ebook img

Second law of thermodynamics with quantum memory PDF

0.13 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Second law of thermodynamics with quantum memory

Second law ofthermodynamics with quantum memory Li-Hang Ren1,2 and Heng Fan1,2,3,∗ 1Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China 2School of PhysicalSciences, UniversityofChineseAcademyofSciences, Beijing100190, China 3Collaborative Innovation Center of Quantum Matter, Beijing 100190, China Wedesignaheatenginewithmulti-heat-reservoir, ancillarysystemandquantummemory. Wethenderive aninequalityrelatedwiththesecond lawofthermodynamics, andgiveanew limitationabout theworkgain fromtheenginebyanalyzingtheentropychangeandquantummutualinformationchangeduringtheprocess. In addition and remarkably, by considering two measurements and with the help of the entropic uncertainty relationwithquantummemory,wefindthatthetotalworkgainsfromtheheatengineshouldbelargerthana 7 quantityrelatedwithquantumentanglementbetweentheancillarystateandthequantummemory. Thisresult 1 0 providesalowerboundfortheworkextracted,incontrastwiththeupperboundintheconventionalsecondlaw 2 ofthermodynamics,andthusshedlightfromanoppositedirectionforthefoundationsofthethermodynamics. n PACSnumbers:03.67.-a,05.70.-a,89.70.Cf,03.65.Ta a J 6 Introduction.—Maxwell’s demon plays an importantrole immersedinathermalreservoirattemperatureT,andanex- 2 in the history of thermodynamics and information theory ternaldemon.Thedemoninsertsapartitionintothemiddleof [1,2]. ItisfirstproposedbyMaxwellthatapowerfuldemon thebox,thenmeasuresonwhichsidethemoleculeistrapped ] h mightconductmicroscopicoperationtobreakthesecondlaw andperformsexpansiontoextractworkWext =kBTln2. In p ofthermodynamics. However,accordingto Landauer’sprin- SZE, the informationthat the molecule is in the left or right - ciple, manipulation of information will be accompanied by isexploitedtoextractphysicalwork.Boththeoreticalandex- t n energyconsumption[3],whichsavesthesecondlaw,seealso perimental studies on the information heat engine, addition- a [4]. However,withthisdemon,onecanrelaxtherestrictions ally the extension for quantum case, have been performed u imposedbythesecondlawontheenergyexchangedbetween [7–20]. Quantum resources for quantum information pro- q asystemandsurroundings,andsomenewthermodynamicin- cessing such as quantum entanglement, quantum discord or [ equalitiesarestudied,see[5]andareview[6].Inconventional quantumcoherencemayprobablybeconvertedtoextractable 1 thermodynamics,thesecondlawgivesW ≤−△F,where work. It is proved that the work gain may result from the ext v W istheextractableworkfromsystemandF = U −TS entanglementbetweensubsystems[11]becauseofdeepcon- 8 ext is the free energy during the isothermal process. Due to the nectionsbetweenthermodynamicsandthetheoryofentangle- 2 6 Maxwell’sdemon,thisthermodynamicexpressioncanbeex- ment[12, 13]. Also onecan devise a heatenginewhich can 7 tended to a favorable form with discrete quantum feedback bedrivenbypurelyquantuminformationsuchasthequantum 0 control[7,8]: discord[9].Recently,experimentalinvestigationisperformed . toshowthatquantumdiscordisnecessaryinenergytransport 1 0 Wext ≤−△F +kBTI, (1) inananoscalealuminum-sapphireinterface[14]. 7 We know that for a quantum system, a quantum memory inwhichk istheBoltzmannconstantandI isthequantum- 1 B canbeavailableandquantumentanglementorsomequantum- classical mutual information describing the mutual informa- : v tion of a fixed quantum system and the outcome classi- ness of correlations may play a critical role in the emergent i quantumphenomena[21], suchasthatintheentropicuncer- X cal information obtained by a quantum measurement. This taintyrelationwitha quantummemory[22, 23]generalizing quantum-classical mutual information is an extension of the r Heisenberguncertaintyprinciple[24]. Aswemaynoticethat a standard quantum mutual information defined originally be- entanglementandquantumdiscordappeartoberesourcefor tween two subsystems. Onemay thenobservethatthe max- work extraction in thermodynamics. It is desirable to con- imum work that can be extracted may exceed that in con- structa heatenginewherequantumcorrelationsorentangle- ventionalthermodynamics,however, the marginalpart is re- mentappearinvolvingintheprocess.InthisLetter,wedesign strictedbytermofthequantum-classicalmutualinformation. Thisinequalitylaysanextensionofthesecondlawofthermo- a heat engine which includes the system S contacted by in- dependentheatbathswithpossibledifferenttemperatures,the dynamics. The above statement shows information can be exploited ancillarysystemAandaquantummemoryB,seeFig.1.This setupofheatengineissimilarwiththatinRef.[7],butwithan toextractphysicalwork,whichmaybecalledaninformation heat engine[9]. Szilard first proposeda physicalmodel, i.e. ancillarysystemAandaquantummemoryB. Withthehelp ofthequantummemory,wethencancharacterizetheroleof the so-called Szilard engine (SZE), to realize Maxwell’s de- quantumcorrelationinthethermodynamiccircle. Thus,new mon[10]. ThisSZEinvolvesasingle-moleculegasinabox, secondlawofthermodynamicinequalitycanbeobtained. Setupoftheheatengineanditsprocess.—Theheatengine involvesfourparts:systemS,asetofthermalreservoirsR= ∗Electronicaddress:[email protected] {R1,···Rn} and composite quantum system M consisting 2 R1 R2 R3 Rn canonicaldistribution.Theinitialstatereads . . . { T1 T2 T3 Tn exp(−βH(i)) exp(−β H ) US(1R) S A B ρ(i) = ZS(i) S ⊗ ZR11 R1 ⊗··· exp(−β H ) ⊗ n Rn ⊗ρ(i) Z AB FIG.1: Setupoftheheatengine. ThesystemScontactswithinde- Rn pendentheatbathsR1,R2,...,RnattemperaturesT1,T2,...,Tnre- ≡ ρ(i) ⊗ρ(i) (3) SR AB spectivelyconstitutingthemulti-heat-reservoirR,thesystemS has ancillarysystemA,wherewecanmakemeasurement. Particularly, whereβ =1/(k T )isrelatedwithtemperatureT ,andthe n B n n thesetup includesaquantum memory B whichispossibly entan- partitionfunctionsareZ(i) = Tr[exp(−βH(i))] andZ = gledwithancillarystateA. Atstage(ii),aunitaryoperationU(1)is S S Rn SR Tr[exp(−β H )]. performedgloballyonthesystemandthemulti-heat-reservoirSR. n Rn Stage(ii).SystemSbeginstointeractwiththesurrounding toextractwork.Inageneralwayanythermodynamicprocess betweenthesystemandreservoirscanbeexpressedbyanuni- R1 R2 R3 Rn { T1 T2 T3 . . . Tn taryevolution. WithunitaryoperationU(1) =IAB ⊗US(1R) as showninFig. 1,theinitialstatebecomes Uk SR S A B ρ(1) =U(1)ρ(i)U(1)†, (4) { U(2) inwhichIAB istheidentityoperatorforM consistingofan- cillarystateAandmemoryB. Duringthisprocess,thecom- positesystemM isleftunchanged. Instage(iii),thesystemM startstowork,whichplaysthe k roleofMaxwell’sdemon.Inordertomakeuseofquantumin- FIG.2:Processingoftheheatengine.Inthethermodynamicprocess, formationtoextractwork,weletthesystemS interactswith atstages(iii)and(iv),aunitarytransformationU(2)isperformedon theancillarysystemAsuchthatthereisquantuminformation system and ancillary state SA, followed by a projective measure- exchange, then we make measurementon A by positive op- mentonancillarysystemA.Dependingonmeasurementresultsk,a eratorvaluedmeasures(POVMs). Specificallyspeaking,this feedbackcontrolunitaryoperationUSkR isthenimplementedonthe measurementprocessis performedby Awith rank-1projec- systemandthemulti-heat-reservoirSR. tor {Πk}. So the measurement process is implemented by A performingaunitarytransformationU(2) onSAfollowedby a projectionmeasurement{Πk : |kihk|} on A. The density A matrixisgivenby ofancillarystateAandquantummemoryB,seeFig. 1. The totalHamiltonianiswrittenas ρ(2) = ΠkU(2)ρ(1)U(2)†Πk A A Xk H(t)=HSR(t)+HSinMtAB(t)+HMAB(t), (2) = pk|kiAhk|⊗ρ(B2S)kR (5) Xk where HSR(t) = HS(t) + nm=1[HSinRtm(t) + HRm], de- Themeasurementoutcomepk = tr[ΠkAU(2)ρ(1)U(2)†ΠkA] is scribing the Hamiltonian of tPhe system, reservoirs and their registered by the memory and the post measurementstate is interaction. During the operating process, system S can ρ(2)k =tr [ΠkU(2)ρ(1)U(2)†Πk/p ]. BSR A A A k contactR1,R2,...,Rn whichareatrespectivetemperatures Thestage(iv)isthefeedbackcontrol. Itisperformeddis- T1,T2,...,Tn. By contactingS with R1 atthe startand the cretelydependingonoutcomepk byapplyingcorresponding endoftheprocess,systemSisinthermodynamicequilibrium operations on the system S and the multi-heat-reservoir R. in the initial and final state. However, the system may not Feedback control is also a quantum process, the unitary op- beinthermodynamicequilibriumbetweentheinitialandfinal erator is written as U(3) = I ⊗ |ki hk|⊗Uk . The B k A SR state. For convenience, we note the temperature of S in the wholeprocessofstage(iii)andthePfeedbackcontrolofstage initial and final state as T = T1. At the beginningand last, (iv)areschematicallypresentedinFig. 2. Now,thefinalstate we assume Hint (t ) = Hint (t ) = 0, H (t ) = H(i) becomes SRm i SRm f S i S and H (t ) = H(f). The general process of the engine is S f S ρ(f) =U(3)ρ(2)U(3)†. (6) dividedintofourstages,whichissimilarasthatinRef.[7]but with different operations since we have additional quantum Inthelastequilibrationprocess,thesystemandheatreser- systemsAandB. voirsevolvetoreachthermodynamicequilibrium,whichcan Stage (i). At time t , the system and reservoirs are in bedescribedbyaunitarytransformation.Asunitarytransfor- i thermodynamic equilibrium respectively, that is, they are in mation has no influence on the following calculation. Thus 3 weignorethisprocess,andregardρ(f) asthefinalstate. Al- with△S ≡△S +△S . FromEq.(3)andEq.(7),weknow A B thoughthesystemandreservoirsareequilibriumstatesatlast, thatρ(i) andρ(ref)arecanonicaldistribution.Thensubstitut- SR SR theymaynotequalthecanonicaldistribution.Inordertoeval- ingtheirspecificexpressionintoinequality(11),weobtain uatetheenergyofthesystem,weintroducethecanonicaldis- tributedstateasareferencewhichtakesthestandardform, n T E(i)−E(f)+ (E(i) −E(f)) S S T Rm Rm exp(−βH(f)) exp(−β H ) mX=1 m ρ(ref) = S ⊗ 1 R1 ⊗··· SR ZS(f) ZR1 ≤ FS(i)−FS(f)+kBT[△S−△I], (13) ⊗ exp(−ZβnHRn), (7) where ES(i) = Tr(ρ(i)HS(i)), ER(im) = Tr(ρ(i)HRm), FS(i) = Rn −k T lnZ(i),E(f) = Tr(ρ(f)H(f)),E(f) = Tr(ρ(f)H ) B S S S Rm Rm whereZ(f) = Tr[exp(−βH(f))]. Thereferencestatewillbe by comparing the final state to the reference state, also used to cSorrespond a equilibSrium state which may not be in FS(f) = −kBT lnZS(f). Among them ES(f) −ES(i) ≡ △US thecanonicaldistributionform. is the change of the internal energy, E(i) − E(f) ≡ Q Maximumwork extractedfromtheheatengine.—We will is the heat exchange between system anRdmreservoRimr R anmd m proceed to calculate the net work gain from the heat engine F(f) −F(i) ≡ △F is the differencein the Helmholtz free by analyzing the entropy change during the process. The S S S energyofsystem. Thentheaboveinequalitybecomes von Neumann entropy of the state ρ is defined as S(ρ) = −Tr(ρlnρ). Thefollowingdiscussionwillinvolvethetech- n T niqueofquantuminformation[21]. −△US+ Qm ≤−△FS+kBT[△S−△I]. (14) T The difference between states ρ(i) and ρ(1) is a unitary mX=1 m transformation, so the entropy remains invariant. However, This inequality is one of the main results in this Letter. Be- inthethirdstep, measurementisperformed. Thus, weknow foreinterpretingthis extensionof the second law of thermo- thatprojectivemeasurementsincreaseentropy,oneobtains dynamicinequalityinmoredetail,twospecialcaseswillfirst beillustrated. S[ρ(i)]≤S[ρ(2)]. (8) If n = 1, there is only one reservoir with temperature T. Accordingtoequalities(3)and(5),weknowthatstatesρ(i)is AstheworkextractablefromtheengineisdefinedasWext = productstate,S[ρ(i)]=S[ρ(SiR)]+S[ρ(Ai)B],alsostateρ(2) can −△US+Q=−(ES(f)−ES(i))+ER(i)−ER(f),thefinalresult bewrittenasthefollowingform, (14)reducestoasimplecase S[ρ(2)]=H(p )+ p S[ρ(2)k ]. (9) Wext ≤−△FS +kBT △S−kBT △I. (15) k k BSR Xk This inequality is in agreement with the result of Ref. [9] With the help of the subadditivity of von Neumann entropy, where the quantum-classical mutual information is intro- S[ρ(2)k ]≤S[ρ(2)k]+S[ρ(2)k],andtheabovefacts,theinitial duced.Hereweusethestandardquantummutualinformation. BSR SR B Theinequalitymeansthatthe extractedworkcanexceedthe inequality(8)nowtakestheform, difference of the free energy which generalizes the conven- S[ρ(i)]− p S[ρ(2)k]≤H(p )+ p S[ρ(2)k]−S[ρ(i) ] tionalsecondlawofthermodynamics,however,themarginal SR k SR k k B AB partisconstrainedbythedifferenceofthechangesforentropy Xk Xk (10) andthequantummutualinformationk T(△S−△I). B By some calculations, see supplementary material for detail Whenn = 2,theheatenginebecomesananalogueCarnot [25],wecanfindtheentropychangebetweeninitialstateand cycle. We take two heatbaths for consideration: T > T . H L thefinalstateforsystemS andthemulti-heat-reservoirR, After a cycle, we assume that △US = △FS = 0. Because W =Q +Q ,wefind, ext H L S[ρ(i)]−S[ρ(f)] ≤ △S +△S −△I, (11) SR SR A B T L W ≤ 1− Q +k T (△S−△I) (16) where△SA = S[ρ(Af)]−S[ρ(Ai)] denotestheentropychange ext (cid:18) TH(cid:19) H B L forancillarysystemA,and△S denotestheentropychange B Theefficiencyoftheheatengineis ofthequantummemoryB,I denotesquantummutualinfor- mationdefinedasI(X : Y) = S(ρ )+S(ρ )−S(ρ ), X Y XY W T k T (△S−△I) ext L B L here △I = I(A(2) : B(2))−I(A(i) : B(i)) represents the η = =1− + . (17) Q T Q changeofquantummutualinformationintheprocessofheat H H H engineforcompositesystemM includingbothAandB. IncontrastwiththeefficiencyoftheconventionalCarnotcycle According to Klein’s inequality S(ρkσ) = tr(ρlnρ) − η =1− TL,theheatenginepresentedherecanexceed carnot TH tr(ρlnσ)≥0,wehavetr[ρ(f)lnρ(ref)]≤−S[ρ(f)].There- the conventional Carnot heat engine, but new restrictions is SR SR SR fore, stillimposedaspresentedinthelastterm. Thegeneralncaseheatenginecanbeconsideredassimple S[ρ(i)]+tr[ρ(f)lnρ(f)can]≤△S−△I (12) extensionforn=1,2,andtheinequalitycanbeconsideredas SR SR SR 4 thesecondlawofthermodynamicswithquantumcorrelation rewrittenas, inquantuminformationscience.Wecommentthatthemutual 1 informationcanbedividedintotwopartsasclassicalcorrela- S(ρ(2))+S(ρ(2)′)≥log +S(ρi )+S(ρi ), (21) tionandquantumdiscord[26],so△I =△J+△δ.Fromthe AB AB 2 c AB B Eq.(5),wehaveρ(A2B) = kpk|kiAhk|⊗ρ(B2)kwhichisapost- whereρ(2)′indicatesthecorrespondingstatewhenweusethe AB measurement density mPatrix, so discord δ(B(2)|A(2)) = 0. measurementbasesof{Πm}. A Thusforexamplen=1,Eq.(15)becomes TheextractableworkhasbeenillustratedinEq.(15). Note that the relation (11) gives△S −△I = S[ρ(2)]−S[ρ(i) ]. Wext ≤−△FS +kBTC, (18) Next we denote Wk as the maximumextraAcBtable worAkBof max thefirstenginewithprojector{Πk : |kihk|},andthesimilar where we use the notation, C = △S −△J +δ(B(i)|A(i)). A asWm foranothermeasurement.Then It shows that the initial quantumdiscord can be exploited to max acquirephysicalwork, in agreementwith the resultsin [14]. Wk = −△F +k T[S(ρ(2))−S(ρ(i) )], (22) SimilarformcanalsobeobtainedforgeneralnfromEq.(14). max S B AB AB Lower bound for work gained with different measurement Wmmax = −△FS′ +kBT[S(ρ(A2B)′)−S(ρ(Ai)B)]. (23) bases.—Theheatengineinthisworkincludesmeasurement Due to the limitation of the entropic uncertainty relation, processatthethirdstage.Itiswell-knownthatHeisenberghas assertedafundamentallimittotheprecisionoftheoutcomes S(ρ(2))+S(ρ(2)′)satisfytheinequality(21). Weputitinto AB AB for a pair of incompatible obervables [24]. For a quantum therelationWk +Wm . Thenthefinalresultreads max max systemprobablyentangledwithaquantummemory,thereex- 1 iststheentanglement-assistedentropicuncertaintyrelationfor Wk +Wm ≥−△F −△F′+k T[log −S(Ai|Bi)]. max max S S B 2 c twoincompatiblemeasurements[22],andmoregenerallyfor (24) multiplemeasurements[23]. Next,wewillstudytheheaten- This inequality is also one of our main results. The term gine,however,byconsideringtwomeasurementsatstage(iii). S(Ai|Bi) appearing on the right-hand side quantifies the Forconvenience,wejustconsiderthesingle-reservoircase. amountof entanglementbetween A and B. We remark that Weemphasizethatwenextconcentrateonthemeasurement thequantityS(Ai|Bi)playsasignificantroleinquantumin- process. The heat engine will work twice with two sets of formationscience,seeforexample[27–29]andthereferences measurementoperators,{Πk : |kihk|}and{Πm : |mihm|}. A A therein. We denotethe maximaloverlapof the two sets of projective Theinequality(24)playsacompletedifferentroleincom- operatorsas, c = max |hk|mi|2. For state ρi , we have k,m AB paring with the inequalities of second law of thermodynam- theentropicuncertaintyrelation, ics (14-16). Remarkably, the entropic uncertainty which is a representation of the Heisenberg uncertainty principle im- 1 S(k|B)+S(m|B)≥log +S(A|B), (19) pliesthatthereexistslowerbound,insteadofupperboundas 2 c shown in (14-16), for the heat engine presented in this Let- ter. That is to say, the total work gain can be larger than a in which S(A|B) = S(ρi ) − S(ρi ) is the conditional AB B bound for two measurement bases. The negative S(Ai|Bi), entropy for initial state ρi , we would like to point out AB meaning the existence of entanglement, will result in higher that S(A|B) can be negativefor entangledinitial state. The lower bound and let the work extracted larger for two mea- quantity S(k|B) is the conditionalvon Neumannentropy of surements. Thisisanewphenomenonwhichisnotobserved thepost-measurementstateafterperformingthemeasurement before. Straightforwardly,our results can be generalizedfor {Πk}onA, A multiplemeasurements. Conclusion.—We design a specific heat engine with both S(k|B)=S[ p |kihk|⊗ρ(i)k]−S(ρi ), (20) k B B ancillarystateandthequantummemory. Thenewinequality Xk related with the second law of thermodynamics is obtained. Forsimplecases,ourresultsextendtheresultsintheisother- where p = tr(Πkρi Πk) and ρ(i)k = k A AB A B mal process and the Carnot circle. The changes of entropy tr (Πkρi Πk)/p . Similarly, S(m|B) can also A A AB A k and the quantum mutual information lay new limit for the be defined for measurement {Πm} as follows: A marginalpartofworkwhichexceedstheconventionalsecond S(m|B) = S[ mqm|mihm| ⊗ ρ(Bi)m] − S(ρiB), where law of thermodynamics. Surprisingly, if two measurements q = tr(ΠmρiPΠm) and ρ(i)m = tr (Πmρi Πm)/q . are preformed, we find a new inequality due to the entropic m A AB A B A A AB A m We then substitute these equalities into relation (19), the uncertaintyrelation with the assistance of quantummemory, outcomesshouldsatisfytheuncertaintyrelation. which providesa lower boundfor the work gained from the By considering the working process of the heat engine, heatengine.Thisresultdescribesanoppositefactofthether- we know that ρ(2) = Tr ρ(2) = p |ki hk|⊗ ρ(2)k. modynamicsby consideringentanglementin quantuminfor- AB SR k k A B mationscience. Webelievethatourresultsoffernewcritical For partial trace, ρ(i)k = tr (ΠkρPi Πk) and ρ(2)k = B A A AB A B ingredientsforthefoundationsofquantumthermodynamics. trSR[trA(ΠkAρ(1)′ΠkA)] = trA(ΠkAρiABΠkA). Then we have Acknowledgments: This work was supported by ρ(i)k = ρ(2)k. Thus the uncertainty relation (19) can be MOST of China (Grants No. 2016YFA0302104 and B B 5 2016YFA0300600), national natural science foundation of We thank Zheng-An Wang for helping us in drawing the China NSFC (Grant No. 91536108) and Chinese Academy pictures. ofSciences(GrantsNo. XDB01010000andXDB21030300). [1] J.C.Maxwell,TheoryofHeat(Appleton,Lonton,1871). I. SUPPLEMENTARYMATERIAL:SECONDLAWOF [2] H.S.LeffandA.F.Rex,Maxwell’sdemons2(IOPPublishing, THERMODYNAMICSWITHQUANTUMMEMORY Bristol,2003). [3] R.Landauer,IBMJ.Res.Dev.5,183(1961). Detailedcalculationofthe entropychangebetweeninitial [4] C.H.Bennett,Int.J.Theor.Phys.21,905(1982). stateandthefinalstatein theheatengine.—We canextract [5] S.Lloyd,Phys.Rev.A56,3374(1997). thefinalstateas [6] K. Maruyama, F.Nori, and V. Vedral, Rev. Mod. Phys. 81, 1 (2009). ρ(f) =Tr [ρ(f)]= p Uk ρ(2)kUk† (25) [7] T.SagawaandM.Ueda,Phys.Rev.Lett.100,080403(2008). SR AB k SR SR SR [8] T.SagawaandM.Ueda,Phys.Rev.Lett.102,250602(2009). Xk [9] J. J. Park, K.-H. Kim, T. Sagawa and S. W. Kim, Phys. Rev. Considering the concavity of the von Neumann entropy, we Lett.111,230402(2013). have [10] L.Szilard,Z.Phys.53,840(1929). [11] K.Funo,Y.WatanabeandM.Ueda,Phys.Rev.A88,052319 S[ρ(f)]≥ p S[ρ(2)k] (26) (2013). SR k SR [12] S.Popescu,A.J.Short,andA.Winter,Nat.Phys.2,754(2006). Xk [13] F.G.S.L.BrandaoandM.B.Plenio,Nat.Phys.4,873(2008). By means of taking partial trace like equation (25), we can [14] S.Lloyd,V.Chiloyan, Y.J.Hu,S.Huberman, Z.W.Liu,and easilyobtainρ(f),ρ(f)andρ(2),andtheresultsarelistedas, G.Chen,arXiv:1510.05035. A B AB [15] S. Toyabe, T. Sagawa, M. Ueda, E. Muneyuki, and M. Sano, Nat.Phys.6,988(2010). S[ρ(f)]=S[ρ(2)], S[ρ(f)]=S[ρ(2)], (27) A A B B [16] J.M. R.Parrondo, J.M. HorowitzandT. Sagawa, Nat.Phys. 11,131-139(2015). [17] F.G.S.L.Brandao,M.Horodecki,H.H.Y.Ng,J.Oppenheim, S[ρ(A2B)]=H(pk)+ pkS[ρ(B2)k]. (28) andS.Wehner,Proc.Natl.Acad.Sci.U.S.A.112,3725(2015). Xk [18] J.OppenheimandS.Wehner,Science330,1072(2010). [19] E.HanggiandS.Wehner,Nat.Commun.4,1670(2013). Wethensubstituteequations(26),(27)and(28)intotherela- [20] L.H.RenandH.Fan,Phys.Rev.A90,052110(2014). tion(10). Itiseasilytopresent [21] M. A. Nielsen, and I. L. Chuang, Quantum Computation and QuantumInformation(CambridgeUniversityPress,2000). S[ρ(i)]−S[ρ(f)] ≤ S[ρ(i)]− p S[ρ(2)k] SR SR SR k SR [22] M.Berta,M.Christandl,R.Colbeck,J.M.RenesandR.Ren- Xk ner,Nature6,659-662(2010). (2)k (i) ≤ H(p )+ p S[ρ ]−S[ρ ] [23] S.Liu,L.Z.Mu,andH.Fan,Phys.Rev.A91,042133(2015). k k B AB [24] W.Heisenberg,Z.Phys.43,172(1927). Xk [25] Somedetailedcalculationsarepresentedinthesupplementary = S[ρ(2)]−S[ρ(i) ] material. AB AB ≡ △S +△S −△I, (29) [26] K.Modi,A.Brodutch,H.Cable,T.Paterek,andV.Vedral,Rev. A B Mod.Phys.84,1655(2012). [27] M.Horodecki,J.Oppenheim, andA.Winter,Nature436,673 where△SA = S[ρA(f)]−S[ρA(i)]andI denotesquantummu- (2005). tualinformation,and△I = I(A(2) : B(2))−I(A(i) : B(i)) [28] M.L.HuandH.Fan,Phys.Rev.A87,022314(2013). represents the change of quantum mutual informationin the [29] A.Streltsov,E.Chitambar,S.Rana,M.N.Bera,A.Winter,and processofheatengine.Thisistheresultinthemaintext. M.Lewenstein,Phys.Rev.Lett.116,240405(2016). Workgainedfromtheheatenginebyusingentropicuncer- taintyrelation.—Theentropicuncertaintyrelationiswritten as, 1 S(K|B)+S(M|B)≥log +S(A|B). (30) 2 c HereS(·|·)representstheconditionalvonNeumannentropy, M,K representdifferentmeasurementbases, and c is deter- minedbytheoverlapbetweenthesetwobases. For the heat engine studied by us, if there are two sets of measurement operators, the total work extractable after the heatengineprocesswillbelimitedduetotheuncertaintyprin- ciple. 6 Theenginewillworktwice withtwo setsofmeasurement tr (Πmρi Πm)/q . We then substitute these equali- A A AB A m operator{Πk : |kihk|} and{Πm : |mihm|}. Therefore,for tiesintorelation(19). Itiseasilytoobtain A A stateρi wehavethefollowingrelationduetothelimitation AB oftheuncertaintyprinciple, S( p |kihk|⊗ρ(i)k)−S(ρi ) k B B 1 Xk S(k|B)+S(m|B)≥log2 c +S(A|B), (31) +S( qm|mihm|⊗ρB(i)m)−S(ρiB) Xm itniownahlivchonSN(Aeu|Bm)an=neSn(tρroiApBy)f−orSth(eρiBpo)s.tS-m(kea|Bsu)reismtehnetcsotantde,i- ≥ log2 1c +S(ρiAB)−S(ρiB) (34) S(k|B) = S[ (Πk ⊗I )ρi (Πk ⊗I )]−S(ρi ) A B AB A B B With working process of the heat engine, we find, ρ(2) = Xk AB Tr ρ(2) = p |ki hk| ⊗ ρ(2)k. And according to the = S[ p |kihk|⊗ρ(i)k]−S(ρi ), (32) SR k k A B k B B conclusionofPthepartialtrace,ρ(i)k = tr (Πkρi Πk)and Xk B A A AB A ρ(2)k = tr [tr (Πkρ(1)′Πk)] = tr (Πkρi Πk). Then B SR A A A A A AB A where pk = tr(ΠkAρiABΠkA) and ρB(i)k = wehaveρB(i)k = ρ(B2)k. Thustherelation(34)canbesimpli- trA(ΠkAρiABΠkA)/pk. Similarly, fiedas S(m|B)=S[ qm|mihm|⊗ρ(Bi)m]−S(ρiB), (33) S(ρ(2))+S(ρ(2)′)≥log 1 +S(ρi )+S(ρi ). (35) Xm AB AB 2 c AB B where q = tr(Πmρi Πm) and ρ(i)m = Thisequationistheoneinthemaintext. m A AB A B

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.