ebook img

Second order partial differential equations in Hilbert spaces PDF

397 Pages·2002·1.659 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Second order partial differential equations in Hilbert spaces

This page intentionally left blank London Mathematical Society Lecture Note Series. 293 Second Order Partial Differential Equations in Hilbert Spaces Giuseppe Da Prato Scuola Normale Superiore di Pisa Jerzy Zabczyk Polish Academy of Sciences, Warsaw           The Pitt Building, Trumpington Street, Cambridge, United Kingdom    The Edinburgh Building, Cambridge CB2 2RU, UK 40 West 20th Street, New York, NY 10011-4211, USA 477 Williamstown Road, Port Melbourne, VIC 3207, Australia Ruiz de Alarcón 13, 28014 Madrid, Spain Dock House, The Waterfront, Cape Town 8001, South Africa http://www.cambridge.org ©Cambridge University Press 2004 First published in printed format 2002 ISBN 0-511-04086-5 eBook (netLibrary) ISBN 0-521-77729-1 paperback LONDONMATHEMATICALSOCIETYLECTURENOTESERIES ManagingEditor:ProfessorN.J.Hitchin,MathematicalInstitute, UniversityofOxford,24–29StGiles,OxfordOX13LB,UnitedKingdom Thetitlesbelowareavailablefrombooksellers,or,incaseofdifficulty,fromCambridgeUniversityPressat www.cambridge.org. 109 Diophantineanalysis, J.LOXTON&A.VANDERPOORTEN(eds) 113 Lecturesontheasymptotictheoryofideals, D.REES 116 Representationsofalgebras, P.J.WEBB(ed) 119 Triangulatedcategoriesintherepresentationtheoryoffinite-dimensionalalgebras, D.HAPPEL 121 ProceedingsofGroups–StAndrews1985, E.ROBERTSON&C.CAMPBELL(eds) 128 Descriptivesettheoryandthestructureofsetsofuniqueness, A.S.KECHRIS&A.LOUVEAU 130 Modeltheoryandmodules, M.PREST 131 Algebraic,extremal&metriccombinatorics, M.-M.DEZA,P.FRANKL&I.G.ROSENBERG(eds) 138 AnalysisatUrbana,II, E.BERKSON,T.PECK,&J.UHL(eds) 139 Advancesinhomotopytheory, S.SALAMON,B.STEER&W.SUTHERLAND(eds) 140 GeometricaspectsofBanachspaces, E.M.PEINADOR&A.RODES(eds) 141 Surveysincombinatorics1989, J.SIEMONS(ed) 144 Introductiontouniformspaces, I.M.JAMES 146 Cohen-MacaulaymodulesoverCohen-Macaulayrings, Y.YOSHINO 148 Helicesandvectorbundles, A.N.RUDAKOVetal 149 Solitons,nonlinearevolutionequationsandinversescattering, M.ABLOWITZ&P.CLARKSON 150 Geometryoflow-dimensionalmanifolds1, S.DONALDSON&C.B.THOMAS(eds) 151 Geometryoflow-dimensionalmanifolds2, S.DONALDSON&C.B.THOMAS(eds) 152 Oligomorphicpermutationgroups, P.CAMERON 153 L-functionsandarithmetic, J.COATES&M.J.TAYLOR(eds) 155 Classificationtheoriesofpolarizedvarieties, TAKAOFUJITA 158 GeometryofBanachspaces, P.F.X.MULLER&W.SCHACHERMAYER(eds) 159 GroupsStAndrews1989volume1, C.M.CAMPBELL&E.F.ROBERTSON(eds) 160 GroupsStAndrews1989volume2, C.M.CAMPBELL&E.F.ROBERTSON(eds) 161 Lecturesonblocktheory, BURKHARDKU¨LSHAMMER 163 Topicsinvarietiesofgrouprepresentations, S.M.VOVSI 164 Quasi-symmetricdesigns, M.S.SHRIKANDE&S.S.SANE 166 Surveysincombinatorics,1991, A.D.KEEDWELL(ed) 168 Representationsofalgebras, H.TACHIKAWA&S.BRENNER(eds) 169 Booleanfunctioncomplexity, M.S.PATERSON(ed) 170 ManifoldswithsingularitiesandtheAdams-Novikovspectralsequence, B.BOTVINNIK 171 Squares, A.R.RAJWADE 172 Algebraicvarieties, GEORGER.KEMPF 173 Discretegroupsandgeometry, W.J.HARVEY&C.MACLACHLAN(eds) 174 Lecturesonmechanics, J.E.MARSDEN 175 Adamsmemorialsymposiumonalgebraictopology1, N.RAY&G.WALKER(eds) 176 Adamsmemorialsymposiumonalgebraictopology2, N.RAY&G.WALKER(eds) 177 Applicationsofcategoriesincomputerscience, M.FOURMAN,P.JOHNSTONE&A.PITTS(eds) 178 LowerK-andL-theory, A.RANICKI 179 Complexprojectivegeometry, G.ELLINGSRUDetal 180 LecturesonergodictheoryandPesintheoryoncompactmanifolds, M.POLLICOTT 181 GeometricgrouptheoryI, G.A.NIBLO&M.A.ROLLER(eds) 182 GeometricgrouptheoryII, G.A.NIBLO&M.A.ROLLER(eds) 183 Shintanizetafunctions, A.YUKIE 184 Arithmeticalfunctions, W.SCHWARZ&J.SPILKER 185 Representationsofsolvablegroups, O.MANZ&T.R.WOLF 186 Complexity:knots,colouringsandcounting, D.J.A.WELSH 187 Surveysincombinatorics,1993, K.WALKER(ed) 188 Localanalysisfortheoddordertheorem, H.BENDER&G.GLAUBERMAN 189 Locallypresentableandaccessiblecategories, J.ADAMEK&J.ROSICKY 190 Polynomialinvariantsoffinitegroups, D.J.BENSON 191 Finitegeometryandcombinatorics, F.DECLERCKetal 192 Symplecticgeometry, D.SALAMON(ed) 194 Independentrandomvariablesandrearrangementinvariantspaces, M.BRAVERMAN 195 Arithmeticofblowupalgebras, WOLMERVASCONCELOS 196 Microlocalanalysisfordifferentialoperators, A.GRIGIS&J.SJO¨STRAND 197 Two-dimensionalhomotopyandcombinatorialgrouptheory, C.HOG-ANGELONIetal 198 Thealgebraiccharacterizationofgeometric4-manifolds, J.A.HILLMAN 199 InvariantpotentialtheoryintheunitballofCn, MANFREDSTOLL 200 TheGrothendiecktheoryofdessinsd’enfant, L.SCHNEPS(ed) 201 Singularities, JEAN-PAULBRASSELET(ed) 202 Thetechniqueofpseudodifferentialoperators, H.O.CORDES 203 HochschildcohomologyofvonNeumannalgebras, A.SINCLAIR&R.SMITH 204 Combinatorialandgeometricgrouptheory, A.J.DUNCAN,N.D.GILBERT&J.HOWIE(eds) 205 Ergodictheoryanditsconnectionswithharmonicanalysis, K.PETERSEN&I.SALAMA(eds) 207 GroupsofLietypeandtheirgeometries, W.M.KANTOR&L.DIMARTINO(eds) 208 Vectorbundlesinalgebraicgeometry, N.J.HITCHIN,P.NEWSTEAD&W.M.OXBURY(eds) 209 Arithmeticofdiagonalhypersurfacesoverfinitefields, F.Q.GOUVEA&N.YUI 210 HilbertC*-modules, E.C.LANCE 211 Groups93Galway/StAndrewsI, C.M.CAMPBELLetal(eds) 212 Groups93Galway/StAndrewsII, C.M.CAMPBELLetal(eds) 214 GeneralisedEuler-Jacobiinversionformulaandasymptoticsbeyondallorders, V.KOWALENKOetal 215 Numbertheory1992–93, S.DAVID(ed) 216 Stochasticpartialdifferentialequations, A.ETHERIDGE(ed) 217 Quadraticformswithapplicationstoalgebraicgeometryandtopology, A.PFISTER 218 Surveysincombinatorics,1995, PETERROWLINSON(ed) 220 Algebraicsettheory, A.JOYAL&I.MOERDIJK 221 Harmonicapproximation, S.J.GARDINER 222 Advancesinlinearlogic, J.-Y.GIRARD,Y.LAFONT&L.REGNIER(eds) 223 Analyticsemigroupsandsemilinearinitialboundaryvalueproblems, KAZUAKITAIRA 224 Computability,enumerability,unsolvability, S.B.COOPER,T.A.SLAMAN&S.S.WAINER(eds) 225 Amathematicalintroductiontostringtheory, S.ALBEVERIO,J.JOST,S.PAYCHA,S.SCARLATTI 226 Novikovconjectures,indextheoremsandrigidityI, S.FERRY,A.RANICKI&J.ROSENBERG(eds) 227 Novikovconjectures,indextheoremsandrigidityII, S.FERRY,A.RANICKI&J.ROSENBERG(eds) 228 ErgodictheoryofZdactions, M.POLLICOTT&K.SCHMIDT(eds) 229 Ergodicityforinfinitedimensionalsystems, G.DAPRATO&J.ZABCZYK 230 Prolegomenatoamiddlebrowarithmeticofcurvesofgenus2, J.W.S.CASSELS&E.V.FLYNN 231 Semigrouptheoryanditsapplications, K.H.HOFMANN&M.W.MISLOVE(eds) 232 ThedescriptivesettheoryofPolishgroupactions, H.BECKER&A.S.KECHRIS 233 Finitefieldsandapplications, S.COHEN&H.NIEDERREITER(eds) 234 Introductiontosubfactors, V.JONES&V.S.SUNDER 235 Numbertheory1993-94, S.DAVID(ed) 236 TheJamesforest, H.FETTER&B.GAMBOADEBUEN 237 Sievemethods,exponentialsums,andtheirapplicationsinnumbertheory, G.R.H.GREAVESetal 238 Representationtheoryandalgebraicgeometry, A.MARTSINKOVSKY&G.TODOROV(eds) 239 Cliffordalgebrasandspinors, P.LOUNESTO 240 Stablegroups, FRANKO.WAGNER 241 Surveysincombinatorics,1997, R.A.BAILEY(ed) 242 GeometricGaloisactionsI, L.SCHNEPS&P.LOCHAK(eds) 243 GeometricGaloisactionsII, L.SCHNEPS&P.LOCHAK(eds) 244 Modeltheoryofgroupsandautomorphismgroups, D.EVANS(ed) 245 Geometry,combinatorialdesignsandrelatedstructures, J.W.P.HIRSCHFELDetal 246 p-Automorphismsoffinitep-groups, E.I.KHUKHRO 247 Analyticnumbertheory, Y.MOTOHASHI(ed) 248 Tametopologyando-minimalstructures, LOUVANDENDRIES 249 Theatlasoffinitegroups:tenyearson, ROBERTCURTIS&ROBERTWILSON(eds) 250 Charactersandblocksoffinitegroups, G.NAVARRO 251 Gro¨bnerbasesandapplications, B.BUCHBERGER&F.WINKLER(eds) 252 Geometryandcohomologyingrouptheory, P.KROPHOLLER,G.NIBLO,R.STO¨HR(eds) 253 Theq-Schuralgebra, S.DONKIN 254 Galoisrepresentationsinarithmeticalgebraicgeometry, A.J.SCHOLL&R.L.TAYLOR(eds) 255 Symmetriesandintegrabilityofdifferenceequations, P.A.CLARKSON&F.W.NIJHOFF(eds) 256 AspectsofGaloistheory, HELMUTVO¨LKLEINetal 257 Anintroductiontononcommutativedifferentialgeometryanditsphysicalapplications2ed, J.MADORE 258 Setsandproofs, S.B.COOPER&J.TRUSS(eds) 259 Modelsandcomputability, S.B.COOPER&J.TRUSS(eds) 260 GroupsStAndrews1997inBath,I, C.M.CAMPBELLetal 261 GroupsStAndrews1997inBath,II, C.M.CAMPBELLetal 263 Singularitytheory, BILLBRUCE&DAVIDMOND(eds) 264 Newtrendsinalgebraicgeometry, K.HULEK,F.CATANESE,C.PETERS&M.REID(eds) 265 Ellipticcurvesincryptography, I.BLAKE,G.SEROUSSI&N.SMART 267 Surveysincombinatorics,1999, J.D.LAMB&D.A.PREECE(eds) 268 Spectralasymptoticsinthesemi-classicallimit, M.DIMASSI&J.SJO¨STRAND 269 Ergodictheoryandtopologicaldynamics, M.B.BEKKA&M.MAYER 270 AnalysisonLieGroups, N.T.VAROPOULOS&S.MUSTAPHA 271 Singularperturbationsofdifferentialoperators, S.ALBEVERIO&P.KURASOV 272 Charactertheoryfortheoddorderfunction, T.PETERFALVI 273 Spectraltheoryandgeometry, E.B.DAVIES&Y.SAFAROV(eds) 274 TheMandelbrotset,themeandvariations, TANLEI(ed) 275 Computatoinalandgeometricaspectsofmodernalgebra, M.D.ATKINSONetal(eds) 276 Singularitiesofplanecurves, E.CASAS-ALVERO 277 Descriptivesettheoryanddynamicalsystems, M.FOREMANetal(eds) 278 Globalattractorsinabstractparabolicproblems, J.W.CHOLEWA&T.DLOTKO 279 Topicsinsymbolicdynamicsandapplications, F.BLANCHARD,A.MAASS&A.NOGUEIRA(eds) 280 CharactersandAutomorphismGroupsofCompactRiemannSurfaces, T.BREUER 281 Explicitbirationalgeometryof3-folds, ALESSIOCORTI&MILESREID(eds) 282 Auslander-Buchweitzapproximationsofequivariantmodules, M.HASHIMOTO 283 Nonlinearelasticity, R.OGDEN&Y.FU(eds) 284 Foundationsofcomputationalmathematics, R.DEVORE,A.ISERLES&E.SULI(eds) 285 Rationalpointsoncurvesoverfinitefields:TheoryandApplications, H.NIEDERREITER&C.XING 286 Cliffordalgebrasandspinors2ndedn, P.LOUNESTO 287 TopicsonRiemannsurfacesandFuchsiangroups, E.BUJALANCE,A.F.COSTA&E.MARTINEZ(eds) 288 Surveysincombinatorics,2001, J.W.P.HIRSCHFELD(ed) 289 AspectsofSobolev-typeinequalities, L.SALOFF-COSTE 290 QuantumgroupsandLietheory, A.PRESSLEY 291 Titsbuildingsandthemodeltheoryofgroups, K.TENT 292 Aquantumgroupsprimer, S.MAJID Contents Preface x I THEORY IN SPACES OF CONTINUOUS FUNCTIONS 1 1 Gaussian measures 3 1.1 Introduction and preliminaries . . . . . . . . . . . . . . . . . 3 1.2 Definition and first properties of Gaussian measures . . . . . 7 1.2.1 Measures in metric spaces . . . . . . . . . . . . . . . . 7 1.2.2 Gaussian measures . . . . . . . . . . . . . . . . . . . . 8 1.2.3 Computation of some Gaussian integrals . . . . . . . . 11 1.2.4 The reproducing kernel . . . . . . . . . . . . . . . . . 12 1.3 Absolute continuity of Gaussian measures . . . . . . . . . . . 17 1.3.1 Equivalence of product measures in R∞ . . . . . . . . 18 1.3.2 The Cameron-Martin formula . . . . . . . . . . . . . . 22 1.3.3 The Feldman-Hajek theorem . . . . . . . . . . . . . . 24 1.4 Brownian motion . . . . . . . . . . . . . . . . . . . . . . . . . 27 2 Spaces of continuous functions 30 2.1 Preliminary results . . . . . . . . . . . . . . . . . . . . . . . . 30 2.2 Approximation of continuous functions . . . . . . . . . . . . . 33 2.3 Interpolation spaces . . . . . . . . . . . . . . . . . . . . . . . 36 2.3.1 Interpolation between UC (H) and UC1(H) . . . . . 36 b b 2.3.2 Interpolatory estimates . . . . . . . . . . . . . . . . . 39 2.3.3 Additional interpolation results . . . . . . . . . . . . . 42 3 The heat equation 44 3.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3.2 Strict solutions . . . . . . . . . . . . . . . . . . . . . . . . . . 48 v vi Contents 3.3 Regularity of generalized solutions . . . . . . . . . . . . . . . 54 3.3.1 Q-derivatives . . . . . . . . . . . . . . . . . . . . . . . 54 3.3.2 Q-derivatives of generalized solutions . . . . . . . . . . 57 3.4 Comments on the Gross Laplacian . . . . . . . . . . . . . . . 67 3.5 The heat semigroup and its generator . . . . . . . . . . . . . 69 4 Poisson’s equation 76 4.1 Existence and uniqueness results . . . . . . . . . . . . . . . . 76 4.2 Regularity of solutions . . . . . . . . . . . . . . . . . . . . . . 78 4.3 The equation ∆ u = g . . . . . . . . . . . . . . . . . . . . . . 83 Q 4.3.1 The Liouville theorem . . . . . . . . . . . . . . . . . . 87 5 Elliptic equations with variable coefficients 90 5.1 Small perturbations . . . . . . . . . . . . . . . . . . . . . . . 90 5.2 Large perturbations . . . . . . . . . . . . . . . . . . . . . . . 93 6 Ornstein-Uhlenbeck equations 99 6.1 Existence and uniqueness of strict solutions . . . . . . . . . . 100 6.2 Classical solutions . . . . . . . . . . . . . . . . . . . . . . . . 103 6.3 The Ornstein-Uhlenbeck semigroup . . . . . . . . . . . . . . . 111 6.3.1 π-Convergence . . . . . . . . . . . . . . . . . . . . . . 112 6.3.2 Properties of the π-semigroup (R ) . . . . . . . . . . . 113 t 6.3.3 The infinitesimal generator . . . . . . . . . . . . . . . 114 6.4 Elliptic equations . . . . . . . . . . . . . . . . . . . . . . . . . 116 6.4.1 Schauder estimates . . . . . . . . . . . . . . . . . . . . 119 6.4.2 The Liouville theorem . . . . . . . . . . . . . . . . . . 121 6.5 Perturbation results for parabolic equations . . . . . . . . . . 122 6.6 Perturbation results for elliptic equations . . . . . . . . . . . 124 7 General parabolic equations 127 7.1 Implicit function theorems . . . . . . . . . . . . . . . . . . . . 128 7.2 Wiener processes and stochastic equations . . . . . . . . . . . 131 7.2.1 Infinite dimensional Wiener processes . . . . . . . . . 131 7.2.2 Stochastic integration . . . . . . . . . . . . . . . . . . 132 7.3 Dependence of the solutions to stochastic equations on initial data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 7.3.1 Convolution and evaluation maps . . . . . . . . . . . . 133 7.3.2 Solutions of stochastic equations . . . . . . . . . . . . 138 7.4 Space and time regularity of the generalized solutions . . . . 139 7.5 Existence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 Contents vii 7.6 Uniqueness . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 7.6.1 Uniqueness for the heat equation . . . . . . . . . . . . 145 7.6.2 Uniqueness in the general case . . . . . . . . . . . . . 146 7.7 Strong Feller property . . . . . . . . . . . . . . . . . . . . . . 150 8 Parabolic equations in open sets 156 8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 8.2 Regularity of the generalized solution . . . . . . . . . . . . . . 158 8.3 Existence theorems . . . . . . . . . . . . . . . . . . . . . . . . 165 8.4 Uniqueness of the solutions . . . . . . . . . . . . . . . . . . . 178 II THEORY IN SOBOLEV SPACES 185 9 L2 and Sobolev spaces 187 9.1 Itoˆ-Wiener decomposition . . . . . . . . . . . . . . . . . . . . 188 9.1.1 Real Hermite polynomials . . . . . . . . . . . . . . . . 188 9.1.2 Chaos expansions . . . . . . . . . . . . . . . . . . . . . 190 9.1.3 The space L2(H,µ;H) . . . . . . . . . . . . . . . . . . 193 9.2 Sobolev spaces . . . . . . . . . . . . . . . . . . . . . . . . . . 194 9.2.1 The space W1,2(H,µ) . . . . . . . . . . . . . . . . . . 196 9.2.2 Some additional summability results . . . . . . . . . . 197 9.2.3 Compactness of the embedding W1,2(H,µ) ⊂ L2(H,µ) 198 9.2.4 The space W2,2(H,µ) . . . . . . . . . . . . . . . . . . 201 9.3 The Malliavin derivative . . . . . . . . . . . . . . . . . . . . . 203 10 Ornstein-Uhlenbeck semigroups on Lp(H,µ) 205 10.1 Extension of (R ) to Lp(H,µ) . . . . . . . . . . . . . . . . . 206 t 10.1.1 The adjoint of (R ) in L2(H,µ) . . . . . . . . . . . . . 211 t 10.2 The infinitesimal generator of (R ) . . . . . . . . . . . . . . . 212 t 10.2.1 Characterization of the domain of L . . . . . . . . . . 215 2 10.3 The case when (R ) is strong Feller . . . . . . . . . . . . . . . 217 t 10.3.1 Additional regularity properties of (R ) . . . . . . . . 221 t 10.3.2 Hypercontractivity of (R ) . . . . . . . . . . . . . . . . 224 t 10.4 Arepresentationformulafor(R )intermsofthesecondquan- t tization operator . . . . . . . . . . . . . . . . . . . . . . . . . 228 10.4.1 The second quantization operator. . . . . . . . . . . . 228 10.4.2 The adjoint of (R ) . . . . . . . . . . . . . . . . . . . . 230 t 10.5 Poincar´e and log-Sobolev inequalities . . . . . . . . . . . . . . 230 10.5.1 The case when M = 1 and Q = I . . . . . . . . . . . . 232 viii Contents 10.5.2 A generalization . . . . . . . . . . . . . . . . . . . . . 235 10.6 Some additional regularity results when Q and A commute . 236 11 Perturbations of Ornstein-Uhlenbeck semigroups 238 11.1 Bounded perturbations . . . . . . . . . . . . . . . . . . . . . . 239 11.2 Lipschitz perturbations. . . . . . . . . . . . . . . . . . . . . . 245 11.2.1 Some additional results on the Ornstein-Uhlenbeck semigroup . . . . . . . . . . . . . . . . . . . . . . . . . 251 11.2.2 The semigroup (P ) in Lp(H,ν) . . . . . . . . . . . . . 256 t 11.2.3 The integration by parts formula . . . . . . . . . . . . 260 11.2.4 Existence of a density . . . . . . . . . . . . . . . . . . 263 12 Gradient systems 267 12.1 General results . . . . . . . . . . . . . . . . . . . . . . . . . . 268 12.1.1 Assumptions and setting of the problem . . . . . . . . 268 12.1.2 The Sobolev space W1,2(H,ν). . . . . . . . . . . . . . 271 12.1.3 Symmetry of the operator N . . . . . . . . . . . . . . 272 0 12.1.4 The m-dissipativity of N on L1(H,ν). . . . . . . . . . 274 1 12.2 The m-dissipativity of N on L2(H,ν) . . . . . . . . . . . . . 277 2 12.3 The case when U is convex . . . . . . . . . . . . . . . . . . . 281 12.3.1 Poincar´e and log-Sobolev inequalities . . . . . . . . . . 288 III APPLICATIONS TO CONTROL THEORY 291 13 Second order Hamilton-Jacobi equations 293 13.1 Assumptions and setting of the problem . . . . . . . . . . . . 296 13.2 Hamilton-Jacobi equations with a Lipschitz Hamiltonian . . . 300 13.2.1 Stationary Hamilton-Jacobi equations . . . . . . . . . 302 13.3 Hamilton-Jacobi equation with a quadratic Hamiltonian . . . 305 13.3.1 Stationary equation . . . . . . . . . . . . . . . . . . . 308 13.4 Solution of the control problem . . . . . . . . . . . . . . . . . 310 13.4.1 Finite horizon . . . . . . . . . . . . . . . . . . . . . . . 310 13.4.2 Infinite horizon . . . . . . . . . . . . . . . . . . . . . . 312 13.4.3 The limit as ε → 0 . . . . . . . . . . . . . . . . . . . . 314 14 Hamilton-Jacobi inclusions 316 14.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316 14.2 Excessive weights and an existence result . . . . . . . . . . . 317 14.3 Weak solutions as value functions . . . . . . . . . . . . . . . . 324

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.