PUBLICATIONS Global Biogeochemical Cycles RESEARCH ARTICLE Seasonal trends of Amazonian rainforest 10.1002/2015GB005270 phenology, net primary productivity, and carbon allocation SpecialSection: GlobalLand-UseChangeand Carbon/ClimateDynamics CécileA.J.Girardin1,YadvinderMalhi1,ChristopherE.Doughty1,DanielB.Metcalfe2,PatrickMeir3,4, JhondelAguila-Pasquel5,6,AlejandroAraujo-Murakami7,AntonioC.L.daCosta8, JavierE.Silva-Espejo9,FilioFarfánAmézquita9,andLucyRowland3 KeyPoints: (cid:129) FielddataconfirmthatAmazon forestsmaximizeleafproduction 1EnvironmentalChangeInstitute,SchoolofGeographyandtheEnvironment,UniversityofOxford,Oxford,UK, duringdryseason 2DepartmentofPhysicalGeographyandEcosystemScience,LundUniversity,Lund,Sweden,3SchoolofGeosciences, (cid:129) Trade-offsincarbonallocationdeter- EdinburghUniversity,Edinburgh,UK,4ResearchSchoolofBiology,AustralianNationalUniversity,Canberra,ACT,Australia, mineseasonalityofNPPcomponents 5DepartmentofBiology,UniversidadNacionaldelaAmazoniaPeruana,Iquitos,Peru,6InstitutodeInvestigacionesdela (cid:129) Consistentreproductiveseasonality AmazoniaPeruana,Iquitos,Peru,7MuseodeHistoriaNaturalNoelKempffMercado,UniversidadAutónomaGabrielRené acrosscontrastingprecipitation regimes Moreno,SantaCruz,Bolivia,8CentrodeGeociencias,UniversidadeFederaldoPará,Belem,Brazil,9DepartmentofBiology, UniversidadNacionalSanAntonioAbaddelCusco,Cusco,Peru SupportingInformation: (cid:129) SupportingInformationS1 AbstractTheseasonalityofsolarirradianceandprecipitationmayregulateseasonalvariationsintropical forestscarboncycling.Controversyremainsovertheirimportanceasdriversofseasonaldynamicsofnet Correspondenceto: C.A.J.Girardin, primaryproductivityintropicalforests.WeusegrounddatafromninelowlandAmazonianforestplots [email protected] collectedover3yearstoquantifythemonthlyprimaryproductivity(NPP)ofleaves,reproductivematerial, woodymaterial,andfinerootsoveranannualcycle.Wedistinguishbetweenforeststhatdonotexperience Citation: substantialseasonalmoisturestress(“humidsites”)andforeststhatexperienceastrongerdryseason Girardin,C.A.J.,etal.(2016),Seasonal (“drysites”).WefindthatforestsfrombothprecipitationregimesmaximizeleafNPPoverthedrierseason, trendsofAmazonianrainforestphenology, withapeakinproductioninAugustatbothhumid(mean0.39±0.03MgCha(cid:1)1month(cid:1)1inJuly,n=4)and netprimaryproductivity,andcarbon allocation,GlobalBiogeochem.Cycles,30, drysites(mean0.49±0.03MgCha(cid:1)1month(cid:1)1inSeptember,n=8).Weidentifytwodistinctseasonal 700–715,doi:10.1002/2015GB005270. carbonallocationpatterns(theallocationofNPPtoaspecificorgansuchaswoodleavesorfineroots dividedbytotalNPP).Theforestsmonitoredinthepresentstudyshowevidenceofeither(i)constant Received1SEP2015 Accepted16APR2016 allocationtorootsandaseasonaltrade-offbetweenleafandwoodymaterialor(ii)constantallocationto Acceptedarticleonline21APR2016 woodandaseasonaltrade-offbetweenrootsandleaves.Finally,wefindstrongevidenceofsynchronized Publishedonline14MAY2016 floweringattheendofthedryseasoninbothprecipitationregimes.Flowerproductionreachesamaximum of0.047±0.013and0.031±0.004MgCha(cid:1)1month(cid:1)1inNovember,inhumidanddrysites,respectively. Fruitfallproductionwasstaggeredthroughouttheyear,probablyreflectingthehighvariationinvarying timestodevelopmentandlossoffruitamongspecies. 1. Introduction Controversy remains overthe roles of solar irradiance and precipitation as the main drivers of seasonal dynamicsofthenetprimaryproductivity(NPP)oftropicalforests.Whereasarelationshipbetweenseaso- nal peaks in precipitation and wood productivity is relatively well established for Amazonian forests [BrienenandZuidema,2005;Rowlandetal.,2014;Wagneretal.,2012;Hofhansletal.,2015],thepredomi- nant drivers of the seasonal production of leaf and reproductive organs remain unclear. Systematic ground-based monitoring of the major components of biomass productivity is needed to understand thetrendsgoverningtheirseasonality. Apparentseasonalityofleafphenologyhasbeenobservedfromopticalremotesensingdata[Hueteetal., 2006;Myrenietal.,2007;Saleskaetal.,2007;Brandoetal.,2010;Wuetal.,2016]and,toalesserextent,from ground-basedcollectionofleaflitterfromlitterfalltraps[Chaveetal.,2010].Theformerproduceddivergent resultsandhasgeneratedcontroversiesaroundthevalidityandinterpretationofseasonalvariationinremo- telysensedmetricsinmoisttropicalforests,leadingtoongoingcontroversyovertheproposedparadigmof light-limited forests responding to a surge of solar irradiance during the dry season [Morton et al., 2014]. Litterfall studies provide evidence of positive correlations between litterfall and rainfall seasonality, but it ©2016.AmericanGeophysicalUnion. AllRightsReserved. remainsunclearhowtimingofleaflitterfallisrelatedtothetimingofcanopyleafproduction. GIRARDINETAL. SEASONALTRENDSOFAMAZONIANFORESTS 700 Global Biogeochemical Cycles 10.1002/2015GB005270 MuchoftheliteratureanddebateontheseasonalityofAmazoncanopyleafproductionhasimplicitlyassumeda positiverelationshipbetweencanopy“greening”andoverallecosystemproductivity.However,aquestionthat remainsunresolvedistheextenttowhichaseasonalincreaseincanopyleafproductionreflectsanincreasein overallproductivity,oralternativelysimplyashiftincarbonallocationamongroots,wood,thecanopy,andnon- structuralcarbohydratestoragepools.ArecentstudyinBoliviahasdemonstratedthatallocationshiftsaremore importantthanoverallchangesinproductivityinexplaininginterannualvariabilityincanopy,wood,andfineroot growthrates[Doughtyetal.,2014a].Hereweinvestigatethephysicaldriversofcarbonallocationacrossawider range of Amazonian sites, test if Amazon rainforests may be separated into radiation-controlled and precipitation-controlledforests,andexploretheargumentsfromanevolutionaryperspective. Athirdsetofrelevantquestionsrevolvearoundthenatureandtimingofreproductivephenologyintropicalfor- ests, how this relates to the overall seasonality of climate and productivity, and the amount of productivity investedinreproduction.Thelinksbetweenfloweringphenology,weatherparameters(solarirradiance,rainfall, andtemperature),andanthepotentialroleofanintrinsicbiologicalclockdevelopedasanevolutionaryresponse tobioticinteractions(pollinationandseeddispersal)remaintobedeciphered[Lieberman,1982;Wrightandvan Schaik,1994;WrightandClarendon,1995;Leigh,1999;Borchertetal.,2002,2005;Calleetal.,2010;Pauetal.,2013]. All these interlinked questions can potentially be examined by a multiyear data set comprising measure- ments of all the major components of forest NPP at seasonal resolution and across contrasting sites in Amazonia.Herewepresentsuchadatasetasacontributiontothisdebate,presentingdataover3yearsfrom anetworkof1hapermanentplots:theGlobalEcosystemsMonitoringnetwork(GEM,gem.tropicalforests.ox. ac.uk).OuranalysisisfocusedonnineplotslocatedinoldgrowthintactAmazonianforests(Table1).Forest plots were categorized into two precipitation regimes: sites that did not experience a strong dry season (termed“humidsites”forthepurposeofthispaper)andthosethatexperiencedadryseasonoverseveral months(termed“drysites”). Inthisstudy,weaskthefollowingquestions: 1. Istherefield-basedevidenceofapeakinthenetprimaryproductivityofleaves(NPP )duringthedry Leaves season,assuggestedbyexistingopticalremotesensingobservations? 2. Howdoesthenetprimaryproductivityofflowers(NPP ),fruit(NPP ),abovegroundcoarsewoody Flowers Fruit material(NPP ),andfineroots(NPP )varyovertheseasonalcycleinhumidanddrysites? ACW Fineroots 3. Is there evidence of clear trade-offs in carbon allocation driving seasonal variation of woody growth, canopyproduction,andfinerootproduction?Ifso,howdothesetrendsvaryacrosssites? 2. Methods 2.1. SiteDescription OurstudyregionisacrosstheAmazonforestbiome.Nine1halong-termintensivecarbonmonitoringplots were established in lowland Amazonia as part of the Global Ecosystems Monitoring Network (GEM) of intensive plots and nested with the RAINFOR Amazon Forest Inventory network (RAINFOR) of 1ha plots. Two plots were in the Tambopata reserve, Tambopata Province, Department of Madre de Dios, Peru (RAINFOR codes TAM-05 and TAM-06); two plots in the province of Maynas, on the Allpahuayo-Mishana National Reserve (ALP-01 and ALP-30); two plots on private property at the Hacienda Kenia in Guarayos Province, Santa Cruz, Bolivia (KEN-01 and KEN-02); two plots in the Fazenda Tanguro, Mato Grosso State, Brazil (TAN-05, TAN-06);and three plots in Caxiuanã National Forest Reserve, Pará in the eastern Brazilian Amazon(CAX-03,CAX-06,andCAX-08).Severalplotshavebeenestablishedforover8years.However,we chosetoincludedatacollectedovertheperiod2009–2012forthisanalysistoensurethesamedatacollection periodbetweenplots.Allplotswereselectedinareaswithrelativelyhomogeneousstandstructure.Allhad closedcanopieswithoutanylargegaps.Forestcompositionvariedacrossthesites,bothacrosstheregion andbetweenneighboringplotsbecauseofedaphicordisturbancehistoryfactors. 2.2. SiteClassification Siteswereclassifiedintodryandhumidsites,accordingtoestimatesofmaximumclimatologicalwaterdeficit (MCWD)andfollowingtheclassificationdescribedinMalhietal.[2015].Ourclassificationdiffersfromthatof Doughtyetal.[2015]inoneway:whereasDoughtyetal.[2015]classifyKEN-01aswetforest,basedonspecies composition(AmazoniantreespeciesversusChiquitanodryforestspecies)andedaphiccharacteristics(deep GIRARDINETAL. SEASONALTRENDSOFAMAZONIANFORESTS 701 Global Biogeochemical Cycles 10.1002/2015GB005270 TAN-06TAN-05 (cid:1)(cid:1)13.076513.076552.385852.38583853856.74251770(cid:1)48210.7±0.210.8±0.2FerralsolFerralsol1471470.160.162.552.5567.1282819.4719.4745.7345.7348.948.95.375.37 vftoedsohoenfifreirAcfelseemesudrtxesie,adtnpsrzbeechotanemhanstleiiilecaanodla.fywfBlseodpcocsnlretotiymhicinmliespeag)entls,oeaddwctnrasooeynimMfncdstlpCethaahoWaseressseDicoiKftl1yni,ieomkatnnwhmsaiaitaisKseasteseipdstinrtepareiireasvetuace—xitpsnpsrputdeohblrmrynieyy-. dHumidSite CAX-08 (cid:1)1.7160(cid:1)51.457047 22.4±0.1TerraPreta37.40.060.833567.1301.3483.6910.685.64 TbccoohynneDttdeeoxxisutttgioonhffctyetaixoepsnttlouianrdlit.nyog[2ohs0nue1ma5ds]riodownuaaagnlshdvtardereilrfaeyftveisaocinttnset.soiIfmnnNaotPdhuPeer, n dIntoDrya CAX-06 (cid:1)1.7369(cid:1)51.46194475.725.82311(cid:1)20327.1±0.3Ferralsol178.50.131.6851.93522.8232.5453.7613.7 bseoatshonKeannidasphlooutsldebxepecrliaesnsicfieedantoegxettrheemr,e dry e 2.3. Weather fi e,andClassi CAX-04 (cid:1)1.7160(cid:1)51.457047 22.4±0.1eticAcrisol37.40.060.8335301.3483.6910.685.64 tpTeirmmecepipesirteaarttiuieorsenf((om°rCm)s,omrleaolra(cid:1)ti1irv)reawdhieaurnemcecidoil(tlWeycmt(e%(cid:1)d)2,)f,raonamdir m V o an Automatic Weather Stations (Campbell nForestBi KEN-02 (cid:1)16.0158(cid:1)62.7301384 16.0±0.3Cambisol244.70.17267.15460.7455.4818.2526.27 Straeclmiesonitvteiefi.cTo)huleotlscieeartsde,daatn~ad1wkmemroenfrtqohumlyaleittiaymchceoesnextprrioeelrsliemwdeetnroe- azo 5.9 gap-filled as described in da Costa et al. osstheAm KEN-01 (cid:1)16.0158(cid:1)62.7301384 23.41310(cid:1)38619.7±0.4Cambisol447.10.222.474.83275.5858.0519.1322.82 [A[22r00a11u44jo]],,-MdDueorlaukgAahgmtuyiilaee-ttPaaals.lq[.2u0[e2l104e1]t.4ba]l,. M[2a0l1h4i],etanadl. cr dBrazil,A TAM-06 (cid:1)12.8385(cid:1)69.296215 35.5±0.4Alisol528.80.171.237.43756.824652 2A.l4l.sNiteestPwriemrearymPornoitdourecdtiviatcycording to the n 8 u,Bolivia,a TAM-05 (cid:1)12.8309(cid:1)69.27052234.24.41900(cid:1)25921.8±0.2Cambisol256.30.161.5143.71344.8404417 GpthrloeobtoaficleolEdl.coMmsyeastntheuomadlss Maavroeaniliadtboelsreicnrgiobne(GdEthMine)dnweetetawbilsoitrinek er http://gem.tropicalforests.ox.ac.uk, as well as P ocatedin ALP-30 (cid:1)3.9543(cid:1)73.4267150 10.8±0.2Arenosol37.60.081.1316.4104.982216 ie[n2t0a1al.4[]s2,e0rd1iee4sl],AoDgfouusilgiathe-Pt-ysapseeqtcuaiefill.c[2ept0a1ap4leb.r]s,[2.M0da1al4h]i,Ceoatsnatdal. L ntForestPlots ALP-11 (cid:1)3.95(cid:1)73.43331205.225.22689(cid:1)626.8±0.3Alisol/Gleysol125.60.11.1992.951230.4651520 Apceatrraerabhulo.jeon2n-0Msci1vuy5erc]al.sekiTsathemfeodirepesrttochrteaiopsl.cetoi[o2lsn0imts1ee4saa]n(sdTpuarrtboehlvseeidac1eno)ddm[Mscpuolaemmlthes-i e all major components of NPP and autotrophic n a m 1) respiration(Ra)onmonthlytimescalesineach Per cm) (cid:1)kg 1haforestplot.Thepresentpaperfocuseson of11 (°C) –030 molc the NPP components of these measurements. Table1.SiteCharacteristics RAINFORSiteCode LatitudeLongitudeElevation(mabovesealevel)(cid:1)(cid:1)21yr)Solarradiation(GJmMeanannualairtemperature(cid:1)1Precipitation(mmyr)MeanMCWD(mm)Soilmoisture(%)Soiltype(cid:1)1Ptotal(mgkg)TotalN(%)TotalC(%)(cid:1)1fromSoilCstock(MgChaSoilorganiclayerdepth(cm)Cationexchangecapacity(mSand(%)Clay(%)Silt(%) sp(cmRhainCeiseartaUsenecvoirstEodgeyue)gn.prnapneEpabtcrdaieopozoacdtidelvnshecreuagunimnm.clthattiehaaptt(hialsalGoisetnnPusamgPyssres)erao,otimrgnearifeoymnestsrndoyoaootstftucatifptcesalhrsmreNebieutssaPreoenertP-nonicsc,mreptuRerueesptdacnaae,risiciofinngueepctfrrrtifiaoetehpagcmsseaiisa,nepeptntpinweriocerertnieysss-- GIRARDINETAL. SEASONALTRENDSOFAMAZONIANFORESTS 702 Global Biogeochemical Cycles 10.1002/2015GB005270 The GEM methodology has shown close agreement with independent eddy covariance data on annual timescalesforbothRaandGPP[Malhietal.,2009;Fennetal.,2014].Thefollowingparagraphsprovideabrief descriptionofthefieldmethodsusedinthepresentstudy.Webrieflydiscussthepotentialbiasesaccruedby eachmeasurement. 2.4.1. AbovegroundCoarseWoodyNetPrimaryProductivity Wedetermined plot-level NPP using multiple censuses(2009, 2010, and 2011)of theforest plots and ACW three-monthlydendrometerbandmeasurements(2009–2011).Wecompletedtreecensusestodetermine the growth rate of existing surviving trees and the rate of recruitment of new trees. Data on diameter at breastheight(dbh,usingdiametertape)andtreeheight(usingclinometerwhenpossible,oravisualesti- mate) were recorded forall trees≥10cmdbh. Aboveground coarse woody biomass was calculated using theallometricequationofChaveetal.[2005]fortropicalmoistforests,employingdataondiameter,height, andwooddensity. AGB ¼ 0:0509(cid:3)ðρ(cid:3)dbh(cid:3)HÞ (1) whereAGBisabovegroundbiomass(kg),ρisdensityofwood(gcm(cid:1)3),dbhisdiameteratbreastheight(cm), andHisheight(m).Wooddensitywasestimatedforeachspeciesfromaglobaldatabaseoftropicalforest wooddensity[Chaveetal.,2006;Zanneetal.,2009],ideallyassignedtospecies,buttogenusorfamilylevel wherespeciesidentityorspecies-levelwood-densitydatawerenotavailable.Toconvertbiomassvalues intocarbon,weassumedthatdryACWbiomassis47.3%carbon,basedonrecentstudiesinlowlandforests inPanamathatincludedvolatilecarboncompoundsnotrecordedbyconventionaldryassessment[Martin andThomas,2011].Forthefewtreeswhereheightdatawerenotavailableweestimatedheightbyemployinga plot-specificpolynomialregressionbetweendbhandheight[Feldspauchetal.,2011].AnnualNPP wascal- ACW culatedasthesumofbiomassincreaseofindividualsurvivingtreesbetweencensusintervals.Todetermine seasonalvariationinwoodygrowthrates,weinstalleddendrometerbandsin2009onapproximately200ran- domlyselectedtreesineachplot(alltreesinTAM-05andTAM-06).Thedendrometerbandsweremeasured every3monthswithcallipers.Thedendrometerdatawerescaledupto1habyusingtheannualfullcensusdata todeterminetheratioofwoodnetprimaryproductivity(NPP )ofalltreesovertheNPP ofdendrometer ACW ACW trees.ThisratioprovidedascalingfactorthatweappliedtothedendrometerdatatoestimateseasonalNPP ACW for the entire plot (i.e., to include trees that had no dendrometers), with the implicit assumption that the productivityofthedendrometertreesisrepresentativeofthewiderpopulation. Oneconcernistheeffectofseasonalchangesinhydraulics,thepossiblebiasintroducedbymoistureexpan- sion,andshrinkageofthebarkorxylemontreegrowthseasonality.Toestimatetheeffectofmoistureexpan- siononapparenttreegrowthduringthewetseason,Doughtyetal.[2015]separatedthetreeswithalmostno annual tree growth (woody NPP <1kgCha(cid:1)1yr(cid:1)1) and quantified their apparent seasonal trends in dia- meter.Fortheseslowornongrowingtrees,wefoundameanseasonalamplitudeofapparentgrowthpeak- inginAprilanddecreasinguntilOctober.Forexample,forourtwoBoliviansitesweestimatedtheseasonal effectofmoistureexpansionbetweenMarchandNovember(themaximumandminimum)tobeanapparent change of 0.08MgCha(cid:1)1month(cid:1)1 and 0.19MgCha(cid:1)1month(cid:1)1, although this may underestimate the effect,sincefastergrowingtreestendtoshrinkmoreinthedryseason,becausetheypossesslargervessels [Rowlandetal.,2014].Asthecensusintervalwassmall(1year)wedidnotapplyacorrectionfortreesthat growanddiebetweencensusintervalswithoutbeingrecorded[Malhietal.,2004].Wedidnotaccountfor thewoodproductivityoflianas,althoughtheirleafproductivityisrecordedbylitterfalltraps. 2.4.2. Litterfall Canopylitterfallwascollectedin250.25m2(50×50cm)littertrapsinstalled1mabovethegroundoneach plot.Litterfallwascollectedevery15daysoveraperiodof18or24monthsbetween2009and2011,splitinto differentcomponents(leaves,fruits,flowers,seeds,woodytissue,bromeliads,otherepiphytes—nonvascular epiphytes,mosses,andliverworts—andunidentifiedfinedebris),ovendriedat80°C,andweighed.Annual estimatesofleaflosstoherbivorywereobtainedfromscansoflitterfall,accordingtoMetcalfeetal.[2014]. Seasonalvariationoflargepalmleaflitterwasnotaccountedforinthelowlandplots,implyinganunderes- timationoflitterfallattheTAM-06siteinparticular[Malhietal.,2014]. Therearetwopotentialseasonalbiasesinlitterfall.First,decompositionoflittermayincreaseduringthewet season;thiswouldimplythatourmeasurementsunderestimatewetseasonlitterfall,althoughcollectinglit- terfallevery15daysensures minimumlossbydecomposition.Second, wedonotcorrectlitterfalldatato GIRARDINETAL. SEASONALTRENDSOFAMAZONIANFORESTS 703 Global Biogeochemical Cycles 10.1002/2015GB005270 account for seasonal leaf herbivory. On an annual time scale, Metcalfe et al. [2014] estimated an average canopy loss of 7%±0.5% in nine Andean and Amazonian plots, including Tambopata. Although we did notfindclearseasonaltrendsforherbivoryinourlowlandAmazoniansites,Lieberman[1982],Aide[1988], andGivnish[1999]estimatedthatinsectactivityincreasesinthewetseason. 2.4.3. CanopyProductivity Canopylitterfallisagoodestimatorofcanopyproductivityonannualorlargertimescales.However,itrepre- sentsthetimingofcanopybiomassloss,notbiomassgain,andhencecannotrecordseasonalvariationin canopy productivity. To overcome this issue, we combined data sets of canopy litterfall, canopy leaf area index (LAI) [da Costa et al., 2014; Doughty et al., 2014b; Malhi et al., 2014; del Aguila-Pasquel et al., 2014; Araujo-Murakamietal.,2014],andspecificleafarea(SLA)[Salinasetal.,2011]toestimatetheseasonalcycle ofcanopynetprimaryproductivity(NPP )ineachplot[DoughtyandGoulden,2008]: Canopy NPP ¼ ðΔLAI=SLAÞ þ litterfall (2) Canopy whereΔLAIisthechangeinLAIbetweenmonths(m2m(cid:1)2),SLAisthemeanspecificleafarea(m2g(cid:1)1),andlitterfall isthetotallitterfall(gm(cid:1)2).WeassumenodifferenceinSLAinbetweenmatureandsenescentleavesanddonot attempttoaccountforresorptionofcarboninsenescentleaves.Boththeseuncertaintiesarelikelytobesmall. WeestimatedLAIusingcanopyimagesrecordedwithadigitalcameraandhemisphericallensandanalyzed withCAN-EYEsoftware(http://www6.paca.inra.fr/can-eye).WeestimateSLAbytakingasubsampleoffresh leaflitterfall,scanningeachleaftodeterminefreshleafarea,andthendryingat80°Candweighingtheleaf todeterminedrymass.SLAisfreshleafareadividedbydryleafmass.Leafareawascalculatedusingimage analysissoftware,ImageJfreeware(http://rsb.info.nih.gov/ij/).NPP isestimatedingm(cid:1)2.Thismethod Canopy ispurelybasedonamassbalanceapproach.Weareprovidingestimatesofchangingstocksoflitterfallover time,withoutmakingassumptionsonleafage. 2.4.4. FineRootProductivity We collected fine roots (<5mm diameter) from 16 ingrowth cores (12cm diameter, 30cm depth) every 3monthsfromSeptember2009toMarch2011.Rootsweremanuallyremovedfromtheingrowthcoresin four10mintimesteps,andthetrendofcumulativeextractionovertimevasusedtopredictrootextraction beyond40min,asdescribedinMetcalfeetal.[2006].Root-freesoilwasthenreplacedineachingrowthcore, keepingthesamebulkdensityoftheundisturbedsoil.Collectedrootswerethoroughlyrinsed,ovendriedat 80°Ctoconstantmass,andweighed.MonthlyNPP wasestimatedfromthequantityoffinerootmass Fineroots producedinthe3monthintervalsincethelastcollection,allowingustoestimateseasonalfinerootgrowth. Whilemostecologicalstudiesdefinefinerootsas<2mm,wenotedthatafewrootsbetween2and5mm alsogrowintoouringrowthcores.Forpragmaticreasonswedidnotseparatetheseout;thesemayaccount forafewpercentofrootbiomassinouringrowthcores.Thisdefinitionoffinerootsalsomaintainsconsis- tencywithourotherrecentpapers[Doughtyetal.,2014a;Malhietal.,2015;Doughtyetal.,2015]. As in all carbon budget measurement protocols, the measurement of roots proved to be the most challenging.Wereportresultsfromingrowthcoresastheyhavepreviouslyprovidedrobustestimatesofroot productivity over seasonal and annual time scales. For example, Girardin et al. [2013] provide detailed comparisonsandshowexcellentagreementofresultsobtainedfromingrowthcoresandrhizotronsinsix GEMplotslocatedinAndeanandAmazonianforests,includingtheTambopataplotspresentedhere. 2.4.5. TotalNetPrimaryProductivity NPPcanbeestimatedasthesumofNPP ,NPP ,branchturnover(NPP ),NPP , ACW Canopy BranchTurnover Fine roots coarseroots(NPP ),andvolatileorganiccompoundproduction(NPP ). Coarseroots VOC NPP ¼NPP þNPP þNPP þNPP þNPP þNPP (3) AG ACW Canopy BranchTurnover Fineroots CoarseRoots VOC WeobtainedseasonalNPP estimatesfromthedendrometerbandgrowth,andNPP valuesthrough ACW Canopy theseasonallitterfallmeasurementscoupledwithseasonalvariationinleafareaindex.Branchturnoverand coarserootproductivityaredifficulttoestimateatseasonalresolution[daCostaetal.,2014;Doughtyetal., 2014b;Malhietal.,2014;delAguila-Pasqueletal.,2014;Araujo-Murakamietal.,2014];hence,forthepurpose of this paper, we concentrate on NPP , NPP , and NPP seasonality. Finally, we did not ACW Canopy Fine roots estimatethecontributionofvolatileorganiccarbonemissionfromvegetation,whichwasfoundtobeavery minorcontributioninlowlandtropicalforestecosystems[Malhietal.,2009]. GIRARDINETAL. SEASONALTRENDSOFAMAZONIANFORESTS 704 Global Biogeochemical Cycles 10.1002/2015GB005270 TheGEMprotocolmethodologiesareusedbymanyresearchgroupsgloballyandinnumerouspublished scientificstudies.Eachmeasurementincorporatedinthispaperispresentedindetailinaseriesoffivecom- panionpapers[daCostaetal.,2014;Doughtyetal.,2014b;Malhietal.,2014;delAguila-Pasqueletal.,2014; Araujo-Murakamietal.,2014]. OurestimatesoftotalNPPisbasedonthesummationofindependentmeasurements(litterfall,treegrowth,fine rootproduction,andbranch fall).Whilesomeofthesetermscancarrysubstantialmeasurementandscaling uncertainties,thesamplinguncertaintiesareindependentforeachmeasurement.Hence,someoftheseuncer- taintiespotentiallycanceleachotherout,reducingtheoveralluncertaintyoftheNPP,GPP,andCUEestimates obtainedusingtheGEMprotocol.Bycontrast,aneddycovariance-basedestimateofGPPisbasedonasingle typeofmeasurement(ofnetecosystemexchange);hence,anyuncertaintiesinthemethod,suchasunderesti- mationofnighttimerespirationinstableatmosphericconditions,canresultinanequivalentuncertaintyinthe finalestimateofGPP.Malhietal.[2015]andDoughtyetal.[2015]explorethemeasurementandscalinguncer- taintiesassociatedwitheachmeasurementtakenbytheGEMcarbonbudgetandarguethatacarbonsumma- tion measurement composed of multiple independent measurements may be more accurate and less error prone than an eddy covariance-based estimate composed of one type of measurement. One key difference betweenatopdown(eddycovariance)andbottomup(GEMsummationmethod)approachisthatthelatter givesanestimateonanannualandseasonalscale,whiletheformerprovideinsightatthehourly(orless)scale. TheonlyuncertaintiesweconsideredforNPPvaluesarethoseassociatedwithsampling.Wedonotattempt toestimatesystematicuncertainties,butnotethatinthecontextofthispaperthekeysystematicbiasesof concerntouswouldbethosewhichshowastrongseasonalvariation. 2.5. AnalyticalTechniques WeusedthesedatatodescribetheseasonalvariationofNPP ,NPP ,andNPP .Alluncertainty Canopy ACW Fineroots estimatesaregivenasstandarddeviation(±SD).Thepropagateduncertaintiesforeachvariabledescribedin theGEMprotocol,includingNPP,grossprimaryproductivity(GPP),andcarbonuseefficiency(CUE),arepro- videdinthefivecompanionpaperscitedabove.Inthepresentpaper,wefocusoninterannual(temporal)and interplot(i.e.,spatial)variabilityofeachNPPcomponent.Toestimateinterannualvariation,weestimatethe interannualvariationover3or(forTambopata)4yearsforeachplotandprovidetheaverageofthesevaria- tionsforallplots:thisisthetypicalinterannualvariationofahumidordryplot.Weestimateintersitevariation bycalculatingtheSDofeachNPPcomponentforaggregatedhumidordryplots.Alltemporalvariabilityis presentedasgreyribbons,andthevariabilityacrossplotsispresentedaserrorbarscenteredonthemean. Ternarydiagramswereusedtoexploretrendsinallocationofproductivityoverseasonalcyclesinhumidand dryforestsites.Weexploretheseasonalvarianceinallocationtoeachcomponentusingaternarydiagramof thevarianceofNPPallocation.Anormalizedallocationvarianceparameter,NVar(x)wascalculatedas NVarðxÞ ¼varðxÞ=ðvarðxÞ þvarðyÞ þvarðzÞÞ (4) wherevar(x)isthevarianceoftheallocationcoefficientofavariablexandyandzaretheothertwoallocationterms. Weexploredtheseasonalamplitudeofeachabioticandbioticparameters.Seasonalamplitudewasestimatedby subtractingtheminimum3monthsmovingaveragefromthemaximummovingaveragerecorded.Repeated- measuresANOVAwasusedtoassessthesignificanceofseasonalincreasesinproductivity.Allstatisticalanalyses wereperformedwiththeRversion2.9.0statisticalpackage[Chambers,2008].TheRscriptsusedtoanalyzethedata areavailableongithub.com/oxfordecosystemslab.Aswearecontinuallyimprovingthesescripts,thevalueswepre- sentmaydifferslightlybetweencompanionpapers.AllchangesinthecodesinceMay2014areavailableonline. 3. Results 3.1. SeasonalTrendsinWeather 3.1.1. SolarIrradiance Atallsites,solarirradianceincreasedtowardtheendofthedryseason,reachingapeakduringthedryto wettransitionseason,betweenAugustandOctober(Figure1a).Inmostsites,lightavailabilitywasabove 150Wm(cid:1)2 throughout the year.Allpahuayo,the cloudiestandwettestsite, in NE Amazonia, experienceda more pronounced seasonality of solar irradiance, with values only increasing above 150Wm(cid:1)2 between AugustandDecember(Figure1a). GIRARDINETAL. SEASONALTRENDSOFAMAZONIANFORESTS 705 Global Biogeochemical Cycles 10.1002/2015GB005270 Figure1.SeasonalityofweathervariablesinthreelowlandAmazonianforestssitesinPeru,Bolivia,andBrazil.Weather stationswerelocatedatTambopata(TAM-05),Kenya(KEN-01),Caxiuanã(CAX-06),Allpahuayo(ALP-01),andTanguro (TAN-05),andsolarirradiance(Wm(cid:1)2),precipitation(mmmonth(cid:1)1),airtemperature(°C),andrelativehumidity(%)are presentedonamonthlytimescale,asameanover3years(2009–2011).Thesolidlinesrepresenttheaverageofhumid sites(Caxiuanã,Tambopata,andAllpahuayo),andthedottedlinesrepresentthedrysites(KenyaandTanguro).The KEN-01weatherstationisusedinbothdryandhumidsiteanalyses,asitisthelocalweatherstationforKEN-01and KEN-02.Interannualvariabilitiesareprovidedasgreyribbon(±SD);intersitevariabilitiesarepresentedaserrorbars centeredonthemean(±SD). GIRARDINETAL. SEASONALTRENDSOFAMAZONIANFORESTS 706 Global Biogeochemical Cycles 10.1002/2015GB005270 3.1.2. Precipitation Meanmonthlyrainfalloverthestudy period showed consistent seasonal trends at all sites, peaking between DecemberandMarch.Thedryseason isdefinedastheperiodwhenpoten- tial evapotranspiration exceeds rain- fall, typically when rainfall reaches values below 100mmmonth(cid:1)1. Humidsitesdonotexperienceapro- longed or intense dry season. The monthly precipitation of Allpahuayo exceeds 100mmmonth(cid:1)1 through- out the year. Caxiuanã in NE Amazonia experiences a long but mild dry season from August to November, when precipitation averages 59mmmonth(cid:1)1. On aver- age,drysitesexperienceasignificant (t=5.73, df=4, p-value<0.0005) prolonged dry season from May to September (Figure 1b), although Caxiuanã experiences a dry season later in the year, from June to November (Figure S1 in the supportinginformation). Figure2.Seasonalityofnetprimaryproductivitycomponentsin11lowland 3.1.3. RelativeHumidity AmazonianforestplotsinPeru,Bolivia,andBrazil.Datawereaveragedover The seasonal amplitude of mean humidsites(solidline,ALP-01,ALP-30,CAX-03,CAX-06,CAX-08,TAM-05,and monthly relative humidity over the TAM-06)anddrysites(dottedline,KEN-02,KEN-01,TAN-05,andTAN-06).Net study period was strongest in primaryproductivityofleaf(NPPLeaf),abovegroundcoarsewood(NPPACW), andfineroots(NPPFineroots)ispresentedonamonthlytimescale,asamean Tanguro and Kenia in the southern over3years(2009–2011)or4years(2009–2012,Tambopata).Thestartand limit of Amazonia. All other sites endofthedryseasonarerepresentedbyverticalgreylines.Interannualvari- experienced little (Tambopata) to abilitiesareprovidedasgreyribbon(±SD);intersitevariabilitiesarepresented no (Allpahuayo, Caxiuanã) seasonal aserrorbarscenteredonthemean(±SD).Dataforeachplotareprovidedin variation in relative humidity thesupportinginformation. (Figure 1d). 3.1.4. AirTemperature Meanmonthlytemperatureoverthestudyperiodshowednoconsistentseasonaltrendsacrosstheprecipi- tationgradient(Figure1c). 3.2. SeasonalTrendsinNetPrimaryProductivity 3.2.1. CanopyProductivity Themeanannualvalueforcanopynetprimaryproductivity(NPP )is3.89±0.10MgCha(cid:1)1yr(cid:1)1(n=8)for Canopy humidsitesand4.50±0.12MgCha(cid:1)1yr(cid:1)1(n=4)fordrysites.Totallitterfallincludesallcanopycomponents,as describedabove(Figure2). ThereisaconsistentsurgeinNPP duringthedryseasoninbothprecipitationregimes.NPP Canopy Canopy reaches a maximum at the start of the dry season (May) in dry sites and at the height of the dry season(August)inhumidanddrysites.TheseasonalincreaseinNPP issignificantinbothhumid Canopy (p-value<0.005)anddry(p-value<0.0005)sites.Meanmonthlyvaluesoverthestudyperiodrangefrom 0.48±0.17MgCha(cid:1)1month(cid:1)1 to 0.20±0.07MgCha(cid:1)1month(cid:1)1 in humid sites and from 0.56 ±0.23MgCha(cid:1)1month(cid:1)1to0.22±0.05MgCha(cid:1)1month(cid:1)1indrysites(Figure3b). Canopy litterfall is produced throughout the year and increases at the onset of the dry season (August), coincidingwiththepeakinNPP .SeasonalityinLAIwasnotdetectedinthesesites(notshown).LAI Canopy GIRARDINETAL. SEASONALTRENDSOFAMAZONIANFORESTS 707 Global Biogeochemical Cycles 10.1002/2015GB005270 above or close to 5 will have some degreeofsaturationinbothLAI2000 andthephotos;thus,itispossiblethat wearenotabletodetecttheseasonal trends in LAI in the less seasonal for- ests. As canopy production, which comprisesleaf,flower,fruit,twig,and unidentified material, that is domi- natedbyleafproductivity,weassume that the seasonal trends of canopy productivity are also those of leafproductivity. 3.2.2. FlowerandFruitProductivity 3.2.2.1. Flower Annualestimatesofflowernetprimary productivity(NPP )showednosig- Flower nificant differences between humid Figure 3.Seasonality of net primary productivity of reproductive organs anddrysites(p-value>0.5).Themean in11lowlandAmazonianforestplots,Peru,Bolivia,andBrazil.Datawere annual value for NPP is 0.14 Flower averagedoverhumidsites(solidline,ALP-01,ALP-30,CAX-03,CAX-06, ±0.01MgCha(cid:1)1yr(cid:1)1(n=8)forhumid CTAANX--0085,,TaAnMd-T0A5N,a-0n6d).TNAeMt-p0r6i)maanrdydprryodsiutectsiv(ditoyttoefdflloinwee,rK(ENNP-P0F2l,oKwEeNr)-0a1n,d sites and 0.09±0.007MgCha(cid:1)1yr(cid:1)1 fruit(NPPFruit)ispresentedonamonthlytimescale,asameanover3years (n=4)fordrysites. (2009–2011)or4years(2009–2012,Tambopata).Thestartandendofthe NPP showstrongseasonalityin dryseasonarerepresentedbyverticalgreylines.Interannualvariabilities Flower areprovidedasgreyribbon(±SD);intersitevariabilitiesarepresentedas both humid and dry sites. In humid errorbarscenteredonthemean(±SD).Dataforeachplotareprovided sites, production increased from a inthesupportinginformation. negligible amount in July (middry season) to a maximum of 0.04 ±0.03MgCha(cid:1)1mo(cid:1)1inNovember(earlywetseason)anddecreasedsharplyoverthefollowingmonth. AssumingthatthepeakinflowerlitterfallcapturesasurgeinNPP overthepreviousmonth[Girardin Flower etal.,2014],thepeakinNPP (dominatedbyleafNPP)precedesthesynchronizedfloweringeventby Canopy twomonths.Indrysites,flowerswerealsoproducedinnegligibleamountsthoughttheyear,increasing significantly(p-value<0.0005)attheendofthedryseason(September).Thepeakinflowerproduction coincideswiththepeakinNPP (Figure3b). Canopy 3.2.2.2. Fruit Annualestimatesoffruitnetprimaryproductivity(NPP )showednosignificantdifferencebetweenthetwo Fruit precipitationregimes(p-value=0.20).ThemeanannualvalueforNPP is0.23±0.007MgCha(cid:1)1yr(cid:1)1(n=8) Fruit forhumidsitesand0.18±0.01MgCha(cid:1)1yr(cid:1)1(n=4)fordrysites. Wefoundastaggeredfruitingphenologyinbothforesttypes.Assumingthattheseasonalityoffruitlitterfall isagoodproxyfortheseasonalityofNPP ,weobserveabimodalpeakinfruitproductioninhumidand Fruit drysites.Valuesrangefrom0.03±0.05MgCha(cid:1)1yr(cid:1)1to0.01±0.01MgCha(cid:1)1yr(cid:1)1inhumidsitesandfrom 0.03±0.06MgCha(cid:1)1yr(cid:1)1to0.003±0.004MgCha(cid:1)1yr(cid:1)1indrysites(Figure3c).TheseasonalityofNPP Fruit wassurprisinglysmallatallsites. 3.2.3. AbovegroundCoarseWoodyNetPrimaryProductivity The mean annual value of aboveground coarse wood net primary productivity (NPP ) is 2.08 ACW ±0.04MgCha(cid:1)1yr(cid:1)1(n=8)forhumidsitesand2.40±0.09MgCha(cid:1)1yr(cid:1)1(n=4)fordrysites. TheseasonaltrendofNPP isremarkablyconsistentbetweenbothprecipitationregimes,withgreaterseasonal ACW amplitudeindrysites.Atallsites,woodproductiongraduallyincreasesfromitslowestvalueinthedryseason (June–August)toitshighestvalueinthehumidseason(December–January).Thisgradualdeclinetakesplaceover aperiodof5months.Then,NPP beginstodeclinebeforetheendofthehumidseason(March),reaching ACW values close to its lowest value as early as April. Values range from 0.23±0.03MgCha(cid:1)1yr(cid:1)1 to 0.12 ±0.04MgCha(cid:1)1yr(cid:1)1 (n=8) in humid sites and from 0.38±0.10MgCha(cid:1)1yr(cid:1)1 to 0.09±0.03MgCha(cid:1)1yr(cid:1)1 (n=4)indrysites(Figure2a). GIRARDINETAL. SEASONALTRENDSOFAMAZONIANFORESTS 708 Global Biogeochemical Cycles 10.1002/2015GB005270 3.2.4. FineRootNet PrimaryProductivity Mean annual values of fine root net primary productivity (NPP ) Fine roots differ significantly between humid and dry sites (p-value<0.0005). The mean annual value for NPP Fine roots is 3.81±0.08MgCha(cid:1)1yr(cid:1)1 (n=8) for humid sites and 2.24 ±0.04MgCha(cid:1)1yr(cid:1)1 (n=4) for drysites. NPP seasonality is remark- Fine rootss ably low at all sites. We recorded a nonsignificant increase in root pro- ductionatthestartofthewetseason in humid (p-value=0.35) and dry sites (p-value=0.15) (Figures 2 andS2). 3.3. SeasonalTrendsin NPPAllocation We explore the seasonal carbon allocation trends of each forest using ternary diagrams (Figures 4 Figure 4.Seasonality of net primary productivity allocation to canopy and 5). A ternary diagram graphi- (NPPCanopy),abovegroundcoarsewood(NPPACW),andfineroots cally depicts the ratios of the three (NPPFine roots)in11lowlandAmazonianforestplots,Peru,Bolivia,and variables as positions in an equilat- Brazil.Datawereaveragedoverhumidsites(solidline,ALP-01,ALP-30, eral triangle. In Figure 5, each of CAX-03,CAX-06,CAX-08,TAM-05,andTAM-06)anddrysites(dottedline, the three apexes of the triangle KEN-02,KEN-01,TAN-05,andTAN-06).Allocationdataarepresentedas percentageoftotalNPPallocatedtoeachcomponenteachmonth,asa represent an NPP component, and meanover3years(2009–2011)or4years(2009–2012,Tambopata). each side represents a percent Interannualvariabilitiesareprovidedasgreyribbon(±SD);intersite abundance scale. Each point variabilitiesarepresentedaserrorbarscenteredonthemean(±SD).Data plotted in the triangle represents foreachplotareprovidedinthesupportinginformation. the variance of monthly carbon allocation to NPP , NPP , ACW Canopy and NPP , as a percentage. Fine roots It shows two distinct seasonal NPP allocation patterns. Dry sites (KEN-02, KEN-01, TAN-05, and TAN-06) have low variance in NPP allocation and high variance in NPP and NPP allocation. This Root ACW Canopy may suggest a constant allocation to fine roots, while there is a allocation trade-off between wood production and canopy production. Humid sites (CAX-03, CAX-06, CAX-08, TAM-05, and TAM-06) show little variance in allocation to NPP , but high variance in allocation between NPP and ACW Fine roots NPP (Figure S4). Canopy The data used in Figure 5 are presented in the supporting information as ternary diagrams of mean monthly NPP allocation for each plot (Figure S5). We interpret seasonal movements along an axis as an indication of a trade-off between two components. In the dry sites, we observe constant allocation toroots(e.g.,~30%allocationtoNPP throughouttheyearinKEN-01andKEN-02)andaseasonal Fineroots trade-off between NPP and NPP . We find higher allocation to NPP during the wet season ACW Canopy ACW and higher allocation to NPP during the dry season. In the humid sites, we observe constant Canopy allocation to NPP and a seasonal trade-off between NPP and NPP . We find higher ACW Fine roots Canopy allocation to NPP during the wet season and higher allocation to NPP during the dry Fine roots Canopy season (Figure S5). GIRARDINETAL. SEASONALTRENDSOFAMAZONIANFORESTS 709
Description: