ebook img

Secure Communications based on Chaotic Systems by Mohamed Haroun B.Sc., Alexandria ... PDF

122 Pages·2015·5.77 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Secure Communications based on Chaotic Systems by Mohamed Haroun B.Sc., Alexandria ...

Secure Communications based on Chaotic Systems by Mohamed Haroun B.Sc., Alexandria University, 1999 M.Sc., Alexandria University, 2009 A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY in the Department of Electrical and Computer Engineering (cid:13)c Mohamed Haroun, 2015 University of Victoria All rights reserved. This dissertation may not be reproduced in whole or in part, by photocopying or other means, without the permission of the author. ii Secure Communications based on Chaotic Systems by Mohamed Haroun B.Sc., Alexandria University, 1999 M.Sc., Alexandria University, 2009 Supervisory Committee Dr. T. Aaron Gulliver, Supervisor (Department of Electrical and Computer Engineering) Dr. Mihai Sima, Departmental Member (Department of Electrical and Computer Engineering) Dr. Andrew Rowe, Outside Member (Department of Mechanical Engineering) iii Supervisory Committee Dr. T. Aaron Gulliver, Supervisor (Department of Electrical and Computer Engineering) Dr. Mihai Sima, Departmental Member (Department of Electrical and Computer Engineering) Dr. Andrew Rowe, Outside Member (Department of Mechanical Engineering) ABSTRACT This dissertation provides methods to utilize chaos efficiently in secure communi- cations. Chaos has many desirable characteristics such as ergodicity and sensitivity to initial conditions, and is considered an ideal candidate for use in cryptography and secure communications. On the other hand, it suffers from sensitivity to noise and fading if it is used for physical layer transmission, and errors due to the finite precision of the numerical algorithms in digital systems. This limits the use of chaos in cryptographic applications. Accordingly, this dissertation proposes new algorithms to enhance the security of modern communication systems using chaos. The focus is on developing chaotic cryptosystems for wireless systems that are reliable, secure, and have good performance. iv Contents Supervisory Committee ii Abstract iii Table of Contents iv List of Tables vii List of Figures viii List of Abbreviations xiv Acknowledgements xv 1 Introduction 1 1.1 Chaos Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Chaos in Secure Communications . . . . . . . . . . . . . . . . . . . . 3 1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.4 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2 Low Complexity Discrete Multi-dimensional Chaotic Generators 9 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2 Difference Equations of the New Class of Discrete Chaotic Generators 10 2.3 Performance and Synchronization . . . . . . . . . . . . . . . . . . . . 13 2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3 A New 3D Chaotic Cipher for Encrypting Two Data Streams Si- multaneously 23 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 v 3.3 The New Cipher . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.4 Cipher Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.5 Security and Performance Analysis . . . . . . . . . . . . . . . . . . . 30 3.5.1 Statistical analysis . . . . . . . . . . . . . . . . . . . . . . . . 31 3.5.2 Differential analysis . . . . . . . . . . . . . . . . . . . . . . . . 32 3.5.3 Attacks on the system . . . . . . . . . . . . . . . . . . . . . . 32 3.5.4 Key space analysis and brute-force attack . . . . . . . . . . . 34 3.5.5 Key sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.5.6 Lorenz attacks . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.6 Execution Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.7 Effect of Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 4 Real-time Image Encryption using a Three-Dimensional Discrete Dual Chaotic Cipher 41 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 4.2 The Proposed Lorenz Dual Chaotic Cipher . . . . . . . . . . . . . . . 42 4.3 Cipher Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 43 4.4 Security Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 4.4.1 Key space analysis and brute-force attack . . . . . . . . . . . 46 4.4.2 Statistical analysis . . . . . . . . . . . . . . . . . . . . . . . . 46 4.4.3 Differential analysis . . . . . . . . . . . . . . . . . . . . . . . . 47 4.4.4 Lorenz attacks . . . . . . . . . . . . . . . . . . . . . . . . . . 48 4.4.5 Execution time . . . . . . . . . . . . . . . . . . . . . . . . . . 50 4.5 FPGA Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 50 4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 5 Secret Key Generation using Chaotic Signals over Frequency Se- lective Fading Channels 54 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 5.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 5.3 The Proposed Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 58 5.3.1 Probing the channel . . . . . . . . . . . . . . . . . . . . . . . 58 5.3.2 Threshold selection . . . . . . . . . . . . . . . . . . . . . . . . 59 5.3.3 Information reconciliation . . . . . . . . . . . . . . . . . . . . 60 vi 5.4 Chaotic Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 5.4.1 WSS signals over a fading channel . . . . . . . . . . . . . . . . 62 5.4.2 Chaotic signals over a fading channel . . . . . . . . . . . . . . 63 5.5 Key Bit Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 5.6 Synchronization between legitimate users . . . . . . . . . . . . . . . . 69 5.7 Performance analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 5.7.1 Key generation rate . . . . . . . . . . . . . . . . . . . . . . . . 69 5.7.2 Key randomness . . . . . . . . . . . . . . . . . . . . . . . . . 70 5.7.3 Key disagreement probability . . . . . . . . . . . . . . . . . . 72 5.8 KGR comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 5.9 Security analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 5.10 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 6 Secure OFDM with PAPR Reduction using Chaotic Signals 79 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 6.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 6.2.1 Selected Mapping (SLM) Technique . . . . . . . . . . . . . . . 81 6.3 The Proposed Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 82 6.3.1 Chaotic phase . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 6.3.2 Chaotic SLM . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 6.3.3 Quantization of the chaotic phase sequences . . . . . . . . . . 85 6.3.4 Data recovery without side-information . . . . . . . . . . . . . 86 6.3.5 Performance Results . . . . . . . . . . . . . . . . . . . . . . . 87 6.4 Security Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 7 Conclusions 94 vii List of Tables Table 2.1 The Lyapunov Spectrum of Some Continuous Attractors . . . . 15 Table 2.2 Discrete Rossler Lyapunov Spectrum (averaged over 10 or 50 Runs) 15 Table 2.3 Discrete Lorenz Lyapunov Spectrum (averaged over 10 or 50 Runs) 16 Table 2.4 Largest Lyapunov Exponent for the Discrete Rossler Generator . 18 Table 2.5 Largest Lyapunov Exponent for the Discrete Lorenz Generator . 18 Table 2.6 Conditional Lyapunov Exponents for Different Drive-Response Subsystems for the Discrete Lorenz and Rossler Systems . . . . 21 Table 3.1 Parameter Sensitivity, Key Length and Keyspace Size . . . . . . 34 Table 3.2 Encryption/Decryption Speeds for Various Ciphers . . . . . . . 39 Table 4.1 The Key Length based on the Master and Permutation Generator Sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 Table 4.2 Encryption and Decryption Execution Times for Several Ciphers 51 Table 5.1 Six Tap Static Channel Parameters . . . . . . . . . . . . . . . . 66 Table 5.2 106 Key Bits Generated Using the Proposed Algorithm over a Static Fading Channel . . . . . . . . . . . . . . . . . . . . . . . 67 Table 5.3 106 Key Bits Generated Using the Proposed Algorithm over a Time-Varying Fading Channel . . . . . . . . . . . . . . . . . . . 68 Table 5.4 Key Generation Rates for Various Algorithms . . . . . . . . . . 75 Table 5.5 Frequency of the Two Mask Values at Alice and Bob Appearing in the Five Largest Values at Eve for 10,000 Measurements . . . 77 Table 5.6 Correlation of the Keys Generated at Alice/Bob and Eve, and the Percentage of Mismatched Bits . . . . . . . . . . . . . . . . 77 Table 6.1 The Euclidean Distances for the M = 8 SLM Chaotic Phase Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 Table 6.2 The Euclidean Distances for the M = 8 SLM Sequences at an Eavesdropper . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 viii List of Figures Figure 1.1 The Rossler attractor. . . . . . . . . . . . . . . . . . . . . . . . 2 Figure 2.1 Discrete implementation of (2.3). . . . . . . . . . . . . . . . . . 11 Figure 2.2 Discrete Lorenz parameter g ranges based on the Lyapunov ex- ponents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 (a) Lyapunov exponent versus g for the u variable . . . . . . . . . 16 1 (b) Lyapunov exponent versus g for the v variable . . . . . . . . . 16 2 (c) Lyapunov exponent versus g for the w variable . . . . . . . . . 16 3 Figure 2.3 Discrete Rossler parameter g ranges based on the Lyapunov ex- ponents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 (a) Lyapunov exponent versus g for the x variable . . . . . . . . . 17 1 (b) Lyapunov exponent versus g for the y variable . . . . . . . . . 17 1 (c) Lyapunov exponent versus g for the z variable . . . . . . . . . 17 1 Figure 2.4 The discrete Lorenz attractor state space vectors. . . . . . . . . 18 (a) (u,v) space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 (b) (v,w) space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Figure 2.5 The discrete Rossler attractor state space vectors. . . . . . . . . 19 (a) (x,y) space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 (b) (y,z) space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Figure 2.6 Autocorrelation of the (a) continuous Lorenz attractor, and (b) discrete Lorenz attractor. . . . . . . . . . . . . . . . . . . . . . 19 (a) Autocorrelation of the continuous Lorenz attractor output . . . 19 (b) Autocorrelation of the discrete Lorenz attractor output . . . . . 19 Figure 2.7 Autocorrelation for different values of g. . . . . . . . . . . . . . 20 (a) g = 0.024 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 (b) g = 0.01 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 (c) g = 0.001 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 ix Figure 2.8 Synchronization with different initial conditions at the transmit- ter and receiver using the (a) Rossler discrete attractor state y as the drive signal, and (b) Lorenz discrete attractor using state v as the drive signal. . . . . . . . . . . . . . . . . . . . . . . . . 21 (a) Rossler synchronization . . . . . . . . . . . . . . . . . . . . . . 21 (b) Lorenz synchronization . . . . . . . . . . . . . . . . . . . . . . . 21 Figure 3.1 (a) and (b) The original text file and image, (c) the transmitted signal, (d) the autocorrelation of the transmitted signal, and (e) and (f) the recovered text file and image. . . . . . . . . . . . . 30 (a) Original text file . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (b) Original bird image . . . . . . . . . . . . . . . . . . . . . . . . . 30 (c) Transmitted signal . . . . . . . . . . . . . . . . . . . . . . . . . 30 (d) Autocorrelation of the transmitted signal . . . . . . . . . . . . . 30 (e) Recovered text file . . . . . . . . . . . . . . . . . . . . . . . . . 30 (f) Recovered bird image . . . . . . . . . . . . . . . . . . . . . . . . 30 Figure 3.2 (a) The original image, (b) the transmitted signal, (c) the auto- correlation of the transmitted signal, and (d) the recovered image. 31 (a) Original image . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (b) Transmitted signal . . . . . . . . . . . . . . . . . . . . . . . . . 31 (c) Autocorrelation of the transmitted signal . . . . . . . . . . . . . 31 (d) Recovered image . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Figure 3.3 (a) The cross-correlation of the encrypted signals generated from two text files with a small difference between them, (b) the au- tocorrelation of the difference between these encrypted signals, (c) the cross-correlation of the encrypted signals generated from two image files with a small difference between them, and (d) the autocorrelation of the difference between the encrypted signals. 33 (a) Cross-correlation between two text files . . . . . . . . . . . . . . 33 (b) Autocorrelation of the difference . . . . . . . . . . . . . . . . . 33 (c) Cross-correlation between two images . . . . . . . . . . . . . . . 33 (d) Autocorrelation of the difference . . . . . . . . . . . . . . . . . 33 x Figure 3.4 Decrypted text files using the chaotic cryptosystem with the parameters changed slightly to (a) U = 0.100001, (b) V = 0 0 0.000001, (c) W = 0.000001, (d) A = 10.001, (e) B = 28.001, 0 (f) C = 2.6677, (g) g = 0.010001, (h) g = 0.010001, and (i) 1 2 g = 0.010001. . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3 (a) U = 0.100001 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 0 (b) V = 0.000001 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 0 (c) W = 0.000001 . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 0 (d) A = 10.001 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (e) B = 28.001 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (f) C = 2.6677 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (g) g = 0.010001 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 1 (h) g = 0.010001 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 2 (i) g = 0.010001 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3 Figure 3.5 (a) and (b) The return maps, (c) the power spectrum, and (d) the bird image. . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (a) V return map . . . . . . . . . . . . . . . . . . . . . . . . . . 37 max (b) V return map . . . . . . . . . . . . . . . . . . . . . . . . . . 37 min (c) Power spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (d) Bird image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Figure 4.1 An example of image encryption: (a) the original image, (b) the encrypted signal, and (c) the recovered image. . . . . . . . . . . 44 (a) Original image . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 (b) Encrypted signal . . . . . . . . . . . . . . . . . . . . . . . . . . 44 (c) Recovered image . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Figure 4.2 The effect of the image (a) on the time-domain chaotic signal, and (b) the autocorrelation of the chaotic signal. . . . . . . . . 45 (a) Chaotic signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 (b) Autocorrelation . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Figure 4.3 The autocorrelation of the signal in Fig. 4.1-b. . . . . . . . . . . 47 Figure 4.4 The cross-correlation of the encrypted signals with and without an injected image. . . . . . . . . . . . . . . . . . . . . . . . . . 47

Description:
This dissertation provides methods to utilize chaos efficiently in secure communi- to enhance the security of modern communication systems using chaos. 2 Low Complexity Discrete Multi-dimensional Chaotic Generators. 9 4 Real-time Image Encryption using a Three-Dimensional Discrete.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.