . . . 4 1.2.1.2 Assumptions and caveats of TIGER . . . . . . . . . . . . 7 1.2.2 Positive analyses of consumer choices using microsimulation and econometrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.2.2.1 Discrete Choice Heat Market Simulation Model . . . . . 9 1.2.2.2 Assumptions and caveats of DIscrHEat . . . . . . . . . . 13 1.2.2.3 Differences-in-differences-in-differences approach (DDD) . 14 1.2.2.4 Assumptions and caveats of DDD . . . . . . . . . . . . . 17 1.3 Thesis outline and contributions . . . . . . . . . . . . . . . . . . . . . . . 18 1.3.1 Security of supply effects of the Nabucco and South Stream projects . . . . . . . . . . . . . . . . . . . . . . . . . 18 1.3.2 Civil unrests in North Africa – Risks for natural gas supply? . . . 19 1.3.3 Greenhouse gas abatement curves of the residential heating market . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 1.3.4 Subsidizing investments in energy efficiency . . . . . . . . . . . . . 20 I Model-based Analyses of Security of Supply in Natural Gas Mar- kets 21 2 SimulatingsecurityofsupplyoftheNabuccoandSouthStreamprojects for the European natural gas market 23 2.1 Introduction and Background . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.2 Security of natural gas supply and the Nabucco and the South Stream pipeline projects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.2.1 Security of natural gas supply . . . . . . . . . . . . . . . . . . . . . 25 2.2.2 The Nabucco project . . . . . . . . . . . . . . . . . . . . . . . . . . 26 v vi CONTENTS 2.2.3 The South Stream project . . . . . . . . . . . . . . . . . . . . . . . 27 2.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.3.1 The TIGER-model . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.3.2 Data assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.3.3 Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.4 Results of no-crisis simulation for 2020 . . . . . . . . . . . . . . . . . . . . 34 2.4.1 Baseline Scenario results of no-crisis simulation . . . . . . . . . . . 34 2.4.2 Nabucco and South Stream Scenario results of no-crisis simulation 37 2.5 Results of Ukraine crisis simulation for 2020 . . . . . . . . . . . . . . . . . 38 2.5.1 Baseline Scenario results of Ukraine crisis simulation . . . . . . . . 38 2.5.2 Nabucco and South Stream Scenario results of Ukraine crisis sim- ulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 3 Civil unrest in North Africa – Risks for natural gas supply? 47 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.2 Security of European natural gas supply and political stability of supplier countries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 3.3 Libyan gas export disruption in 2011 . . . . . . . . . . . . . . . . . . . . . 52 3.4 Model-based analysis of potential future disruptions . . . . . . . . . . . . 55 3.5 Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 3.5.1 Diversion of gas flows . . . . . . . . . . . . . . . . . . . . . . . . . 57 3.5.2 Demand curtailment . . . . . . . . . . . . . . . . . . . . . . . . . . 60 3.5.3 Price effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 II ConsumerChoices, EnergyEfficiencyandGreenhouseGasAbate- ment Policies 67 4 Greenhouse gas abatement curves of the residential heating market – a microeconomic approach 69 4.1 Introduction and Background . . . . . . . . . . . . . . . . . . . . . . . . . 69 4.2 Previous research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 4.3 Theoretical approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 4.4 Data and Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 4.4.1 Microsimulation using DIscrHEat . . . . . . . . . . . . . . . . . . . 84 4.4.2 Policy scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 4.5 Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 4.5.1 Greenhouse gas abatement policies and diffusion of heating systems 86 4.5.2 Welfare analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 4.5.3 Welfare-based greenhouse gas abatement curves . . . . . . . . . . . 93 4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 5 Does subsidizing investments in energy efficiency reduce energy con- sumption? Evidence from Germany 97 5.1 Introduction and Background . . . . . . . . . . . . . . . . . . . . . . . . . 97 5.2 Literature overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 CONTENTS vii 5.3 Hypotheses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 5.4 Data and descriptive statistics. . . . . . . . . . . . . . . . . . . . . . . . . 105 5.4.1 Sources and variables . . . . . . . . . . . . . . . . . . . . . . . . . 105 5.4.2 Heating expenditure and dwelling modernization . . . . . . . . . . 109 5.5 Estimation Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 5.5.1 Number of investments in energy efficiency . . . . . . . . . . . . . 114 5.5.2 Heating energy expenditures . . . . . . . . . . . . . . . . . . . . . 115 5.6 Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 5.6.1 Impacts on dwelling modernizations . . . . . . . . . . . . . . . . . 117 5.6.1.1 Impacts of socio-economic and dwelling characteristics . . 118 5.6.1.2 Impacts of subsidies and ownership status . . . . . . . . . 119 5.6.2 Impacts on heating energy consumption . . . . . . . . . . . . . . . 120 5.6.2.1 Impacts of socio-economic and dwelling characteristics . . 121 5.6.2.2 Impacts of ownership status and modernizations during subsidy periods. . . . . . . . . . . . . . . . . . . . . . . . 125 5.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 A Supplementary Material to Chapters 2 and 3 131 A.1 Main equations of the TIGER model . . . . . . . . . . . . . . . . . . . . . 131 A.2 Model versions applied in Chapters 2 and 3 . . . . . . . . . . . . . . . . . 135 A.3 Parameterization and data sources . . . . . . . . . . . . . . . . . . . . . . 135 B Supplementary Material to Chapter 4 137 B.1 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 B.1.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 B.2 Discrete choice model - welfare measurement and tests . . . . . . . . . . . 146 C Supplementary Material to Chapter 5 155 C.1 Theoretical framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 C.1.1 The energy efficiency gap . . . . . . . . . . . . . . . . . . . . . . . 158 C.1.2 Lump-sum subsidies for investments in energy efficiency . . . . . . 158 C.1.3 Subsidies on interest rates of investments in energy efficiency . . . 159 C.1.4 Investment barriers in tenant-occupied dwellings . . . . . . . . . . 161 C.1.5 Subsidies, the heterogeneity of households and information as- symetries of policy makers . . . . . . . . . . . . . . . . . . . . . . . 162 C.2 Summary statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 C.3 Subsidy programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 Bibliography 167 List of Figures 1.1 TIGER model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2 Duality and cost minimization . . . . . . . . . . . . . . . . . . . . . . . . 5 1.3 DIscrHEat model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.4 Compensating variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.1 TIGER-model composition . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.2 Supply mix in 2020 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 2.3 Withdrawal of gas volumes along the route . . . . . . . . . . . . . . . . . 38 2.4 Differencesregardingsupplyvolumesbetweencrisis-andno-crisissimulation 43 3.1 Worldwide Governance Indicators . . . . . . . . . . . . . . . . . . . . . . . 50 3.2 Italian pipeline imports January to April 2011. . . . . . . . . . . . . . . . 54 3.3 Modeled infrastructure elements in Europe . . . . . . . . . . . . . . . . . 56 3.4 Gas flow changes Maghreb 1 year disruption vs. Reference Scenario. . . . 60 3.5 Modeled price effects in selected countries from pipeline disruptions . . . 64 4.1 Tax rate, subsidy level and resulting greenhouse gas abatement . . . . . . 87 4.2 Tax revenue and subsidy expenditure . . . . . . . . . . . . . . . . . . . . . 88 4.3 Installed heating systems in 2030 depending on CO reduction and policy 2 measures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 4.4 Tax, subsidy and excess burdens depending on CO reduction based . . . 91 2 4.5 Marginal and average cost of public funds per CO abatement level . . . . 92 2 4.6 Marginal excess burden of greenhouse gas reduction . . . . . . . . . . . . 93 5.1 Average subsidies per state . . . . . . . . . . . . . . . . . . . . . . . . . . 109 5.2 Percentage of households with owners or tenants in Western Germany . . 110 5.3 Heating expenditure and gas price development . . . . . . . . . . . . . . . 111 5.4 Averagesubsidypaymentsfordifferenttreatmentperiodsandrealheating expenditure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 5.5 BoxplotsofdisposablemonthlyincomeinEurosforhouseholdswithown- ers or tenants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 5.6 Estimation strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 5.7 Treatment effect on real heating expenditures in Euros per m2 . . . . . . 128 B.1 Data: Costsandfrequencyofenergycarriersinstalledindifferentdwellings in 2010 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 ix
Description: