Seasonality and drought effects of Amazonian forests observed from multi-angle satellite data de Moura, Y. M., Hilker, T., Lyapustin, A. I., Galvão, L. S., dos Santos, J. R., Anderson, L. O., ... & Arai, E. (2015). Seasonality and drought effects of Amazonian forests observed from multi-angle satellite data. Remote Sensing of Environment, 171, 278-290. doi:10.1016/j.rse.2015.10.015 10.1016/j.rse.2015.10.015 Elsevier Version of Record http://cdss.library.oregonstate.edu/sa-termsofuse RemoteSensingofEnvironment171(2015)278–290 ContentslistsavailableatScienceDirect Remote Sensing of Environment journal homepage: www.elsevier.com/locate/rse Seasonality and drought effects of Amazonian forests observed from multi-angle satellite data YhasminMendesdeMouraa,⁎,ThomasHilkerb,AlexeiI.Lyapustinc,LênioSoaresGalvãoa, JoãoRobertodosSantosa,LianaO.Andersond,e,CélioHelderResendedeSousab,EgidioAraia aNationalInstituteforSpaceResearch(INPE),AvenidadosAstronautas,1758SãoJosédosCampos,SP,Brazil bOregonStateUniversity,CollegeofForestry,Corvallis,OR97331,USA cNASAGoddardSpaceFlightCenter,Greenbelt,MD20771,USA dNationalCentreforMonitoringandEarlyWarningofNaturalDisasters(CEMADEN),EstradaDoutorAltinoBondensan,500,SãoJosédosCampos,SP,Brazil eEnvironmentalChangeInstitute,UniversityofOxford,OxfordOX13QY,UK a r t i c l e i n f o a b s t r a c t Articlehistory: SeasonalityanddroughtinAmazonrainforestshavebeencontroversiallydiscussedintheliterature,partiallydue Received25March2015 toalimitedabilityofcurrentremotesensingtechniquestodetectitsimpactsontropicalvegetation.Weusea Receivedinrevisedform9October2015 multi-angleremotesensingapproachtodeterminechangesinvegetationstructurefromdifferencesindirection- Accepted22October2015 alscattering(anisotropy)observedbytheModerateResolutionImagingSpectroradiometer(MODIS)withdata Availableonline5November2015 atmosphericallycorrectedbytheMulti-AngleImplementationAtmosphericCorrectionAlgorithm(MAIAC). Ourresultsshowastronglinearrelationshipbetweenanisotropyandfield(r2=0.70)andLiDAR(r2=0.88) Keywords: basedestimatesofLAIevenindensecanopies(LAI≤7m2m−2).Thisallowedustoobtainimprovedestimates Amazon Drought ofvegetationstructurefromopticalremotesensing.WeusedanisotropytoanalyzeAmazonseasonalitybased Anisotropy onspatiallyexplicitestimatesofonsetandlengthofdryseasonobtainedfromtheTropicalRainfallMeasurement Greening Mission(TRMM).Anincreaseinvegetationgreeningwasobservedduringthebeginningofdryseason(across Browning ~7%ofthebasin),whichwasfollowedbyadecline(browning)laterduringthedryseason(across~5%ofthe MAIAC basin).Anomaliesinvegetationbrowningwereparticularlystrongduringthe2005and2010droughtyears MODIS (~10%ofthebasin).Weshowthatthemagnitudeofseasonalchangescanbesignificantlyaffectedbyregional differencesinonsetanddurationofthedryseason.Seasonalchangesweremuchlesspronouncedwhen assumingafixeddryseasonfromJunethroughSeptemberacrosstheAmazonBasin.Ourfindingsreconcile remotesensingstudieswithfieldbasedobservationsandmodelresultsastheyprovideasounderbasisforthe argumentthattropicalvegetationgrowthincreasesduringthebeginningofthedryseason,butdeclinesafter extendeddroughtperiods.Themulti-angleapproachusedinthisworkmayhelpquantifydroughttolerance andseasonalityintheAmazonianforests. ©2015ElsevierInc.Allrightsreserved. 1.Introduction couldalterspeciescomposition,biodiversity(Asner&Alencar,2010; Asner,Nepstad,Cardinot,&Ray,2004,April20;Phillipsetal.,2009) Vulnerabilityoftropicalforeststoclimatechangehasreceivedbroad andplantproductivity(Aragaoetal.,2007;Gattietal.,2014;Meir, attentionbythescientificcommunityasincreaseinequatorialseasur- Metcalfe,Costa,&Fisher,2008). facetemperature(SST)canleadtolongerdryseasons(Fuetal.,2013; Overthelastdecade,theAmazonregionhasexperiencedtwosevere Marengo,Tomasella,Alves,Soares,&Rodriguez,2011)andmorefre- droughts,onein2005andanotherin2010(Marengoetal.,2011).How- quent,severedroughtevents(Lewis,Brando,Phillips,vanderHeijden, ever,thebroadscaleresponseofvegetationtotheseeventsremains &Nepstad,2011;Malhi,Aragão,Galbraith,etal.,2009;Malhi,Aragão, controversial.Saleska,Didan,Huete,anddaRocha(2007)reportedan Metcalfe,etal.,2009;Marengoetal.,2008).Thefeedbacksofsuch increaseingreenness(higherEVI)forthe2005drought,aresultthat drying on global climate change could be substantial; the Amazon wassubsequentlychallenged(Atkinson,Dash,&Jeganathan,2011; rainforestaloneaccountsforabout15%ofglobalphotosynthesisand Samantaetal.,2010).Xuetal.(2011)observedawidespreaddecline hostsperhapsaquarteroftheworld'sterrestrialspecies(Malhietal., ingreeningforthe2010drought.Similarly,theprevailingviewofsea- 2008).Fieldstudieshaveindicatedthatsuchextremedroughtevents sonalityofvegetationhasrecentlybeendiscussed.Severalfindings (Brandoet al., 2010;Graham,Mulkey,Kitajima, Phillips,&Wright, ⁎ Correspondingauthor. 2003; Huete et al., 2006; Hutyra et al., 2007; Myneni et al., 2007; E-mailaddress:[email protected](Y.M.deMoura). Samantaetal.,2012;Wagner,Rossi,Stahl,Bonal,&Hérault,2013) http://dx.doi.org/10.1016/j.rse.2015.10.015 0034-4257/©2015ElsevierInc.Allrightsreserved. Y.M.deMouraetal./RemoteSensingofEnvironment171(2015)278–290 279 supporttheviewthatphotosyntheticactivityincreasesinitiallyduring 2.Materialandmethods thedryseasoninresponsetoanincreaseinincidentphotosynthetically active radiation (PAR). However, a recent study based on NASA's 2.1.Quantificationofmulti-anglescattering ModerateResolutionImagingSpectroradiometer(MODIS)(Morton etal.,2014)arguedthatseasonalchangesaredrivenbyartifactsofthe MAIACdatawereobtainedfrom12MODIStiles(h10v08toh13v10, sun-sensorgeometry. spanning10°Nto20°Sinlatitudeand80°Wto42°Winlongitude) Agrowingbodyofliteraturesuggestsuncertaintiesinremote from Terra and Aqua satellites between 2000 and 2012. MAIAC is sensing of atmospheric aerosol loadings (Samanta et al., 2010, basedonMODISLevel1B(calibratedandgeometricallycorrected)ob- 2012)anddeficienciesinclouddetection(Hilkeretal.,2012)tobe servations,whichremovemajorsensorcalibrationdegradationeffects partiallyresponsibleforthesecontradictingresults.Whileprogress present in earlier collections (Lyapustin et al., 2014). MAIAC grids hasbeenmadeaddressingsomeofthesechallengesbyusingalterna- MODISL1Bdatatoa1kmresolution,andaccumulatesmeasurements tivedatasets(Hilkeretal.,2014)orhigherspatialresolutionimagery ofthesamesurfaceareafromdifferentorbits(viewgeometries)for (Zelazowski,Sayer,Thomas,&Grainger,2011),observationsbased upto16daysusingamovingwindowapproach.Thesedataareused onremotelysensedvegetationindicesarelimitedintheirabilityto toderivespectralregressioncoefficientsrelatingsurfacereflectancein detectchangesinvegetationcoverduetoawell-documentedsatu- theblue(0.466μm)andshortwaveinfrared(2.13μm)foraerosolre- rationeffectinareaswithhighbiomassandleafarea(Carlson& trievals,andtoobtainparametersofsurfacebi-directionalreflectance Ripley,1997). distributionfunction(BRDF)(Lyapustinetal.,2011;Lyapustin,Wang, Asanalternativetoobservationsfromonlyoneviewangle,the Laszlo,Hilker,etal.,2012).Assumingthatvegetationisrelativelystable combinationofmultipleviewanglesmayprovidenewopportunities duringthisperiod,thesurfacedirectionalscatteringcanbecharacterized to mitigate these saturation effects, and allow better insights into usingtheRoss-ThickLi-Sparse(RTLS)BRDFmodel(Roujean,Leroy,& seasonal and inter-annual changes of tropical forests. Biophysical Deschamps,1992).Duringperiodsofrapidsurfacechange(e.g.,green- changesin thecanopy structure affect thedirectional scattering of uporsenescence)MAIACfollowsanapproachoftheMODISBRDF/ lightandtheseeffectsareobservablefrommulti-angulardata(Chen, albedo algorithm (MOD43, Schaaf et al., 2002) to scale the BRDF Menges,&Leblanc,2005).Withtheadvanceofmulti-angularsensors model with the latest measurement to adjust the magnitude of such as theMulti-angleImaging SpectroRadiometer (MISR) (Diner reflectancewhileassumingthattheshapeofBRDFdoesnotchange etal.,1998),progresshasbeenmadeindescribingthedependenceof significantly. This approach preserves spectral contrasts of actual reflectance on observation angles (Barnsley, Settle, Cutter, Lobb, & surfacecharacteristics. Teston,2004;Dineretal.,1998).Forinstance,theangularcomponent OneadvantageofusingtheRTLSmodelratherthanreflectancedi- ofsurfacereflectance(anisotropy)hasbeenlinkedtoopticalproperties rectlyisthepossibilitytomaintainconstantsun-observergeometry and geometric structure of the target (Widlowski et al., 2004; and extrapolate measurements to the principal plane to describe Widlowski,Pinty,Lavergne,Verstraete,&Gobron,2005)suchascanopy backscatterandforwardscatterdirections.Inthisstudy,weselecteda roughness(Strahler,2009),leafangledistribution(Roujean,2002),leaf viewzenithangle(VZA)of35°ratherthantheabsolutehotspotlocation areaindex(LAI)(Walthall,1997)andfoliageclumping(Chenetal., atVZA=45°inordertokeepthemodeledreflectanceclosertotheac- 2005). tualrangeofanglesobservedbyMODIS,therebyminimizingpotential The theoretical basis for the influence of canopy structure on errorsresultingfromextrapolationoftheBRDF.Forlandvegetatedsur- multi-anglereflectancehasbeendeveloped(Bicheron,1999;Chen, faces,directionalscatteringdominatesintheNIRregionduetothehigh Liu,Leblanc,Lacaze,&Roujean,2003;Gao,2003;Leblancetal.,2005; absorptionofvisiblelight.RatherthanobtaininganisotropyoftheNIR Mynenietal.,2002).However,multi-anglereflectanceisnoteasily bandalone,wecalculatedforwardandbackscatterforblue,redand obtainedfromtraditionalsurfacereflectancealgorithms,evenwhen NIR reflectance and then obtained the Enhanced Vegetation Index data is acquired from multiple viewangles.Pixel basedalgorithms (three-bandversionEVI)forbothdirections.Theobjectiveofusing often assume a Lambertian reflectance model, which reduces the EVIratherthansurfacereflectanceofagivenbandwastominimize anisotropyofthederivedsurfacereflectance(Lyapustin&Muldashev, theeffectofnon-photosyntheticallyactiveelementswhileoptimizing 1999;Wangetal.,2010)thusdecreasingtheabilitytodetectdirectional thesensitivitytogreencanopystructure.Itcan,however,beshown scattering(Hilkeretal.,2009). thatdifferencesbetweenforwardandbackwardscatterEVIislargely Newmethodsforprocessingremotesensingdata,suchastheMulti- the result of differences in scattering in the near infrared region AngleImplementationofAtmosphericCorrection(MAIAC),canhelp (Moura,Galvão,dosSantos,Roberts,&Breunig,2012). overcomethislimitationbyusingaradiativetransfermodelthatdoes ThespectralerrorofMAIACsurfacereflectancewasevaluatedasthe notmakeaLambertianassumption(Lyapustin&Knyazikhin,2001). standarddeviationbetweenobservedsurfacereflectance(BRF)and MAIACisacloudscreeningandatmosphericcorrectionalgorithmthat BRDFmodelprediction1)overatime(usinganareaof100×100km usesanadaptivetimeseriesanalysisandprocessingofgroupsofpixels toobtainsufficientstatisticsgivenhighcloudcoverinAmazonia)and toderiveatmosphericaerosolconcentrationandsurfacereflectance.A 2)inspace(pixelbypixel)fortheexampleoftwo30dayperiods,in detaileddescriptionofthealgorithmcanbefoundinLyapustinetal. JuneandSeptember. (2011),Lyapustin,Wang,Laszlo,Hilker,etal.,(2012).Inthispaper, wetakeadvantageofMAIACtostudychangesinanisotropyacrossthe 2.2.LiDARbasedestimatesofleafareaindex AmazonBasinusingthirteenyearsofmulti-angleMODISobservations. Wedefineanisotropyasdifferenceinreflectancebetweenthebackscat- Estimates of anisotropy were validated against existing and tering(relativeazimuthangle(RAA)=180°)andtheforwardscatter- independentfieldobservationsofLAI(n=16)obtainedfromthelitera- ing (RAA = 0°) directions for a fixed view and sun zenith angle. ture(Andreae,2002;Figueraetal.,2011;Domingues,Berry,Martinelli, Estimatesofsuchdefinedanisotropywerethenrelatedtofieldand Ometto,&Ehleringer,2005;Doughty&Goulden,2000a,b;Galvaoetal., LiDAR-basedestimatesofLAIinordertovalidateitsrelationtovegeta- 2011;Malhi,Aragão,Galbraith,etal.,2009;Malhi,Aragão,Metcalfe, tionstructure.Ourobjectivesweretodemonstratespatialandtemporal et al., 2009; Negrón Juárez, da Rocha, Figueira, Goulden, & Miller, changesinanisotropy,particularlyduringtheonsetofthedryseasonas 2009;Restrepo-Coupe et al., 2013; Scurlock, Asner, & Gower, 2001; ameasureofchangesinvegetation.Were-visitedthetwolastmajor Zanchietal.,2009),andAirborneLaserScanning(ALS)asanexample droughtsintheAmazonBasin(2005and2010)toevaluateanomalies ofameasureofcanopystructure.LiDARdatawereacquiredbytheSus- inanisotropyandinvestigatevegetationresponsetothesedrought tainableLandscapesBrazilprojectsupportedbytheBrazilianAgricultural eventsonamonthlybasis. ResearchCorporation(EMBRAPA),theUSForestService,USAID,andthe 280 Y.M.deMouraetal./RemoteSensingofEnvironment171(2015)278–290 USDepartmentofState.AdetaileddescriptionoftheLiDARdatacanbe averageofMODIStileh12v09(south-centralAmazon)asanexample. foundathttp://mapas.cnpm.embrapa.br/paisagenssustentaveis.Inorder Wevariedthesolarzenithanglebetween45°(whichisthedefault toallowacomparisonbetweenLiDARbasedLAIandanisotropy,the angleforBRDFnormalizationinMAIAC)and25°degrees(whichis areaofairborneLiDARacquisitionwasfirstsubdividedinto1×1km more commonly found in tropical latitudes). Results shows strong tilesmatchingtheMODISpixels.Theprobabilityofcanopygapwithin seasonalvariationsforredandNIRreflectance(variationsintheblue eachtilewasthendeterminedasthesumofthetotalnumberofhits bandarenotshown),andresultingEVI,irrespectiveofthemodeled downtoaheightz,relativetothetotalnumberofindependentLiDAR SZA.WhilereflectanceandEVIanisotropyincreasedwithincreasing shots(N)(Lovell,Jupp,Culvenor,&Coops,2003;Reading,Bedunah,& SZA,theseasonaldifferenceremainedsimilar.Theseasonalrobustness Amgalanbaatar,2006): withrespecttoagivenSZAmaybeexplainedbythefactthattheregion aroundhotspotanddarkspotareaisrelativelysmooth(Fig.1a,cande), 1−z¼Xzmax#z makingestimatesofseasonalanisotropyrelativelyinsensitivetothe j particularsun-sensorconfigurationselected,aslongasthisconfigura- PgapðzÞ¼ zN¼j ð1Þ tionremainsconstant. Figs.A.2andA.3provideaquantitativeanalysisofthestandard where#zisthenumberofhitsdowntoaheightzabovetheground(or deviation(σ)betweenobservedsurfacereflectanceandBRDFmodel therangetowhichthegapprobabilityistaken).Finally,theleafarea prediction.Fig.A.2showsthebehaviorofthestandarddeviationover profile L(z) was modeled as a logarithmic function of P (Lovell atime,usinganareaof100×100kmareaasanexample(65°0′0″W, gap etal.,2003)assuminganexponentialextinctionoflightwithinthe 5°0′0″S).Themeanstandarddeviationswere0.005and0.019forthe canopy: redandNIRreflectance,respectively,whichisabout10–15%ofthe (cid:2) (cid:3) seasonalchangesillustratedinFig.1aandb.Slightseasonalvariability LðzÞ¼−log PgapðzÞ : ð2Þ inσwasfound,likelyasaresultofincreasedcloudcoverduringthe wetseason.Fig.A.3illustratesthespatialvariabilityofthestandard Adetaileddescriptionofthemethodappliedcanbefoundin(Coops deviationinJune(Fig.A.3a)andSeptember(Fig.A.3b).Forreasonsof etal.,2007). brevityonlythevariabilityinEVIispresented.SimilartoFig.A.2,the standarddeviationbetweenobservedEVIandmodelpredictionpre- 2.3.EstimatingonsetanddurationofAmazondryseasons sentedinFig.A.3wasonaverageabout5–10%oftheobservedseasonal changes(compareFig.1). Themostcommonperiodusedintheliteraturefordescribingdry Fig. 2 illustrates the spatio-temporal variation in anisotropy by seasonsacrossAmazoniaisJunethroughSeptember(Saleskaetal., meansofitsfirstprincipalcomponent(PC1)fortheperiodbetween 2007; Samanta et al.,2010; Xu et al., 2011). It is, however, widely 2000 and 2012. The droughts years 2005 and 2010 were excluded acknowledgedthattheactualonsetanddurationofthedryseason fromthisanalysistoonlyrepresentnormalyearvariations.PC1ex- variesgreatlyacrosstheAmazonBasin(Silvaetal.,2013).Inordertoin- plainedabout89%ofthetotalvarianceinanisotropy;consequently, vestigatetheeffectsofregionalvariabilityinprecipitation,onsetand wefocusonthisfirstcomponenttoillustrateregionalvariabilityin length of dry season were calculated for each year using monthly thedataset.Redandyellowrepresentareaswithrelativelyhigheran- estimatesofwaterdeficitfromprecipitationobtainedfromTropical isotropy,whilegreentowhiteshowareaswithrelativelyloweranisot- RainfallMeasuringMission(TRMM)(3B43v7and7A,at0.25°spatial ropy.NotabledifferenceswerefoundnotonlybetweentheAmazonian resolution).TRMMdatahasbeenextensivelyusedtocharacterizethe rainforestandnon-forestedsavannahregions,butalsowithinthefor- seasonal and inter-annual variability in rainfall across the Amazon estedareaitself(comparetraditionalvegetationindicesforinstancein region (Aragao et al., 2007). Dry season months were determined Hilkeretal.,2014,Fig.S2).Highanisotropywasfoundpredominantly byusingtheassumptionthatmoisttropicalforeststranspireabout inthemoredenselyforestedareasinnorthernandeasternAmazonia 100mm·month−1(Anderson,2012;Aragaoetal.,2007):Whenrainfall whereastheopenforesttypesinthesouthernregionsyielded,onaver- dropsbelow100mm·month−1,evapotranspirationexceedsprecipita- age,lowervaluesofanisotropy.ThepointsymbolsinFig.2illustratethe tion,andsoilwateravailabilitydeclines(Borchert,1998;A.Strahler& plotlocationsforfieldbasedobservationsofLAIandLiDARderived D.Jupp,1990;Williamsetal.,1998). measurements.WhilethetotalnumberofindependentLAIestimates islimitedacrossremoteforestedareassuchastheAmazonBasin,the 3.Results fieldlocationsindicatedinFig.2representedareasonablerangeof foresttypeswithintheAmazonrainforest. TheleftcolumninFig.1showsanexampleofaBRDFsurfacefittedto Measuresofanisotropywerestronglyrelatedtoindependentfield retrieveforwardandbackscatterforredreflectance(a)andNIRreflec- observationsofLAI(n=16)obtainedfromtheliterature(Fig.3a,r2= tance(c).WealsoillustratedaBRDFsurfacecalculatedforEVI(e)to 0.70pb0.05)andLAIestimatesderivedfromairborneLiDAR(Fig.3b, demonstratetheanisotropyofthisindex.TheRTLSsurfacesareshown r2=0.88pb0.05).Importantly,bothrelationshipswerefoundtobe fora1×1kmareaofAmazonforest(65°0′0″W,5°0′0″S)usingall linear,atleastwithintheobservedrangeofLAI≤7m2m−2andyielded observations acquired between January 1 and 14, 2006. The polar animproveddescriptionofstructureindenselyvegetatedareascom- coordinatesrepresenttheviewzenithandazimuthangles,thez-axis paredtoestimatesobtainablefromnadirEVIimagesalone(Fig.3c). showsthecorrespondingreflectance(ρ)intheredandNIRbands, TherelationshipbetweenbothfieldmeasuredandLiDARLAIestimates andEVI,respectively.TheblackdotsrepresenttheMODISobservations withanisotropyfollowedalmosttheidenticallinearfunctionalform, thatwereusedtoparameterizetheBRDFsurface.Theredandbluedots whichallowedustodescribeleafareaacrossarangeofvegetation showthemodeledforwardandbackscatterreflectance(Fig.1,leftcol- typeswithintheAmazonianrainforestfrombothdatasources. umn)withafixedsunobservergeometry(SZA=45°,VZA=35°, Inadditiontoalargeheterogeneityinvegetationstructure(Fig.2), RAA=180°inthebackscatterdirectionandSZA=45°,VZA=35°, ouranalysisconfirmedalsoalargevariabilityinprecipitationacross RAA=0°intheforwardscatterdirection).Wefittedonesuchsurface thebasin(Villaretal.,2009).Fig.4representsestimatesofmonthly foreachpixeland14-dayperiodtoderivebi-weeklyanisotropyacross waterdeficit.Areaswithlowwaterdeficitareshowninblue,whereas theAmazonBasin. red indicates high water deficits. Areas with no water deficit are Fig.1b,dandfshowtemporalvariationsinanisotropy(forred,NIR presentedwithoutcolor.Highlevelsofwaterdeficitwerefoundinthe andEVI,respectively)fordifferentsunobservergeometriestoverify northernAmazonregionmainlybetweenJanuaryandMarch,corre- therobustnessofthemethodapplied.Thetimeseriesshowsaspatial spondingtothedryseasoninthenorthernhemisphere,whereasMay Y.M.deMouraetal./RemoteSensingofEnvironment171(2015)278–290 281 Fig.1.ModeledBRDFsurfacefora1×1kmareaofAmazonforest(65°0′0″W,5°0′0″S)forredreflectance(a),NIRreflectance(c)andEVI(e).TheblackdotsrepresenttheactualMODIS observationsaccumulatedovera14dayperiod,thebluedotrepresentsthemodeledforwardscatterdirection(darkspot),thereddotrepresentsthemodeledbackscatterdirection (hotspot).Fig.1b,dandfshowatimeseriesofanisotropy(red,NIRandEVI,respectively)usingthemeantimeseriesofMODIStileh12v09.Sun.zenithangles(SZA)variedbetween 45°and25°degreestoinvestigatethesensitivitywithrespecttothesunsensorconfiguration. toAugustmarkedthedryseasonmonthsacrosslargepartsofthesouth- changes are labelled “greening”, negative changes are labeled ernhemisphere.Overall,thelargestwaterdeficitwasfoundduringJune “browning”;allchangesarenormalizedwithrespecttotheirstandard andJuly(focusingonthesouth-easternborderoftheAmazon),whereas deviations).Absolutechanges(non-normalized)inanisotropyatbegin- thelowestlevelsofwaterdeficitwereobservedduringMarch,with ningandendofdryseasonarepresentedinA.1.Onlythosechangesthat precipitationexceeding100mmmonth−1almostacrosstheentire exceededtheRMSEofthefieldvalidation(Fig.3aandb)arepresented. basin.Thebeginningandlengthofdryseason(Fig.5aandb,respective- Non-forestedareaswereexcludedfromallanalysisusingtheMODIS ly)variedaccordinglyandfollowedasouth-westnorth-eastgradient land cover product (collection 5, Friedl et al., 2010). Fig. 6a uses a withupto5monthsofwaterdeficitinthesouth-west.Bycontrast, fixeddryseasonassumptionfromJunethroughSeptembertoderive largeareasofAmazonasstate,centralAmazon,showed,onaverage, conventionalmeasuresofgreening/browning.Fig.6bshowschanges no water deficit during the observed years (gray area in the map, ofgreening/browningbasedononsetandlengthofdryseasonderived comparealsoSteege&Pitman,2003). fromwaterdeficit.Inbothcases,thedroughtyearsof2005and2010 Anisotropy changes in response to these seasonal variations in wereexcludedfromtheanalysestoreflect“normalyear”situations.In precipitationareshowninFig.6.Fig.6aandbshowtotaldifferences caseofthefixeddryseasonassumption(Fig.6a),negativenetchanges inanisotropybetweenbeginningandendofthedryseason(positive inanisotropywerefoundlargelyinthewestandnorth-westernregion 282 Y.M.deMouraetal./RemoteSensingofEnvironment171(2015)278–290 Fig.2.Thefirstprincipalcomponentofanisotropybetween2000and2012.Thedroughtsyears2005and2010wereexcluded.ThelocationsofthefieldandLiDARestimatesofLAIare shown.LiDARestimateswereobtainedfromSustainableLandscapeProjectinthreelocations:AdolphoDuckeForestReserve,Amazonasstate,Brazil(⊗);RioBrancomunicipality,Acre State,Brazil( )andTapajósNationalForest,ParáState,Brazil(⦾).TheotherfieldestimatesofLAIwerecollectedfromtheliterature:Malhi,Aragão,Galbraith,etal.(2009),Malhi,Aragão, Metcalfe,etal.(2009)(•),Dominguesetal.(2005)(○),DoughtyandGoulden(2008c)(*),NegrónJuárezetal.(2009)(x),Andreaeetal.(2002)(□),Zanchietal.(2009)(◊),Restrepo- Coupeetal.(2013)(Δ),Figueraetal.(2011)(b),Scurlocketal.(2001)(˃),Galvaoetal.(2011)(+). oftheAmazonBasin,whilesmallgreeningeffectswereobservedinthe moremonthswhenaccountingforactualdryseasononset.Monthly Amapástateregionandsouth-centralAmazonia.Whenconsideringthe changes in LAI (as deviations from annual means) were calculated specificlengthofdryseason(Fig.6b),itbecomesapparentthatmostof usingthelinearrelationshipstofieldandLiDARmeasurementspresent- theareashowingnetbrowningeffectsdidactuallynotexperiencea edinFig.3.ThedashedlineinFig.6canddrepresentestimatesbasedon seasonalwaterdeficit(Fig.6a),atleastonaveragewithinthetime therelationshipwithfieldobservations(Fig.3a),whilethesolidline periodobserved.NetgreeningeffectsshowninFig.6bweresimilarto representsestimatesbasedontherelationshipwithLiDARobservations thosepresentedinFig.6a.However,regionally,considerabledifferences (Fig.3b).Consistentwiththenetchangesinareaofgreeningandbrow- werefound,particularlyinthesouthwesternpartofthestudyarea. ning,ourresultssuggestedthattotalleafareaincreasesduringthe Comparedtothenormalizedresults,non-normalizeddifferencesinan- beginningofthedryseasonbyonaverage0.2m2m−2acrossthebasin, isotropybetweenthebeginningandendofdryseasonwereprominent whileLAIdroppedbelowtheannualmeanafterabout2monthsofdry acrossmostoftheAmazonBasin(A.1),whichcanbeexplainedby season (0.1 m2 m−2). However, these results should be interpreted therelativelysmallRMSEobtainedfromthevalidationdataset(Fig.3a carefullyaschangesinLAIvariedgreatlyacrossspaceandmayalsobe andb). theresultofchangesinotherstructuralparameters(seediscussion). Fig.6canddshownetgreeningandbrowningeffectsinpercentage Thetwodroughtyearsresultedinstrongbrowningeffects;spatial oftotalareapermonthofdryseason.Greeningandbrowningeffects andtemporalpatternsofanomaliesinanisotropyforthe2005and weredefinedaspercentageofpixelswithsignificantincrease/decrease 2010droughtsarepresentedinFig.7.Forbothyears,onlythespecific inanisotropy(≥2σ)comparedtotheannualmean.Fig.6cusesafixed beginningandendofthedryseason(basedonthewaterdeficit)are dryseasonassumption(JunethroughSeptember),whileFig.6dshows shown.Fig.7showsanomaliesi.e.deviationsfromthenormalyearpat- changesbasedononsetofdryseasonderivedfromwaterdeficit.In ternspresentedinFig.6;allanomalieswerenormalizedtothestandard caseofFig.6d,wealsoshowthelastmonthbeforeawaterdeficitwas deviation(≥2σ)oftheyears2000–2012,excluding2005and2010. observed,inordertoillustratechangesinphotosyntheticactivitywith Whilepositiveandnegativeanomalieswereapproximatelybalanced thereduction of rainfall towardstheendof therainy season.Both atthebeginningofthedryseason(Fig.7candd),negativeanomalies estimatesshowedincreasedanisotropyduringthebeginningofthe inanisotropyoutweighedpositiveeffectsafteraboutthreemonths, dryseasonwithabout2%ofareaexperiencing“greening”whenusing especially during 2010, with negative anomalies being three times a fixed dry season assumption and over 5% of total area greening largerthanpositiveones.EstimatesofderivedLAIshowedsmallposi- whenexplicitlyconsideringdryseasononsetforeachpixel.Inboth tiveanomaliesduringthebeginningofthe2005droughtperiod,but analyses,greeningeffectsturnedintonetbrowningeffectsafteran confirmed large negative effects with extended dry season length. extendedlengthofdryseason,reachingabout7%oftheareaafter3or In 2010, change was similar to normal years (anomalies were Y.M.deMouraetal./RemoteSensingofEnvironment171(2015)278–290 283 Fig.3.RelationshipbetweenanisotropyandLAI;a)fromfieldvaluescollectedintheliterature(seeFig.2),andb)fromLiDARestimates.c)Relationshipbetweendirectionallynormalized (nadir)EVIandLAI.ThecorrelationswereperformedusingthedatesdescribedinthefielddatawiththeclosestMODISacquisitionsavailable.ThelocationoftheplotsareprovidedinFig.2. RMSEforFig.3aandbwere0.08and0.02(unitsofanisotropy),respectively. small)duringthefirstfewmonthsofthedryseason.However,areas sourcesfromundetectedcloudstogriddinguncertainties.Itshouldfur- with6monthsofdryseasonshowednegativedeviationfromnormal theraccountforlimitationsoftheRTLSmodeltodescribetheBRDF yeardeclineinstructure(Fig.6d)ofanadditional−0.2m2m−2across shapeandanisotropyoftheMAIACdata. thebasin(Fig.7d). Ourresultssuggestthatstructuralinformationofvegetationmaybe obtainedfrequentlyoverlargeareasfromMODIS.Furtherresearch, 4.Discussion however,willbeneededtoinvestigatepotentialsforotherecosystems andregions.TheBRDFmodelselectedinthisstudyallowedustoderive Thisstudyusedmulti-angleobservationsfromtheMODISinstru- seasonalanisotropyindependentofthesunobservergeometry,which menttoinvestigatespatialandtemporalvariabilityinvegetationstruc- isanimportantconsiderationforseparatingvegetationseasonality tureacrosstheAmazonBasin.Whiletherangeofviewanglesacquired fromartifactsduetoseasonalchangesinthesun/sensorconstellation fromMODISisrelativelysmall(Fig.1),astheinstrumentwasnotspecif- (Mortonetal.,2014). icallydesignedformulti-angleacquisitions,anisotropystillprovidedan While it is acknowledged that vegetation may change over a effectivemeanstocharacterizevegetationstructureacrosstheAmazon 14dayperiod,asusedinourBRDFapproach,thistechniqueshould forest.Changesinthesun-sensorconfigurationovertheyeardonotal- stillallowustoobservemostseasonalityofvegetationandhasprov- waysallowtomodelforwardandbackscatteringobservationswithin en useful in other composite products (Huete et al., 2002; Schaaf thesamplingrangeoftheMODISinstruments.However,theanalysis et al., 2002). Data scarcity may prevent frequent updates of BRDF presentedinFig.1hasdemonstratedarelativerobustnesswithrespect shapes,whichinsomecaseslimittheabilitytodetermineanisotropy totheselectedsun-sensorconfiguration.Thestandarddeviationbe- and may lead to misinterpretation of changes in canopy structure. tweenobservedandmodeledMAIACreflectance(Figs.A.2andA.3) However, analysis of observation frequency across the Amazon wasabout10%oftheobservedvariationinanisotropy(Figs.6and7), Basin(Hilkeretal.,2015)hasshownthatMAIACprovidesonaverage confirmingtheabilityofourapproachtodetectseasonalandinter- between10and60observationsinanygivenmonthfromTerraand annual changes. The results were further within the range of the Aqua, respectively, which should allow stable BRDF inversions for RMSEreportedinFig.3,therebyconfirmingthesignificanceoftherela- most pixels. Other methods to derive multidirectional reflectance tionshiptocanopystructure.Theapproachshouldaccountforerror (Franch,Vermote,Sobrino,&Fédèle,2013;Schaafetal.,2002)have 284 Y.M.deMouraetal./RemoteSensingofEnvironment171(2015)278–290 Fig.4.Monthlyestimatesofwaterdeficit(inmmmonth−1),basedonTRMMobservationsfrom1998to2012.Areaswithlowwaterdeficitareshowninblue,whereastheredcolorin- dicateshighwaterdeficits;areaswithnowaterdeficitarepresentedwithoutcolor. been published. Their usefulness to derive MODIS anisotropy will D.L.B.Jupp,1990).Ourstronglinearrelationshipfoundbetweenanisot- havetobeaddressedseparately. ropyandLAIestimates(Fig.3aandb,r2=0.70,r2=0.88pb0.05, Theabilityofmulti-angleobservationtoderivevegetationstructural respectively)confirmsthesefindings. attributesiswellsupportedbypreviousstudiesoftemperateecosys- TheRMSEfortherelationshipsbetweenanisotropyandfieldobser- tems(Chen etal.,2003;Gao,2003).Multi-angledata decreasethe vationshasallowedustolinkseasonalchangesinanisotropywith dispersionandsaturationingeometricallycomplexcanopies(Zhang, changesinvegetationstructure.However,wedoacknowledgethat Tian,Myneni,Knyazikhin,&Woodcock,2002)andarethereforebetter otherstructuralvariablescaninfluenceseasonalpatternsofanisotropy suitedtodescribethethreedimensionalstructureofforestscompared indifferentways.Forinstance,anisotropyisalsoaffectedbycanopy to mono-angle acquisitions (Chen & Leblanc,1997;A.H.Strahler& roughness(Strahler,2009),leafangledistribution(Roujean,2002) Fig.5.Beginning(a)andlength(b)ofdryseasonacrosstheAmazoncalculatedonperpixelbasisusingmonthlywaterdeficits.Thisapproachwasperformedforeachyearseparatelyin ordertoconsiderinter-annualvariability.Thefigureshowsmeanonsetandlengthofdryseasonforallyears. Y.M.deMouraetal./RemoteSensingofEnvironment171(2015)278–290 285 Fig.6.(a)SpatialdistributionofchangesinanisotropynormalizedbythestandarddeviationusingadryseasonperiodfromJunetoSeptember(forallyearsbetween2000and2012,ex- cept2005and2010).Thegrayregionsrepresentsnodryseasonornon-forestedareas.(b)Spatialdistributionofchangesinanisotropynormalizedbythestandarddeviationusingspecifc beginandendofdryseasonbasedonthewaterdeficitmaps.Figurescanddshowthecorrespondingchangesingreening(bluebars)andbrowning(redbars)bymonthsofdryseason (p=0.05).ThedashedlinesinFigurescanddrepresentthenetchangesinLAI(averagedacrossthebasin)modeledbythelinearrelationshipbetweenanisotropyandLAI(Fig.2a).The solidlineshowsthecorrespondingestimatesbasedonthemodelderivedfromLiDAR(Fig.2b). andfoliageclumping(Chenetal.,2005).Furthermore,theselected of Amazon forests as it increases the sensitivity of optical observa- approachofmodelingLAIfromLiDARdepends,tosomeextent,onfoot- tionstochangesacrossdensevegetationtypes.Thisshouldconsider- printsizeandpointdensity.Whilethetechniqueutilizedherehasbeen ably improve our understanding of Amazon forest seasonality and validatedelsewhere(Coopsetal.,2007,Lovelletal.,2003),differences droughttolerance. inecosystemtypesandLiDARconfigurationmayaffectLAIestimates. ThefindingspresentedinFigs.4and5suggestthatrainfallpatterns Asaresult,thefindingspresentedwithrespecttochangesinleafarea inAmazonianforestsvariedgreatly,causingdifferencesinseasonality shouldbeinterpretedwithcareandshouldbeunderstoodmoreasan acrosstheregion.Estimatesofwaterdeficit(Fig.5aandb),followeda exampleofhowanisotropymaybelinkedtostructuralvariables.Further south-westnorth-eastgradientwithupto5monthsofwaterdeficit analysiswillberequiredwithrespecttochangesinanisotropyasaresult inthesouth-westwhereaslargeareasofAmazonasstateshowed,on ofchangesincanopyroughnessorotherparameters.Nonetheless,the average,nowaterdeficitduringtheobservedyears(compareSteege linearfunctionalformsuggeststhatmulti-angleobservationsmaypro- &Pitman,2003).Previousresearchhassuggestedthatvegetationsea- videanopportunitytoaddresscurrentlimitationscausedbysaturation sonalitymayfollowthisgradientclosely,ashigherprecipitationlevels ofconventional(nadir)vegetationindices(Hueteetal.,2006;Knyazikhin supporthigherleafareasinthewetterregionswhilevegetationin etal.,1998)atleastwithintherangeofobservedLAI(≤7m2m−2). drier areas is limited by available soil water(Myneni et al., 2007). While mono-angle observations have been shown to indicate Wateravailabilitymayfurthercontributetochangesinthespatialdis- levelsof vegetation greenness, theyare less well suitedtodescribe tributionofleaves(Guanetal.,2015;Malhado&Costa,2009;Schurr thethreedimensionalstructureofforestcanopies(Chen& Leblanc, etal.,2012;terSteegeetal.,2006;Wagneretal.,2013).Also,thelength 1997; A.H. Strahler & D.L.B. Jupp, 1990). The selected approach ofdryseasonhasbeenshowntocorrelatewithabovegroundbiomass usinganisotropymayprovidenewinsightsintostructuralvariability (Saatchi,Houghton,DosSantosAlvala,Soares,&Yu,2007)andtree 286 Y.M.deMouraetal./RemoteSensingofEnvironment171(2015)278–290 Fig.7.Spatialdistributionofthestandardizedanomaliesinanisotropyfor2005(a)and2010(b),consideringspecificallybeginandendofdryseason(basedonthewaterdeficitmaps). Thegrayregionsrepresentsnodryseasonornon-forestedareas.Figurescanddshowthecorrespondinganomaliesingreening(bluebars)andbrowning(redbars)bymonthsintodry season(p=0.05).CirclesrepresentsanapproximationoftheepicentersofthedroughtsdescribedbyLewisetal.(2011).ThedashedlinesinFigurescanddrepresenttheanomaliesinLAI (averagedacrossthebasin)modeledbythelinearrelationshipbetweenanisotropyandLAI(Fig.2a).Thesolidlineshowsthecorrespondingestimatesbasedonthemodelderivedfrom LiDAR(Fig.2b). speciescomposition(terSteegeetal.,2006;Wagneretal.,2014).Esti- observationstodeterminewhetherachangeissignificantornot,but matingvegetationseasonalityfromwaterdeficitprovidedasimple didnotnormalizebythestandarddeviation.OurresultsinFig.A.1 buteffectiveapproachtocapturethisregionalvariabilityinprecipita- showedmuchincreaseseasonalitywhenusingtheRMSEoffieldand tion.Otherapproaches,forexample,basedonavailablephotosyntheti- LiDAR data (Fig. 3a and b) to determinesignificance. Also, Myneni callyactiveradiation(PAR)arepossibleandmayresultindifferent etal.(2007)calculatedseasonalityasthedifferencebetweenthemax- definitionofdryandwetseason. imum4-monthaverageLAIinthedryseasonminustheminimum Whileourfindingsareingoodagreementwithpreviousreports 4-month average LAI in the wet season for those regions with dry (Steege&Pitman,2003),itshouldbenotedthatinthenorthernpart seasonslongerthan3months.Forallotherregions,theycalculated oftheAmazon,cloudcoverisconsiderablyhigherthaninthesouth, seasonalityasthedifferencebetweenthedry-seasonaverageLAIand whichmayincreasemeasurementnoiseintheTRMMdataandcontrib- theminimum4-monthaverageLAIinthewetseason. utetolargerspatialvariationinonsetandlengthofdryseasonobserved. Theseasonalityinanisotropy(Figs.1,6)cannotbeexplainedbydi- ThefindingsprovidedinFigs.2,A.1and6suggestlargespatialand rectionaleffects,asallobservationshavebeennormalizedtoafixedfor- seasonalvariabilityofAmazonianforests.Thisresultrelateswellto wardandbackscattergeometry(Lyapustin,Wang,Laszlo,&Hilker, previousstudiesonvegetationstructureandseasonalityoftheAmazon 2012).OppositefindingsbasedonconventionalMODISdata(Morton (terSteegeetal.,2006;Villaretal.,2009)aswellasestimatesofabove- etal.,2014)willrequirefurtheranalysistobeaddressedseparately. groundcarbon(Saatchietal.,2011).Considerationofthisvariability Onepossibleexplanationmightbenoiseinthedataset(Hilkeretal., willbecriticalforinterpretingthebiophysicalresponsesofvegetation 2012)renderingresidualchangesbelowastatisticalsignificancelevel. tochangesinclimate. Changes in anisotropy (greening/browning) during the dry season TheresultspresentedinFigs.6and7confirmseasonalswingsinthe (Figs.A.1,6and7)coincidedwellwithpreviousreportsonAmazonsea- Amazon(Mynenietal.,2007).Whilethetotalareawithsignificant sonality.Theresultssupporttheviewthatphotosyntheticactivityini- change(Fig.6)isrelativelysmallcomparedtoMynenietal.(2007), tiallyincreasesduringthedryseasoninresponsetoanincreasein thesevariationscanbeexplainedbythedifferenceinmethodsapplied. incidentPAR(Brandoetal.,2010;Grahametal.,2003;Hueteetal., First,Mynenietal.(2007)usedtheRMSEoftherelationshiptofield 2006;Hutyraetal.,2007;Malhi,Aragão,Galbraith,etal.,2009,Malhi,
Description: