ebook img

Second Order QED Processes in an Intense Electromagnetic Field PDF

3 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Second Order QED Processes in an Intense Electromagnetic Field

Second Order QED Processes in an Intense Electromagnetic Field Anthony Francis Hartin 7 1 0 2 n a J 1 1 ] h p - p e h [ 1 v 6 0 Adissertationsubmittedinpartialfulfillment 9 oftherequirementsforthedegreeof 2 0 DoctorofPhilosophy . 1 ofthe 0 7 UniversityofLondon. 1 : v i X r DepartmentofPhysics a 2006 Abstract Somenonlinear,secondorderQEDprocessesinthepresenceofintenseplaneelectromagneticwaves are investigated. Analytic expressions with general kinematics are derived for Compton scattering ande+e−pairproductioninacircularlypolarisedexternalelectromagneticfield.Specialkinematics, including collinear photons and vanishing external field intensity, are employed to show that the generalexpressionsreducetoexpressionsobtainedinpreviouswork. Thedifferentialcrosssections wereinvestigatednumericallyforphotonenergiesupto50MeV,externalfieldintensityparameter ν2 tovalue2,andallscatteringangles. Thevariationoffullcrosssectionswithrespecttoexternal fieldintensitywasalsoestablished. The presence of the external field led to resonances in the Compton scattering and pair pro- duction differential cross sections. These resonances were investigated by calculating the electron self energy in the presence of the external field. Numerical analysis of the external field electron selfenergyshowedagreementwithpreviousworkinappropriatelimits. Howeverthemoregeneral expressionswereutilisedtocalculateresonancewidths. Atresonancethedifferentialcrosssections wereenhancedbyseveralordersofmagnitude. Theresonancesoccurredforvaluesofexternalfield intensity parameter ν2 < 1, lowering the limit of ν2 ∼ 1 at which point non linear effects in first orderexternalfieldQEDprocessesbecomeimportant. Generally,fullcrosssectionsincreasedwith increasingexternalfieldintensity, thoughpeakingsharplyforComptonscatteringandlevellingoff forpairproduction. An application was made to non linear background studies at e+e− linear colliders. The pair production process and electron self energy were studied for the case of a constant crossed elec- tromagnetic field. It was found that previous analytic expressions required the external field to be azimuthallysymmetric. Newanalyticexpressionsforthemoregeneralnonazimuthallysymmetric case were developed and a numerical parameter range equivalent to that proposed for future linear colliderdesignswasconsidered. Theresonantpairproductioncrosssectionexceededthenonreso- nantoneby5to6ordersofmagnitude. Extrabackgroundpairparticlesareexpectedatfuturelinear colliderbunchcollisions,raisingpreviousestimations. Acknowledgements ThePhysicsDepartmentatMonashUniversityprovidedmewithmanyyearsofemploymentandthe inspiration to pursue a career in physics. Drs Harry S Perlman and Gordon Troup provided much encouragementtopursueworkinthefieldofQEDandwerecoauthorsonmorethanoneoccasion. Harry’s cigar smoke always provided notice of his presence in the department. Thanks also to Dr. PeterDerletwhowasagroupmemberworthyofemulationandwhoselatexoutlinesImadeuseof. MythankstoJohnDawkins,formerAustralianMinisterforHigherEducationintheAustralian Labourgovernment. HisattacksontheHigherEducationsectorin1987and1988introducedmeto politicalactivismandmydevelopmentasahumanbeing. TonyBlairwouldhavebeenproudofhim. Johnconvincedmethatthepursuitofknowledgeisalwaysmoreimportantthanthepursuitofprofit. ThePhysicsDepartmentatQueenMaryprovidedemploymentandtheopportunitytorevisitmy thesis. ParticularthanksmustgotomysupervisorProfPhilBurrowsandtheFONTresearchgroup. Philalwaystookmeseriouslyandprovidedyearsoffinancial,moralandphysicssupport. TheILC wasthepracticalapplicationtowhichsomemodesttheoreticalworkinthisthesiscouldbedirected. Aboveall,thanksmustgotomyfamilyandmypartner. Myparents,brotherandsistersnever stopbelievinginmeandencouragingmetocompletemywork. Mypartner,withconstantloveand support,enduredthewritingupperiodwithneverawordofcomplaint. Contents 1 Introduction 8 1.1 QEDandtheexternalfield . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.2 FirstorderexternalfieldQEDprocesses . . . . . . . . . . . . . . . . . . . . . . . . 12 1.3 SecondorderexternalfieldQEDprocesses. . . . . . . . . . . . . . . . . . . . . . . 16 1.4 ExperimentalWork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 1.5 ThePresentWork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2 GeneralTheory 26 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.2 Units,normalisationconstants,notationandmetric . . . . . . . . . . . . . . . . . . 27 2.3 TheBoundInteractionPicture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.4 S-matrixTheory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.5 WickstheoremandFeynmandiagrams . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.6 Crossingsymmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.7 Summationoverspinandpolarisationstates . . . . . . . . . . . . . . . . . . . . . . 32 2.8 Thetransitionprobabilityandthescatteringcrosssection . . . . . . . . . . . . . . . 34 2.9 Theexternalfield . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 2.10 TheVolkovsolutionandtheBoundElectronPropagator . . . . . . . . . . . . . . . 36 2.11 Radiativecorrectionstotheboundelectronpropagator . . . . . . . . . . . . . . . . 38 2.12 Theexternalfieldelectronenergyshift . . . . . . . . . . . . . . . . . . . . . . . . . 39 2.13 Nonexternalfieldregularisationandrenormalisation . . . . . . . . . . . . . . . . . 40 2.14 Theopticaltheorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3 CrosssectionCalculations 43 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.2 ThestimulatedComptonscattering(SCS)matrixelement . . . . . . . . . . . . . . . 44 3.3 TheSCSphasespaceintegral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 3.4 SymbolicevaluationoftheSCScrosssection . . . . . . . . . . . . . . . . . . . . . 49 Contents 5 3.5 NumericalevaluationoftheSCScrosssection . . . . . . . . . . . . . . . . . . . . . 51 3.6 TheSCScrosssectioninvariouslimitingcases . . . . . . . . . . . . . . . . . . . . 52 3.7 StimulatedTwoPhotone+e−pairproduction(STPPP)inanExternalField . . . . . 54 4 SCSinacircularlypolarisedelectromagneticfield-ResultsandAnalysis 58 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 4.1.1 DifferentialCrosssectionlContributions . . . . . . . . . . . . . . . . . . . 59 4.1.2 DifferentialCrosssectionssummedoveralll . . . . . . . . . . . . . . . . . 70 4.1.3 DifferentialCrossSectionlContributions . . . . . . . . . . . . . . . . . . . 82 4.1.4 DifferentialCrossSectionsSummedOverAlll . . . . . . . . . . . . . . . . 89 5 STPPPinacircularlypolarisedelectromagneticfield-ResultsandAnalysis 93 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 5.1.1 Differentialcrosssectionlcontributions . . . . . . . . . . . . . . . . . . . . 94 5.1.2 DifferentialCrosssectionssummedoveralll . . . . . . . . . . . . . . . . . 106 5.1.3 DifferentialCrossSectionlContributions . . . . . . . . . . . . . . . . . . . 116 5.1.4 DifferentialCrossSectionsSummedOverAlll . . . . . . . . . . . . . . . . 121 6 ExternalFieldElectronPropagatorRadiativeCorrections 126 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 6.2 Theexternalfieldelectronenergyshiftinacircularlypolarisedexternalfield. . . . . 128 6.3 EFEESPlots. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 6.4 EFEESAnalysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 7 SCSandSTPPPResonanceCrosssections 143 7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 7.2 Renormalisationintheexternalfield . . . . . . . . . . . . . . . . . . . . . . . . . . 144 7.3 ResonanceConditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 7.4 ResonanceFigures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 7.4.1 SCSResonances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 7.4.2 STPPPResonances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 7.5 AnalysisofResonancePlots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 7.6 ExperimentalConsiderations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 8 STPPPintheBeamFieldofane+e−Collider 176 8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176 8.2 ElectromagneticFieldofaRelativisticChargedBeam . . . . . . . . . . . . . . . . . 177 8.3 Volkovfunctionsinaconstantcrossedelectromagneticfield . . . . . . . . . . . . . 179 Contents 6 8.4 NumericalcomparisonofFouriertransformsF andF(ϕ) . . . . . . . . . . . . . 182 n,r n,r 8.5 Electronselfenergyinaconstantcrossedelectromagneticfield . . . . . . . . . . . . 184 8.6 STPPPinaconstantcrossedelectromagneticfield . . . . . . . . . . . . . . . . . . . 189 8.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 9 Conclusion 197 Appendices 205 A TheJacobianoftheTransformationd4p→d4q 206 B TheFullExpressionsandTraceresultsforTrQ andTrQ 207 1 2 B.1 TheresultsforTrQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207 1 B.2 TheresultsforTrQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209 2 C TheexplicitformofcertainfunctionsofM andM 212 j k ∞ (cid:16) (cid:17)n D Solutionton=(cid:80)−∞n+1a zz21 Jn(z1)Jn−l(z2) 214 E DispersionRelationMethodusedinselfenergyCalculations 216 Bibliography 218 List of Tables 2.1 CCCrossingsymmetrycorrespondences. . . . . . . . . . . . . . . . . . . . . . . . . 32 4.1 TTThe parameter range for which the SCS differential cross section l and r con- tributionsareinvestigated. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 4.2 TTTheparameterrangeforwhichtheSCSdifferentialcrosssectionsummedover alllisinvestigated. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 4.3 PPPeakmaximumsfortheθ = 30◦ plotsoffigures4.21-4.23, andtheθ = 90◦ i i plotsoffigures4.24-4.26. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 5.1 The parameter range for which the STPPP differential cross section l and r contributionsareinvestigated. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 5.2 The parameter range for which the STPPP differential cross section summed overalllisinvestigated. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 5.3 TTTheratioofpeakheightsandparticleenergiesforfigures5.13-5.16. . . . . . . 119 5.4 AAA comparison of the number of final states and the differential cross section valuesforvariousratiosoflcontributionsfortheSTPPPprocessrepresentedin figures5.13-5.16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 6.1 TTTheparameterrangeforwhichtheregularisedimaginarypartoftheEFEESis investigated. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 7.1 TTTheparameterrangeforwhichtheSCScrosssectionresonancesareinvestigated.151 7.2 TTTheparameterrangeforwhichtheSTPPPcrosssectionresonancesareinvesti- gated. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 7.3 VVVariationofthenumberofSCSandSTPPPresonanceswith ωi,ω1. . . . . . . . 170 ω ω C.1 GeneralalgebraicfunctionsinvolvingM andN . . . . . . . . . . . . . . . . . . 212 i j Chapter 1 Introduction Quantumelectrodynamics(QED)isoneofthemostsuccessfulphysicstheoriesofthelastcentury. A measure of that success is in terms of the range of phenomena described and the accordance of itsnumericalcalculationswithexperimentalresults. Thepresenceofanexternalfieldhastheeffect of introducing a new range of QED phenomena. Analytic study of these external field phenomena isofinteresttoprovidefurtherQEDpredictionsthatcanbetestedexperimentally. Thisthenisthe motivationforthisthesiswhichattemptsadetailedtheoreticalevaluationofsomesecondorderQED processesinthepresenceofanintenseelectromagneticfield. Toachievethisaim,inthefirstinstance,Chapter1isdevotedtoareviewoftheliteraturewhich deals with the subject of interest. Section 1.1 provides a broad sweep of QED since its inception, dealing in some detail with the development of the theory in regards to the external field, and in particular the external electromagnetic field. Sections 1.2 and 1.3 deal, respectively and in greater detail,withthefirstandsecondorderQEDprocessesinthepresenceofanexternalelectromagnetic field. Thespacedevotedtothefirstorderprocessesislargerthanmayotherwisehavebeenexpected for two reasons. The techniques developed for the first order external field processes serve as the basis for the more complicated second order external field processes. Secondly, limiting cases of second order processes bear a direct relationship to first order processes and provide an important testforthecorrectnessofthesecondordercalculationswhicharemorecomplexandthereforemore opentoerror. Section 1.4 provides a review of the experimental attempts at measurement of Intense Field Quantum Electrodynamics (IFQED) phenomena. So far these experimental efforts have been con- finedtothefirstorderprocesses. Abriefreviewoflasersystemsisalsoprovided,whichareasource ofintense,polarisedelectromagneticfields,andwhichhavebeenusedinIFQEDexperimentalstud- ies. Finallyinsection1.5wedeterminetheparticularproblemstobestudiedinthisthesisandthe means by which numerical predictions of experimentally observable parameters will be arrived at overthecourseoftheremainingchapters. 1.1. QEDandtheexternalfield 9 1.1 QED and the external field QEDisthetheoryofinteractionsinvolvingelectrons,positronsandphotons.Containingatitshearta waveparticleduality,QEDhadtwinoriginsintheelectromagneticfieldequationsof[Max92]andthe discovery,dueto[Pla01]and[Ein05],thattheelectromagneticfieldisquantised. Thedevelopment of the theory was spurred on by electron beam experiments which revealed the wave nature of the electron[DG27,Tho27]inapparentcontradictiontoitsinitialdiscoveryasaparticle[Tho97]. The differing strands were first drawn together into a relativistic quantum field theory by [Dir28a,Dir28b,HP29,HP30,Fer32]. Howevertheproposed,quantisedinteractingfieldequations provedextremelydifficulttoexactlysolve. AwayforwardwasprovidedforthecaseofQEDbythe weakcouplingoftheelectronandphotonfieldsandtheexpansionofthefieldequationsinpowers ofthecouplingconstant1whichallowedperturbationtheorytobeemployed. With the theory of QED in place, theoretical calculations of the basic QED interactions were performed. The theoretical description of the scattering of an electron and photon, which was ex- perimentally discovered by [Com23], were first written down by [KN28]. [BW34] developed the equationsconnectedwiththeproductionofanelectron-positronpairfromtheinteractionoftwopho- tons.[Mol32]and[Bha35]described,respectively,electron-electronscatteringandelectron-positron scattering. Forageneralhistoricalreviewofthedevelopmentsofthisearlyperiodsee[Pai86]. Perturbationtheoryhoweverwaslimitedbythefactthatonlythefirsttermintheperturbation series gave results that were in agreement with experiment. All further terms led to meaningless divergences. Various methods of removing the divergences were developed. The main methods includedrenormalisationoftheelectronmassandchargetotakeintoaccounttheeffectoftheDirac- Maxwell field interaction on the fundamental parameters of the theory, the introduction of cut-off parameterswhichpresumetheincorrectnessofthetheoryatveryhighenergies,andvariousregular- isationproceduressuchasthatdueto[PV49].Athoroughreviewofissuesinvolvedwithdivergences iscontainedinchapters9and10of[JR76]. The experimental discovery of the electron anomalous moment [KF47, KF48] and the Lamb shift [LR47] spurred on further theoretical developments of QED in the late 1940’s. Two main developmental strands emerged. A reformulation of the fundamental field equations which aided the program of renormalisation was developed [Tom46, Tea47, Tom48, Sch48a, Sch48b]. In this viewwavefunctionsdevelopfromonespace-likesurfacetoanotherresultinginequationswhichare covariantateachstageofcalculation. Thisisknownasthepropertimemethod. The second reformulation of QED, based on earlier work by [Stu43], was due to Feynman. This reformulation pictured portions of a mapped out space-time in which QED interactions take 1ThecouplingconstantforQEDisthefinestructureconstantαwhichis∼ 1 . 137 1.1. QEDandtheexternalfield 10 place. ExpressionscontainingtheFeynmanmatrixelementsolutionscouldbewrittendowndirectly withtheaidofdiagrams[Fey48a,Fey48b,Fey49a,Fey49b]. TheequivalenceoftheSchwingerand Feynmanreformulationswasproved[Dys49]. ItisFeynman’sreformulationofQEDthatwillserve asthebasisforthetheoreticalworkinthisthesis. The problem of the interaction of an external field with an electron was first attempted by [Tho33] who calculated the solution for the orbit of a non relativistic electron moving in the field of a monochromatic plane electromagnetic wave. However the advent of the quantised relativis- tictheorypresenteddifficultiesforarigoroustreatmentoftheexternalfield. Theinteractionswith eachparticleofaquantisedexternalfieldleadtoimpossiblycomplexcalculations. Asemiclassical approximationwhich, for example, treatedtheexternal fieldasclassicaland neglectedthephoton- external field interaction, proved necessary. Such calculations proceeded with the solution of the Diracequationforanelectronembeddedintheexternalclassicalfield. Thesesolutionswerefound foraconstantcrossedelectricandmagneticfield[Sch51]andforaplanewaveelectromagneticfield [Vol35].ForexternalfieldsinwhichtheDiracequationcouldnotbesolvedexactly,theBornapprox- imation was required. The Born approximation consists of a further expansion of the QED matrix elementsinpowersofthecouplingtotheexternalfield. Forareviewofthebasictheoryassociated withQEDandtheexternalfieldseechapters14and15of[JR76]. OneofthefirstconsequencesoftheexternalfieldinQEDwasthepossiblepolarisationofthe vacuum into electron and positron pairs. [Ueh35] investigated Dirac positron theory for the case of an external electrostatic field. The existence of a formula for the charge induced by a charge distributionimpliedpolarisationofthevacuum. DeviationsfromCoulomb’slawwereinvestigated forthescatteringofheavyparticlesandshiftsinenergylevelsforatomicelectrons.[Sch48b]applied theirpropertimemethodtotheproblemofvacuumpolarisationbyaprescribedelectromagneticfield, and[Val51]reinvestigatedthemethodDiracandHeisenbergintroducedtodealwiththeappearance ofdivergentintegralsconnectedwithvacuumpolarisation. [KR63] showed that the Feynman-Dyson formulation of QED leads to vacuum polarisation terms that violate gauge invariance. They found the inconsistency to lie in the unjustified inter- changeofintegrationsandlimitingprocesses. Withamorecarefulintegrationprocedure,divergent integralswereavoidedalongwiththeneedforcut-offproceduresorappealstoinvarianceforunde- fined integrals. [Fer73] extended the work of [KR63] by showing that calculations of the vacuum polarisationtensorwhichallowforgaugeinvarianceateachstep,resultinthedivergentcounter-term whichwasintroducedintheoriginalcalculationtokeepthephotonmasszero. One of the other fundamental external field problems considered was that of electron motion in an external electromagnetic field. Various authors considered the original Volkov solution as an infinite sum of contributions related to the number of external field photons that interact with the electron.[Zel67]interpretedthisastheelectronobtainingaquasi-levelstructureintheexternalfield.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.