ebook img

Secondary Organic Aerosol-Forming Reactions of Glyoxal with Amino Acids PDF

14 Pages·2009·1.13 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Secondary Organic Aerosol-Forming Reactions of Glyoxal with Amino Acids

Subscriber access provided by University of Colorado at Boulder Article Secondary Organic Aerosol-Forming Reactions of Glyoxal with Amino Acids David O. De Haan, Ashley L. Corrigan, Kyle W. Smith, Daniel R. Stroik, Jacob J. Turley, Frances E. Lee, Margaret A. Tolbert, Jose L. Jimenez, Kyle E. Cordova, and Grant R. Ferrell Environ. Sci. Technol., 2009, 43 (8), 2818-2824• DOI: 10.1021/es803534f • Publication Date (Web): 12 March 2009 Downloaded from http://pubs.acs.org on April 14, 2009 More About This Article Additional resources and features associated with this article are available within the HTML version: • Supporting Information • Access to high resolution figures • Links to articles and content related to this article • Copyright permission to reproduce figures and/or text from this article Environmental Science & Technology is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036 Environ.Sci.Technol.2009,43,2818–2824 Secondary Organic Aerosol-Forming incomplete.Inpartsoftheatmosphereasdissimilarasthe MexicoCityboundarylayer(7)andthefreetroposphere(8), Reactions of Glyoxal with Amino SOA formation rates and/or concentrations are much higherthanmodelpredictions.Theuptakeofglyoxalonto Acids aerosolwasimplicatedinMexicoCityasbeingresponsible foratleastpartofthemismatchbetweenmeasurements andmodeling(9).Glyoxalisscavengedbyaqueous-phase DAVID O. DE HAAN,*,†,‡ aerosol (10, 11) and even by solid aerosol with surface- ASHLEY L. CORRIGAN,† KYLE W. SMITH,† adsorbed water (12, 13). DANIEL R. STROIK,† JACOB J. TURLEY,† FRANCES E. LEE,† Cloudprocessingofsmallaldehydes,especiallyglyoxal MARGARET A. TOLBERT,‡ andmethylglyoxal,hasalsobeenidentifiedasasourceof JOSE L. JIMENEZ,‡ KYLE E. CORDOVA,‡ aerosol(14-16),supportedbyfieldmeasurementsofhigh AND GRANT R. FERRELL‡ levelsofoxalicacid,theoxidationproductofglyoxal,inthe aerosollayeraboveclouds(17).Modelrunsincludingglyoxal DepartmentofChemistryandBiochemistry,UniversityofSan andmethylglyoxaloxidationincloudsandaerosolsuggest Diego,5998AlcalaPark,SanDiegoCalifornia92110,and DepartmentofChemistryandBiochemistry,andCooperative thatthesetwocompoundsareresponsiblefor38%ofmodeled InstituteforResearchinEnvironmentalSciences,Universityof globalSOA,largelyviacloudprocessing(18). Colorado,BoulderColorado80309-0216 Theaqueous-phasechemistryofglyoxalissummarized inScheme1.Glyoxaltakespartinreversiblehydrationwhen Received December 12, 2008. Revised manuscript received itentersthecondensedphasewhereitcanbeoxidizedby February17,2009.AcceptedFebruary19,2009. OHandformoxalicacid.However,attypicalatmospheric oxidant concentrations, a large majority of glyoxal is not oxidizedwithinthe∼15min.lifetimeofaclouddroplet(19). What then is its fate? ATR-FTIR observations suggest that Glyoxal,thesimplestandmostabundantR-dicarbonyl aftermostofthewaterhasevaporatedfromadroplet,the compoundintheatmosphere,isscavengedbycloudsand glyoxaldihydrateconvertsintoanextremelyreactivemono- aerosol,whereitreactswithnucleophilestoformlow-volatility hydrate form, which self-oligomerizes and remains in the condensedphase(20).Computationsindicatethatdehydra- products.Hereweexaminethereactionsofglyoxalwithfive tionmayalsobetriggeredbynucleophilicattack(21).Amino aminoacidscommoninclouds.Whenglyoxalandglycine,serine, acids have been implicated in the formation of light- asparticacidorornithinearepresentatconcentrationsas absorbingoligomersviaaldolreactionswithacetaldehyde lowas30µMinevaporatingaqueousdropletsorbulksolutions, (22, 23). As we show in this work, the presence of such 1,3-disubstitutedimidazolesareformedinirreversiblesecond- nucleophilesinanevaporatingdropletresultsintheforma- orderreactionsdetectedbynuclearmagneticresonance tion of different nonvolatile products. The resulting dry (NMR),aerosolmassspectrometry(AMS)andelectrospray aerosolthencontainstheseproductsalongwithanyother ionizationmassspectrometry(ESI-MS).Incontrast,glyoxalreacts low-volatilitymaterialfromtheoriginaldroplet,suchasoxalic withargininepreferentiallyatsidechainaminogroups, acid. formingnonaromaticfive-memberedrings.Allreactionswere Inthisworkwedescribethereactionsbetweenglyoxal andthemostcommonaminoacidsinclouds,fog,andaerosol accompaniedbybrowning.Theuptakeof45ppbglyoxalbysolid- (24-26), and we use electrospray ionization mass spec- phaseglycineaerosolat50%RHwasalsostudiedandfound trometry(ESI-MS)andnuclearmagneticresonance(NMR) tocauseparticlegrowthandtheproductionofimidazole to characterize the imidazole products and measure the measuredbyscanningmobilityparticlesizingandAMS, kinetics of their formation. Finally, we quantify aerosol respectively,withaglyoxaluptakecoefficientR)0.0004. formation via quadrupole aerosol mass spectrometry (Q- Comparisonofreactionkineticsinbulkandindryingdroplets AMS) and high-resolution time-of-flight (HR-ToF)-AMS showsthatconversionofglyoxaldihydratetomonohydrate experimentsthatsimulateclouddropletdryingandthedirect acceleratesthereactionbyover3ordersofmagnitude,allowing uptakeofglyoxalbyaerosol. thesereactionstooccuratatmosphericconditions. Experimental Methods Introduction 15N-enrichedglycine(CambridgeIsotopes),aminoacids,and Aerosols have a strong effect on visibility (1) and human glyoxaltrimerdihydrate(Sigma-Aldrich)wereusedwithout health(2),andcanbothdirectlyandindirectlyinfluencethe further purification. Glyoxal-amino acid solutions in the climate (3). Secondary organic aerosol (SOA) material concentrationrange0.1-1.0Mweremadein18MΩwater. represents an important fraction of the particle mass One µL droplets of these solutions were dried at room throughoutthetroposphere(4,5).Agreatamountofeffort temperatureonattenuatedtotalreflectance(ATR)9-reflec- has been expended to chemically speciate this organic tiondiamondcrystals(DuraSamplIR,SmithsDetection)and materialandunderstandtheprocessesbywhichitforms(6). analyzedbyFouriertransforminfrared(FTIR)spectroscopy Recentcomparisonsbetweenfieldmeasurementsandmod- (JASCO4800)inordertoobservereactionsduringthedrying elswherebothgas-phaseaerosolprecursorconcentrations process(20).Larger150µLsampleswerealsodriedatroom andaerosolformationratesweremeasured,however,have temperatureinvialstobrownsolids,andredissolvedin18 shownthatourunderstandingofaerosolformationremains MΩ water at 1 mg/mL for ESI-MS analysis or in D2O (Cambridge Isotopes) for NMR analysis. Solutions were injected into the ion trap ESI-MS (Thermo-Finnigan LCQ *Correspondingauthore-mail:[email protected]. †UniversityofSanDiego. Advantage)viasyringepumpat2.5µL/minwithESInozzle ‡UniversityofColorado. voltage ) +4.3 kV, medical N2 sheath gas flow ) 25, and 28189ENVIRONMENTALSCIENCE&TECHNOLOGY / VOL.43,NO.8,2009 10.1021/es803534fCCC:$40.75 2009AmericanChemicalSociety PublishedonWeb03/12/2009 SCHEME 1. Cloud Processing of Glyoxal to Form Imidazole Derivatives, Oligomers, And Oxalic Acid capillarytemperature)200or250°C.1H,13C,15N,and2-D Results and Discussion NMRspectrawerecollectedatroomtemperatureonVarian Products.Analysisofdropscontaining0.1Mglyoxal+glycine 400or500MHzinstruments.Reactionkineticsweremoni- by ATR-FTIR shows that the peaks assigned to the amine toredby1HNMRinD2Osolutionsat295Kcontaining1M groupat3174(asymNsHstr),1508,1133,and1188cm-1(all glyoxal and either 1 M glycine, 0.86 M arginine, or 0.5 M NH+deformations)(31)arealleithereliminatedorsignifi- 3 serine. The latter two amino acids have limited water cantlyreducedinintensityupondropletdrying,relativeto solubility. peaksassignedtoglycine’sCH orcarboxylategroup(Figure 2 Thedryingofclouddropletswassimulatedbyatomizing 1andSupportingInformationFigureS1).Inaddition,the 0.03-10mMaqueousmixturesofglyoxalandanaminoacid glyoxal oligomer peaks at 950 and 980 (CsOsC oligomer inHPLC-gradewater(Sigma-Aldrich)usingeitherpneumatic ring stretch), and 1070 cm-1 (CsOH stretch) that appear nebulization(TSImodel9302,1.5µmmodewetdiameter) when glyoxal solutions are dried (20) become much less or ultrasonic nebulization (∼5 µm). The latter was ac- pronouncedinthepresenceofaminoacids.Theseobserva- complished using an inexpensive, commercially available tionssuggestthatglycine’saminegroupreactswithglyoxal mistgeneratorthatwasmodifiedbyexposingitsconductivity andlargelypreemptsglyoxalself-reaction. sensortoallowittoworkinhighlydiluteaqueoussolutions. ESI-MSandNMRdatashowthatglyoxalreactswiththe Wet drop sizes were calculated from scanning mobility freeaminoacidsglycine,serine,asparticacid,andornithine particlesizing(SMPS)distributionsfordriedNaClaerosol. inaqueoussolutionstoformextremelystable,zwitterionic Theultrasonicallyproducedmistwaspushedbyprepurified 1,3-disubstitutedimidazolesinirreversiblereactions(Scheme nitrogen at flow rates of 7-10 L min-1 through a charge 2).ESI-MSspectraofdriedandredissolvedglyoxal+amino neutralizer (TSI 3077 or NRD model P-2021-1000) into a acid bulk solutions are shown in Figure 2 with imidazole collapsible300LTeflonchamber(NewStarEnvironmental, peakslabeled.1Hand13CNMRpeakassignmentsofproducts LLC)containingnitrogenhumidifiedto>70%RH.Further formed in glyoxal + amino acid reactions are listed in evaporationfromdropletsenteringthechamberraisedthe SupportingInformationTableS1.Forthereactionsofglyoxal relativehumiditybeyond80%,asmeasuredbyahumidity withglycineandserine,theimidazolesweretheonlyproducts sensor(VaisalaHMT337)atthechamberoutlet.After∼20 detectedbyESI-MSor13Cor2-DNMRexperiments.However, minoffilltime,theparticlesinthechamberweresampled the formation of imidazoles was always accompanied by byQ-AMS,(AerodyneResearch)(27),HR-ToF-AMS(Aero- browningofthesolution.Thecompoundscausingthebrown dyne)(28)operatinginthehighest-resolution“W”mode,or color are melanoidins, a term used by food chemists to both.BothAMSinstrumentswereoperatedwithvaporizer describecomplex,light-absorbing,nitrogen-containingoli- temperature)600°Cand70eVelectronimpactionization. gomercompoundsthatareendproductsofMaillardreactions AMSsamplinglineswereblackconductivetubing(TSI)and/ betweensugarsandaminoacidswhereR-dicarbonylssuch or1/4”o.d.copperand2-4minlength.Allotheraerosol asglyoxalarereactiveintermediates(32).Melanoidinsmay flowswerethroughcoppertubing. havebeenresponsibleforseveralsmallpeaksobservedby Direct uptake of glyoxal by solid-phase glycine aerosol 1HNMR. was also probed by Q-AMS and SMPS. A 3 mM glycine Additionalproductswereobservedforthereactionsof solutionwasultrasonicallynebulizedandthedropletswere glyoxal with aspartic acid and ornithine. In an ESI mass driedto<44%RH,belowtheefflorescencepoint(29),inthe spectrum (Figure 2), H+ and Na+ adducts of unreacted chamberdescribedabove.Watervaporwasthenaddedto reach50%RH,stayingwellbelowthedeliquescencepoint of95%RH(29).Gas-phaseglyoxalwasgeneratedbyheating equal masses of glyoxal trimer dihydrate and phosphorus pentoxide to 150 °C and trapping the yellow-green gas producedat-105°C.Glyoxalwaspurifiedbytrap-to-trap distillation,retainingthemiddlefraction(30).A1.5mLflow- throughmetalvesselwaspumpedoutandpressurizedwith afewmbarofglyoxal(measuredbyconvectiongauge),and thevesselcontentsweresweptintothechamberwithdry nitrogen. Glyoxal concentrations in the chamber were calculatedtobe45ppbbasedondilutionintothecurrent FIGURE 1. Low wavenumber ATR-FTIR peaks observed at the chambervolume.SMPStotalaerosolvolumeswerecorrected endofdryingofaqueousdropletsondiamondcrystal.Red:1uL for volume dilution and for wall losses by fitting the total droplet of 0.095 M glycine. Blue dashed: 5 uL of 0.01 M glyoxal aerosolvolumesbeforeglyoxaladditiontoameasuredfirst- (×2).Black:1uLdropletcontaining0.095Mglycineand0.05M orderdecayconstant,0.0034min-1. glyoxal. VOL.43,NO.8,2009 / ENVIRONMENTALSCIENCE&TECHNOLOGY92819 SCHEME 2. Formation Mechanism for 1,3-Disubstituted Imidazole and Diimine from Glyoxal and the Amino Acids Glycine (RdH), Serine (RdCHOH), Ornithine (RdCHCHCHNH), and Aspartic Acid (RdCHCOO-); Odd Carbon Designated by * 2 2 2 2 2 2 aspartic acid are dominant at m/z 134 and 156, and the ThepreferencefortheR-aminepositionislikelyduetoits imidazolepeakatm/z301isonlyoneofseveralsignificant higherprobabilityofdeprotonation;itspK is8.69compared a productpeaks.Whiletheglyoxal-ornithineimidazolepeak to10.76forthesidechainaminegroup. atm/z299isdominantinESI-MS(Figure2),multipleisomers Theirreversibleformationof1,3-disubstitutedimidazoles are observed by NMR because of ornithine’s two reactive has been previously observed for the room temperature amine groups. Integration of 1H NMR data suggests that reaction of glyoxal and glycine (33), the reaction between glyoxalreactsatornithine’sR-aminegroup80%ofthetime, glyoxal,formaldehyde,andseveralaminoacidsat80°C(34), andonly20%ofthetimeatthesidechainaminegroup.The and the reaction of glyoxal with lysine side chains, which reactionwithglyoxalrequiresadeprotonatedaminogroup. causesproteincross-linkingunderphysiologicalconditions (35). The imidazole yield is highest under mildly acidic conditions(pH3-5);however,melanoidinformation(brown discoloration)wasmaximizedatpH8fornonacidicamino acidsandpH5forglutamicacid(34).Wehypothesizethat imidazoleformationintheabsenceofformaldehydebegins withanucleophilicattackbyanunprotonatedaminegroup on glyoxal monohydrate’s carbonyl moiety (Scheme 2). Proton transfer followed by water loss produces an imine intermediate. Reaction at glyoxal’s second carbonyl (after dehydration)producesadiimine,aminorproducttowhich weassignthe8.1ppm1HNMRpeak(SupportingInformation TableS1)basedonotherdiiminescharacterizedbyNielsen etal.(36).In1Mglyoxal+glycineexperiments,iminesreact witheachother80%ofthetime(basedonrelative1HNMR signalsfortheproducts),formingazwitterionintermediate, whichcyclizesandgainsanH+toformthefive-membered ring(36).DehydrationthentriggerstheCsCbondrupture andlossofformicacid,formingthedisubstitutedimidazole withan“oddcarbon”notbondedtoanothercarbon(marked with*inScheme2).Severallinesofevidenceinsupportof thismechanismarepresentedbelow. Previousworkershaveattributedtheoddcarboninthe imidazoleringtotheadditionofformaldehydeproducedin the Strecker degradation of glycine (33). This mechanism wouldleaveathirdaminoacidsidechainRattachedtothe oddcarbonoftheimidazolering.Whiletheproductisthe sameregardlessofthesourceoftheoddcarbonatomfor the reaction with glycine (RdH), other amino acids will FIGURE 2. Electrospray ionization mass spectra of the products ofbulkphasereactionsofglyoxalwithaminecompounds,after producedifferentproducts.Sinceproductsmassescontaining drying to a solid residue and redissolving residue in water to athirdRgroupwerenotobserved(Figure2)forserine(m/z reach 1 mg/mL. Absolute abundances (all × 106): Glycine, 2.7 275), aspartic acid (m/z 359), or ornithine (m/z 356), we Serine, 16.1. Aspartic acid, 0.88. Ornithine, 4.0. Arginine, 14.5. * concludethattheoddcarboninallourexperimentsmust denotesmassof1,3-disubstitutedimidazoleproductshown. befromasecondglyoxalmolecule. 28209ENVIRONMENTALSCIENCE&TECHNOLOGY / VOL.43,NO.8,2009 TABLE 1. Room-Temperature 1H-NMR Kinetics Data for the Reactions of Glyoxal with Amino Acids (AA) in D2O in the Absence of Drying aminoacid [glyoxal](M) [AA](M) f a f AAinitiallossrate(mMd-1) 2ndorderrateconstant,kb(M-1s-1) glyoxal AA glycine 1.0 1.0 7×10-4 1.7×10-4c 1.9(0.6 0.12(0.04 serine 1.0 0.48 7×10-4 7.1×10-4c 2.0(0.2 0.09(0.01 arginine 1.0 0.86 7×10-4 1 24(3 (4.5(0.6)×10-4 aFractionofglyoxalinmonohydrateformestimatedusingthermodynamicparametersfromabinitiocomputations(21). bExpressed in terms of concentrations of reactive forms of glyoxal and amino acids. cFraction of amino acid with deprotonatedaminegroupatpH6. SCHEME 3. Products Formed in Glyoxal + Arginine Reaction FIGURE 3. Kinetics of amino acid loss during reactions with glyoxal at room temperature in DO, without drying. Two 2 reactions per amino acid were performed; all data is shown Similar quantities of N-derivatized imidazoles were together. Amino acids are quantified by relative peak areas of producedevenifbulkglyoxal+aminoacidmixtureswere major 1H NMR signals, normalized to 1 at t ) 0. Initial driedinthedarkorundernitrogen.Whileitisunusualfor concentrations: glyoxal and glycine ) 1.0 M, serine ) 0.48 M, CsCbondstorupturewithoutphotolysisoroxidantchem- and arginine ) 0.86 M. Reaction rates are calculated from istry,theveryhighthermodynamicstabilityofthearomatic initial loss rates, taken to be a linear fit to all data for glycine imidazoleringispivotal.Wedonotbelievethattheimidazole and serine (as shown) and to first 7 days of data for arginine peaksobservedbyESI-MSaretheresultoffragmentation (linear fit not shown). Curve shown for arginine is to guide the becauseNMRdataclearlyindicatesahydrogenatomattached eye. attheoddcarbon.Furthermore,thereisnoNMRevidence fboereeixtpheecrtaendaitftatchheedseaclodnehdygdleyooxraglemca-rdbioonlgraotoumpthwaetrweosutildll -d[AA] )k [Glyoxal] f [AA] f (1) dt AA tot glyoxal tot AA attachedtotheimidazolering. The reaction between glyoxal and arginine is different whereAAisanyaminoacid,k istherateconstantinM-1 AA fromthoseoftheotheraminoacidsbecausearginine’sside s-1expressedintermsofthereactiveformsofeachreactant, chaincontainsthreeaminegroups,twoofwhichcanreact [Glyoxal] and[AA] aretheconcentrationsofallformsof tot tot evenwhenoneisprotonated.Thus,glyoxalreactstwiceat thereactantsinMintheaqueousphase,andfisthefraction the arginine side chain, forming 1:1 adducts rather than ofeachreactantinreactiveform: imidazoles.Themajorproducts1and2(Scheme3),both withprotonatedm/z233(Figure2),wereidentifiedbyNMR f ) [GlyoxalMonohydrate] (2) andwereproducedinaratioof3:1.Productsfromthereaction glyoxal [Glyoxal] ofglyoxalatthearginineR-aminegroupareatleast30times tot lessabundant.Theimidazolidinederivativeof1,produced - [NH CHRCOO ] byasingledehydrationfollowedbyhydridetransfer(37),is f ) 2 (3) observedwhenglyoxalisincubatedat110°Cwithproteins AA [AA] tot (38). Kinetics. Figure 3 and Supporting Information Figures These fractions were estimated using the results of ab S2andS3showthetimedependenceofthepeakareasof initiocalculationsforglyoxal(21),pK valuesfortheamino a 1H NMR peaks assigned to amino acids, diimine and acids glycine and serine, and experimental pH 6. Since imidazoleproducts(SupportingInformationTableS1)for [Glyoxal] ≈[GlyoxalDihydrate]insolution,f represents tot glyoxal the reactions between glyoxal and arginine, serine, and an equilibrium constant for the dehydration reaction of glycine.Agraphof1/[reactant]vstime(SupportingInfor- glyoxaldihydrate.Becausetheargininesidechainappears mationFigureS2)ismostlinearforasecondorderreaction tobereactiveevenwhenprotonated,allargininemolecules withreactantspresentinequimolarquantities,andthiswas are considered to be active-form reactants, f ) 1. Rate Arg observedforallthreereactions.Becauseglyoxal-aminoacid constantswerethencalculatedintermsofthesefractions reactions must occur between glyoxal monohydrate and and measured initial reaction rates (Table 1). Glyoxal loss aminoacidswithunprotonatedaminegroups,weexpress rates were not measured, but should be the same as the theratelawas aminoacidlossrateslisted. VOL.43,NO.8,2009 / ENVIRONMENTALSCIENCE&TECHNOLOGY92821 Time-dependentyieldsofdiimineandimidazoleproducts (producedinglycineandserinesystems)remainedpropor- tionalthroughouteachexperiment(SupportingInformation FigureS3),suggestingthatdiiminesareside-productsrather thanintermediates,consistentwithScheme1.Iminesignals werenotobserved,consistentwithashort-livedintermediate whoseformationisrate-determining. Reactionstoichiometryandyieldscanbeestimatedby comparing growth rates of NMR product peaks with the aminoacidlossrates.Forthereactionbetweenglyoxaland glycine, the production rate of the imidazole product (measuredatthe7.4ppmpeakduetotwoCHgroupsonthe ring)is60(20%ofthelossrateforglycine(measuredatthe CH grouppeakat3.4ppmandpropagating1σuncertainties 2 in the slopes). Because each of the signals is due to 2 H FIGURE4. Q-AMSpeakheightchangesforpeaksexhibitingthe atoms,theratesaredirectlycomparable,andsuggestthat ∼1.2(0.4imidazoleproductmoleculesformforeachtwo largest relative change upon exposure of solid glycine aerosol at 50% RH to 45 ppb gas-phase glyoxal. Changes are expressed glycinemoleculesthatreact.Similarly,theproductionrate as ratios of average signals postexposure divided by forthediimineintermediate(measuredatthe8.1ppmpeak pre-exposure. The total AMS aerosol-phase signal declined by duetotwoCHiminegroups)is15(5%oftheglycineloss 41% due to wall losses. All bars are referenced to this rate,indicatingthat0.3(0.1diimineproductmoleculesare benchmark, so that any peaks that declined by more than this formedpertwoglycinereactants.Thetotalobservedproduct are shown as negative, whereas peaks that increased in size formation stoichiometry is 1.5 ( 0.5 molecules per two extend above 1. HR-ToF-AMS peak identifications are shown in glycine,withinuncertaintyoftheexpectedstoichiometryof figure. Other peaks: m/z 30 (CHN+ glycine fragment), 47 (formic 4 1:2,andsuggestingthatnootherproductswereformedin acid or H3CO2+ fragment), 86 (product fragment C3H4NO2+), 97 significantamounts.Asimilaranalysisofthereactionwith (product fragment C4H3NO2+). Full Q-AMS spectra are shown in arginineconfirmsnetstiochiometricyieldsforproducts1 SupportingInformationFigureS4. and2(SupportingInformationTableS1). ConcentrationDependenceandCloudDropletDrying. bothreactantstoactiveformsbythetimethewatermole We simulated the drying of cloud droplets by generating fractiondeclinesto0.7,buttodifferentextents. aqueous∼5µmdropletscontaining4mMglycineandglyoxal Glyoxal Uptake by Aerosol. Since reactions between (butnoinorganicsalts)andintroducingthemintoachamber glyoxalandaminoacidsaccelerateduringdropletevapora- tion,theymayoccuratthehighestratesinaerosolparticles at90%RH.Whentheresultingaerosolwassampled10min (13). We examined this process by exposing solid-phase laterbyHR-ToF-AMS,1,3-disubstitutedimidazoleproduct glycineaerosol(modediameter)84nm)at50%RHto45 wasobservedatm/z185,alongwithlargerfragmentpeaks suchasm/z86,CHNO+.Therelativeabundancesofthese ppbofgas-phaseglyoxal,whileanalyzingtheresultantaerosol 3 4 2 by SMPS and Q-AMS. (All fragment identifications were peakschangedonlyslightlywithfurthersamplingordrying, confirmedbyHR-ToF-AMSindryingdropletstudies.)Total suggestingthatthereactionwasnearlycompletebythefirst aerosolvolumeatthetimeofglyoxaladditionwas1.2×103 sampling. When the experiment was repeated at atmo- µm3cm-3,whichmeansthatglyoxalandglycinewerepresent sphericallyrelevantreactantconcentrationsof32µM(125 in equimolar quantities in the chamber. The addition of times less concentrated), the molecular ion peak was no glyoxaltriggered30min.ofparticlegrowth,increasingaerosol longervisible,butthem/z86fragmentwasstilldetectable volumeby20%(afterwalllossandvolumedilutioncorrec- withanabundance2000timeslower.Otherproductfragment tions)andincreasingparticle-phaseglyoxalsignalsatm/z ionsobservedbybothQ-AMSandHR-ToF-AMS(containing 58 (Figure 4 and Supporting Information Figure S4). Fur- bothCandN,m/z97,CHNO+andm/z126,CHNO+), 4 3 2 5 6 2 2 thermore,significantsignalincreasesoccurredatm/z184 respondedproportionallytochangesinreactantconcentra- and 185 (imidazole product), 86 and 97 (major product tions, suggesting that the glycine-glyoxal reaction has an fragments), and 47 (HCO+), which is either formic acid overallreactionorderof∼1.6,roughlyconsistentwithNMR 3 2 producedinScheme1,ormorelikelyanionizationfragment kineticsresultsdescribedabove. of larger aerosol-phase molecules. Glyoxal addition also TheAMSresultsprovidedirectevidencethatimidazole causedglycineQ-AMSpeaksatm/z30and73-75todecline formation can occur on a time scale of minutes in an by half (after normalizing for the general decline in total evaporatingdropletthatcontainsatmosphericconcentra- aerosol-phasesignal)(Figure4andSupportingInformation tionsofglyoxalandaminoacid(2-200µM(39,41)and1-100 Figure S4). If half of the glycine reacts to form imidazole µM(24,25),respectively).Ifweassumethatthedryingprocess productviaa1:1reactionwithglyoxal,ifbyproductwater in our experiment results in aerosol with water/glycine/ andformicacidevaporateintheAMSinletasexpected,and glyoxalpresentata5:1:1molarratioat90%RH(consistent ifthedensityofthe1,3-disubstitutedimidazoleproductis withelectrodynamicbalancemeasurementsforwaterand thesameasthatofimidazole(1.03g/cm3),thentheexpected glycine(29)),soluteconcentrationswouldbe∼5M.Using volumegrowthwouldbe19%,matchingourSMPSaerosol theactiveformfractionsfandrateconstantlistedinTable growthobservation. 1, we would predict that the reaction would take months Theseobservationssuggestthatglyoxaluptakeontosolid unlessweincludethedrying-inducedconversionofglyoxal amino acid aerosol is a reactive process and not simply a dihydratetoitsreactivemonohydrateform.Withfglyoxal)1, function of the interaction of glyoxal with aerosol water predictedreactiontimesarewithinafactorof6ofthe∼30 content.Thecessationofparticlegrowthafter30minislikely minreactiontimesobservedbytheAMS,butstilltooslow. causedbyproductbuildupatthesolidaerosolsurface,which Theremainingdifferenceislikelyduetoenhanceddepro- physicallyseparatesthereactants.Anuptakecoefficientfor tonationoftheglycineaminegroupinthemixedorganic/ glyoxal on solid-phase glycine, defined as the fraction of water aerosol phase making f > 1.7 × 10-4. Thus, the molecularcollisionswiththeaerosolsurfacethatresultin glycine rapidityoftheobservedreactionindryingdropletsrelative glyoxaluptake,canbeestimated(12)basedonthisexperi- to bulk solutions is further evidence that drying converts menttobeR)4×10-4.Thisisaboutanorderofmagnitude 28229ENVIRONMENTALSCIENCE&TECHNOLOGY / VOL.43,NO.8,2009 lessthantheuptakecoefficientinferredforglyoxalonMexico (8) Heald,C.L.;etal.Alargeorganicaerosolsourceinthefree Cityaerosol(9). tropospheremissingfromcurrentmodels.Geophys.Res.Lett. Atmospheric Significance. If a 5 µm cloud droplet 2005,32,L18809. (9) Volkamer,R.;etal.Amissingsinkforgas-phaseglyoxalinMexico contained 30 µM of both glyoxal and amino acids, and a City:formationofsecondaryorganicaerosol.Geophys.Res.Lett. complete conversion to imidazole product ensued, the 2007,34,L19807. amount of resulting imidazole product would make up at (10) Liggio,J.;Li,S.-M.;McLaren,R.Reactiveuptakeofglyoxalby least2%byvolumeofatypicalcloudprocessedaerosolwith particulatematter.J.Geophys.Res.2005,110,D10304. diameter)130nm.Thus,wecanestimatethatthereactants (11) Kroll,J.H.;etal.Chamberstudiesofsecondaryorganicaerosol glyoxal and amino acids in an evaporating cloud droplet growthbyreactiveuptakeofsimplecarbonylcompoundsJ. Geophys.Res2005,110,D23207,DOI:10.1029/2005JD006004. wouldbedilutedbyaboutafactorof50byothernonvolatile (12) Hastings,W.P.;etal.Secondaryorganicaerosolformationby compoundscomparedtooursimulatedclouddropletdrying glyoxalhydrationandoligomerformation:humidityeffectsand experiments. Under these circumstances, using aerosol- equilibriumshiftsduringanalysis.Environ.Sci.Technol.2005, phasereactantconcentrationsof5M/50)0.1M,f ) 39,8728–8735. glyoxal 1andf )6×1.7×10-4,andtherateconstantforthe (13) Corrigan,A.L.;Hanley,S.W.;DeHaan,D.O.Uptakeofglyoxal glycine glyoxal+glycinereaction,conversionto1,3-disubstituted byorganicandinorganicaerosol.Environ.Sci.Technol.2008, imidazoleswouldtake∼1day,muchlessthantheaverage 42,4428–4433. (14) Lim,H.-J.;Carlton,A.G.;Turpin,B.J.Isopreneformssecondary atmosphericlifetimeofaerosolparticles.Thetemperature organicaerosolthroughcloudprocessing:Modelsimulations. dependenceofglyoxal-aminoacidreactionsisunknown, Environ.Sci.Technol.2005,39,4441–4446. however. (15) Altieri,K.E.;etal.Evidenceforoligomerformationinclouds: Glyoxalconcentrationsrangefrom10to40pptovermost reactionsofisopreneoxidationproducts.Environ.Sci.Technol. 2006,40,4956–4960. oftheearth’ssurface,withenhancedlevelsobservedover (16) Ervens,B.;etal.Secondaryorganicaerosolyieldsfromcloud- tropical,oceanic,andurbanregions(42).Aminoacidsare processingofisopreneoxidationproducts.Geophys.Res.Lett. oftenenrichedinmarineprecipitationbyafactorof10over 2008,35,L02816. terrestrialprecipitation(24),andby∼3ordersofmagnitude (17) Sorooshian,A.;etal.Onthesourceoforganicacidaerosollayers over surface seawater (43). Measured organic N/C atomic aboveclouds.Environ.Sci.Technol.2007,41,4647–4654. ratioshaverangedfrom∼0.02inMexicoCityaerosol(44)to (18) Fu, T.-M.; et al. Global budgets of atmospheric glyoxal and ∼0.2inCentralValleyfog(45).Imidazoleandmelanoidin methylglyoxal, and implications for formation of secondary formationfromglyoxal-aminoacidreactionslikelyoccurs organicaerosols.J.Geophys.Res.2008,113,D15303. (19) Ervens,B.;etal.Amodelingstudyofaqueousproductionof overvastregionsoftheocean,overrainforests,andin“hot dicarboxylicacids:1.Chemicalpathwaysandspeciatedorganic spots” where urban plumes mix with biologically derived massproduction.J.Geophys.Res.2004,109,D15205. aerosol. (20) Loeffler,K.W.;etal.Oligomerformationinevaporatingaqueous glyoxalandmethylglyoxalsolutions.Environ.Sci.Technol.2006, Acknowledgments 40,6318–6323. (21) Kua,J.;Hanley,S.W.;DeHaan,D.O.Thermodynamicsand ThismaterialisbaseduponworksupportedbytheNational kineticsofglyoxaldimerformation:acomputationalstudy.J. ScienceFoundationunderGrantNo.ATM-0749145andby Phys.Chem.A2008,112,66–72. ResearchCorporationforScienceAdvancement.Wethank (22) Nozie`re,B.;Dziedzic,P.;Co´rdova,A.Formationofsecondary MichaelCubisonandDonnaSueperforassistancewithHR- light-abosrbing“fulvic-like”oligomers:acommonprocessin ToF-AMShardwareandsoftwareandBrandonConnellyfor aqueousandionicatmosphericparticles?Geophys.Res.Lett. 2007,34,L21812. synthesizinggas-phaseglyoxal. (23) Nozie`re,B.;Co´rdova,A.Akineticandmechanisticstudyofthe aminoacidcatalyzedaldolcondensationofacetaldehydein Note Added after ASAP Publication aqueousandsaltsolutions.J.Phys.Chem.A2008,112,2827– TworeferenceswereaddedtotheversionpublishedonMarch 2837. 12,2009.ThecorrectedversionwaspublishedonMarch20, (24) Mopper,K.;Zika,R.G.Freeaminoacidsinmarinerains:evidence 2009. foroxidationandpotentialroleinnitrogencycling.Nature1987, 325,246–249. Supporting Information Available (25) Zhang,Q.;Anastasio,C.Freeandcombinedaminocompounds in atmospheric fine particles (PM ) and fog waters from NMRpeakassignments,ATR-FTIRdata,NMRkineticsdata, NorthernCalifornia.Atmos.Environ2..52003,37,2247–2258. andQ-AMSspectrabeforeandafterglyoxaluptakebyglycine (26) Matsumoto,K.;Uematsu,M.Freeaminoacidsinmarineaerosols aerosol. This material is available free of charge via the overthewesternNorthPacificOcean.Atmos.Environ.2005, Internetathttp://pubs.acs.org. 39,2163–2170. (27) Canagaratna,M.R.;etal.Chemicalandmicrophysicalchar- Literature Cited acterizationofambientaerosolswiththeAerodyneaerosolmass spectrometer.MassSpectrom.Rev.2007,26,185–222. (1) Watson, J. G. Visibility: science and regulation. J. Air Waste (28) DeCarlo,P.F.;etal.Field-deployable,high-resolution,time- Manage.Assoc.2002,52,628–713. of-flightaerosolmassspectrometer.Anal.Chem.2006,78,8281– (2) Harrison,R.M.;Yin,J.Particulatematterintheatmosphere: 8289. whichparticlepropertiesareimportantforitseffectsonhealth. (29) Chan, M. N.; et al. Hygroscopicity of water-soluble organic Sci.TotalEnviron.2000,249,85–101. compoundsinatmosphericaerosols:aminoacidsandbiomass (3) Kanakidou, M.; et al. Organic aerosol and global climate derivedorganicspecies.Environ.Sci.Technol.2005,39,1555– modelling:Areview.Atmos.Chem.Phys.2005,5,1053–1123. 1562. (4) Zhang,Q.;etal.Ubiquityanddominanceofoxygenatedspecies (30) Volkamer,R.;Ziemann,P.J.;Molina,M.J.Secondaryorganic inorganicaerosolsinanthropogenically-influencedNorthern aerosolformationfromacetylene(C2H2):seedeffectonSOA Hemispheremidlatitudes.Geophys.Res.Lett.2007,34,L13801/ yieldsduetoorganicphotochemistryintheaerosolaqueous 1–6. phase.Atmos.Chem.Phys.Discuss.2008,8,14841–14892. (5) Murphy, D. M.; et al. Single-particle mass spectrometry of (31) Fischer,G.;etal.TheFT-IRspectraofglycineandglycineglycine troposphericaerosolparticlesJ.Geophys.Res2006,111,D23S32, zwitterionsisolatedinalkalihalidematrices.Chem.Phys.2005, DOI: 10. 313,39–49. 1029/2006JD007340. (32) Cammerer,B.;Jalyschko,W.;Kroh,L.W.Intactcarbohydrate (6) Hallquist,M.;etal.Theformation,propertiesandimpactof structuresaspartofthemelanoidinskeleton.J.Ag.FoodChem. secondaryorganicaerosol:currentandemergingissues.Atmos. 2002,50,2083–2087. Chem.Phys.Discuss.2009,9,3555–3762. (33) Velisek, J.; et al. New imidazoles formed in nonenzymatic (7) Volkamer,R.;etal.Secondaryorganicaerosolformationfrom browningreactions.J.FoodSci.1989,54,1544–1546. anthropogenicairpollution:Rapidandhigherthanexpected (34) Davidek, T.; et al. Amino acids derived 1,3-disubstituted Geophys.Res.Lett.2006,33,L17811,DOI:10.1029/2006GL026899. imidazolesinnonenzymaticbrowningreactions.Sb.Vys.Sk. VOL.43,NO.8,2009 / ENVIRONMENTALSCIENCE&TECHNOLOGY92823 Chem.-Technol.Praze,E:Potraviny1991,62,165–182. (41) Matsumoto,K.;Kawai,S.;Igawa,M.Dominantfactorscontrolling (35) Chellan,P.;Nagaraj,R.H.ProteincrosslinkingbytheMaillard concentrationsofaldehydesinrain,fog,dewwater,andinthe reaction:dicarbonyl-derivedimidazoliumcrosslinksinaging gasphase.Atmos.Environ.2005,39,7321–7329. anddiabetes.Arch.Biochem.Biophys.1999,368,98–104. (42) Wittrock,F.;etal.Simultaneousglobalobservationsofglyoxal (36) Nielsen,A.T.;etal.Polyazapolycyclicsbycondensationof and formaldehyde from space. Geophys. Res. Lett. 2006, 33, aldehydeswithamines.2.Formationof2,4,6,8,10,12-hexa- L16804. benzyl-2,4,6,8,10,12-hexaazatetracyclo[5.5.0.05.9.03,11]dode- (43) Milne,P.J.;Zika,R.G.Aminoacidnitrogeninatmospheric canesfromglyoxalandbenzylamines.J.Org.Chem.1990,55, aerosols:occurrence,sourcesandphotochemicalmodification. 1459–1466. J.Atmos.Chem.1993,16,361–398. (37) Chassonery,D.;etal.Reactionsdedismutationapartirduglyoxal (44) Aiken,A.C.;etal.O/CandOM/OCratiosofprimary,secondary, etdemoleculesbasiquesdifonctionnelles.Bull.Soc.Chim.Fr. and ambient organic aerosols with high-resolution time-of- 1994,131,188–199. flightaerosolmassspectrometry.Environ.Sci.Technol.2008, (38) Schwarzenbolz,U.;etal.Onthereactionofglyoxalwithproteins. 42,4478–4485. Z.Lebensm.Unters.Forsch.A1997,205,121–124. (45) Zhang,Q.;Anastasio,C.ChemistryoffogwatersinCalifornia’s (39) Igawa, M.; Munger, J. W.; Hoffmann, M. R. Analysis of Central Valley-Part 3: Concentrations and speciation of aldehydesincloud-andfogwatersamplesbyHPLCwitha organic and inorganic nitrogen. Atmos. Environ. 2001, 35, postcolumnreactiondetector.Environ.Sci.Technol.1989,23, 5629–5643. 556–561. (40) Munger,J.W.;etal.Formaldehyde,glyoxal,andmethylglyoxal inairandcloudwaterataruralmountainsiteincentralVirginia. J.Geophys.Res.1995,100,9325–9333. ES803534F 28249ENVIRONMENTALSCIENCE&TECHNOLOGY / VOL.43,NO.8,2009 Secondary organic aerosol-forming reactions of glyoxal with amino acids Supplemental Information David O. De Haan,1,2* Ashley L. Corrigan, 1 Kyle W. Smith, 1 Daniel R. Stroik, 1 Jacob J. Turley, 1 Frances E. Lee,1 Margaret A. Tolbert, 2 Jose L. Jimenez,2 Kyle E. Cordova,2 Grant R. Ferrell2 Contents: 6 pp total Table S1 Figures S1 – S4 S2 Table S1: 1H- and 13C-NMR peak assignments for the major (left side) and minor (right side) products of the reactions of glyoxal with amino acids. Product Structures: N-derivatized imidazole Diimine A B C R-group D Glycine 1H 8.6 7.3 4.6 na 8.1 13C 137 123 52 na Serine 1H 8.8 7.4 4.0 4.1 8.2 Ornithine 1H 8.7 7.4 4.1 1.8 1.6 2.9 8.0 13C 136 123 63 25 23 39 Aspartic 1H 8.97 a 7.4 5.28 2.5 8.3 acid 13C 138.0 a 123.4 62.4 a 39.0 a a Product Structures: 2 1 A B C R A B Arginine 1H 5.0 5.0 3.3 1.7 1.8 3.6 5.2 5.2 13C 83 89 41 24 28 54 77 83 a: NMR data from Davidek, et al.,(32) synthesized including formaldehyde.

Description:
Cloud processing of small aldehydes, especially glyoxal and methylglyoxal, has also been identified as a source of absorbing oligomers via aldol reactions with acetaldehyde. (22, 23). As we show tion diamond crystals (DuraSamplIR, Smiths Detection) and .. Polyazapolycyclics by condensation of.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.