remote sensing Article Seasonal Change in Wetland Coherence as an Aid to Wetland Monitoring BrianBrisco1,FrankAhern2,*,KevinMurnaghan1,LoriWhite3,FrancisCanisus1 andPhilipLancaster4 1 CanadaCentreforMappingandEarthObservation,560RochesterSt.,Ottawa,ONK1A0E4,Canada; [email protected](B.B.);[email protected](K.M.);[email protected](F.C.) 2 TerreVistaEarthImaging,441CormacRoad,Cormac,ONK0J1M0,Canada 3 EnvironmentCanada,1125ColonelbyDrive,Ottawa,ONK1A0H3,Canada;[email protected] 4 LancasterGeographics,187MulberryLane,LakeClear,RR2,Eganville,ONK0J1T0,Canada; [email protected] * Correspondence:[email protected];Tel.:+1-613-754-2822 AcademicEditors:QiushengWu,CharlesLane,MelanieVanderhoof,ChunqiaoSong,DeepakR.Mishra andPrasadS.Thenkabail Received:29November2016;Accepted:9February2017;Published:15February2017 Abstract: Waterisanessentialnaturalresource,andinformationaboutsurfacewaterconditionscan supportawidevarietyofapplications,includingurbanplanning,agronomy,hydrology,electrical powergeneration,disasterrelief,ecologyandpreservationofnaturalareas. SyntheticApertureRadar (SAR)isrecognizedasanimportantsourceofdataformonitoringsurfacewater,especiallyunder inclementweatherconditions,andisusedoperationallyforfloodmappingapplications. Thecanopy penetrationcapabilityofthemicrowavesalsoallowsformappingoffloodedvegetationasaresultof enhancedbackscatterfromwhatisgenerallybelievedtobeadouble-bouncescatteringmechanism betweenthewaterandemergentvegetation. Recentinvestigationshaveshownthat,undercertain conditions,theSARresponsesignalfromfloodedvegetationmayremaincoherentduringrepeat satellite over-passes, which can be exploited for interferometric SAR (InSAR) measurements to estimatechangesinwaterlevelsandwatertopography. InSARresultsalsosuggestthatcoherence changedetection(CCD)mightbeappliedtowetlandmonitoringapplications. Thisstudyexamines wetlandvegetationcharacteristicsthatleadtocoherenceinRADARSAT-2InSARdataofanareain easternCanadawithmanysmallwetlands,anddeterminestheannualvariationinthecoherence ofthesewetlandsusingmulti-temporalradardata. Theresultsforathree-yearperioddemonstrate thatmostswampsandmarshesmaintaincoherencethroughouttheice-/snow-freetimeperiodfor the 24-day repeat cycle of RADARSAT-2. However, open water areas without emergent aquatic vegetation generally do not have suitable coherence for CCD or InSAR water level estimation. Wehavefoundthatwetlandswithtreecoverexhibitthehighestcoherenceandtheleastvariance; wetlands with herbaceous cover exhibit high coherence, but also high variability of coherence; andwetlandswithshrubcoverexhibithighcoherence,butvariabilityintermediatebetweentreed andherbaceouswetlands. Fromthisknowledge,wehavedevelopedanovelimageproductthat combinesinformationaboutthemagnitudeofcoherenceanditsvariabilitywithradarbrightness (backscatterintensity).Thisproductclearlydisplaysthemultitudeofsmallwetlandsoverawidearea. Withaninterpretationkeywehavealsodeveloped,itispossibletodistinguishdifferentwetland types and assess year-to-year changes. In the next few years, satellite SAR systems, such as the EuropeanSentinelandtheCanadianRADARSATConstellationMission(RCM),willproviderapid revisitcapabilitiesandstandarddatacollectionmodes,enhancingtheoperationalapplicationofSAR dataforassessingwetlandconditionsandmonitoringwaterlevelsusingInSARtechniques. Keywords: SAR;InSAR;coherence;hydrology;floodedvegetation;changedetection RemoteSens.2017,9,158;doi:10.3390/rs9020158 www.mdpi.com/journal/remotesensing RemoteSens.2017,9,158 2of19 1. Introduction Thereisanincreasingneedforimprovedmanagementoffreshwaterresourcesastheseresources arebecomingincreasinglystrainedandmorevaluable. Thecausesaremany: increasingpopulations, increasingagriculturalirrigationthatoftenresultsinover-useorsalinization, humanpopulations moving to sunny dry climates with limited water supplies, pollution by agriculture and industry, industrial consumption and climate change. More specifically, wetlands are the most vulnerable landscapefeaturesubjecttoclimatechange[1]. EvenCanada,acountrywithabundantwaterinmostplaces,isexperiencingwaterissues. Inthe prairies,droughtyearsstrainwaterresourcesforcities(e.g.,Regina)andruralareas(southernAlberta andSaskatchewan). Inotherareas,industrialuseofwaterisstressingresources. Anotableexample is the tar sands oil extraction, which requires large quantities of water from the Athabasca River. Inaddition,amplequantitiesofwaterareneededforhealthywetlands,andthesewetlandsarecritical forhelpingtoevenoutwaterflowsandmaintainwaterquality. Monitoring surface water can provide critical information for water resource management. Airborne and spaceborne SAR have been shown to be excellent for surface water monitoring, particularlyforopenwater[2,3].SARalsohasconsiderablepotentialtomonitorwaterundervegetation canopies,aslongastheyarenottooclosedforthemicrowaveenergytopenetrateandbereceived[4–9]. TheadventofRADARSAT-2,COSMOSSky-Med,Terra-SAR/XandtheSentinelsystems,tobe followed by the RADARSAT Constellation Mission (RCM), offers exciting possibilities for water resourceapplicationsthroughtheadvancedcapabilitiesoftheseSARsystems. Theseinclude: 1. Interferometricdatawithshorttemporalbaselinestomonitorwaterlevelfluctuationsandallow coherencechangedetection(CCD); 2. Compactpolarimetricdatatoprovideincreaseddiscriminationofwaterundervegetationand characterizationofwetlandtypes; 3. Highresolutionformonitoringsmallerwaterbodiesandwetlands;and 4. StandardmodesforconsistentdataproductsinthecaseofSentinelandRCM. Recentresearchhasdemonstratedtheuseofrepeat-passInSARtechnologytomonitorwaterlevel changesinavarietyofwetlands,includingtropicalwetlandsintheAmazon,hardwoodswampsin LouisianaandthemangrovesandsawgrassmarshesoftheEverglades[10–14]. Suitablecoherence hasbeenobservedatX-,C-andL-bandfrequencies,althoughthemaintenanceofcoherenceduring the temporal data acquisition period is critical to this methodology. We are working to extend thesetechniquestowetlandsinCanada. Wehavebeenabletoachievehighcoherenceandextract phasechangesthatareclearlyrelatedtochangesinwaterlevel[15]. However,thesmallsizeofour wetlandsandtheconsequentproblemofphase-unwrappinghavehamperedeffortstoextractaccurate water-levelchanges[16]. Thispaperreportsaninvestigationoftheinformationcontentofcoherence, aninterferometricindicatorthatisindependentofphasecalibration. Wehavefoundthatlong-term measurementofcoherenceprovidesinformationaboutthevegetationcharacteristicsofwetlandsthat isadditionaltothatprovidedbyradarbackscatteralone,andwereportthosefindingshere. 1.1. FactorsAffectingCoherence Coherenceisameasureofthestabilityofthephaserelationshipbetweenwavesinabeamof electromagnetic(EM)radiation. LetS andS representthearraysofpixelsmakinguptwocarefully 1 2 registered (sub-pixel precision) SAR images from the same sensor and nearly the same position. EachpixelofS andS isacomplexnumberthatencodesthebackscatteringcoefficientinaparticular 1 2 polarization. Theinterferogramofthetwoimagesisgivenbycorrelatingthetwoimages: I = (cid:104)S S∗(cid:105),andthecoherence,ameasureofdecorrelation,isgivenby[17,18]. 1 2 (cid:104)S S∗(cid:105) γ = (cid:113) 1 2 (1) (cid:104)|S |(cid:105)2(cid:104)|S |(cid:105)2 1 2 RemoteSens.2017,9,158 3of19 Inthisequation,thestraightbracketsindicatethemodulusofthecomplexbackscattercoefficients, andtheanglebracketsindicateanensemble-average,thatistheaverageoverawindowwithasizable numberofpixels. The phase of γ is the measure of the difference in distance to the target between the twoacquisitions,whilethemodulus,|γ|indicatesthestabilityofthephase,rangingfrom1.0when thephaseisidenticalovertheentireensemble,to0.0whenitiscompletelyrandom. Factorsthatreducecoherenceinclude[18,19]: • The“perpendicularbaseline”,whichistheoffset,inadirectionperpendiculartothelineofsight, betweenthetwoacquisitions; • Decorrelationby: Targetmotion(windandgrowth); (cid:35) Changeinthedielectricconstant,resultinginachangeinthescatteringphasecentre; (cid:35) Volumescatteringfrommultiplephasecentresthatchangefromoneimagetotheother; (cid:35) Localizedatmosphericphasedelays(usuallynotimportantatC-band); (cid:35) Misregistrationofthetwoimages(sub-pixelregistrationisessential); (cid:35) Incorrectmodeloftopography. (cid:35) AttheC-bandthecoherenceisstronglydependentonthetemporalbaselineandcanbemaintained inherbaceouswetlandsovershorttemporalbaselinesof70daysorless[20]. Inwoodywetlands,the coherenceatC-bandmaybelimitedbydensecanopies,buttendstohavealongertemporalbaselinethan forherbaceouswetlands.Polarizationplaysanimportantroleinbackscatteredpowerandinthedegree ofcoherence.ThephysicsofFresnelreflectionfromdielectricsurfaces(waterandvegetation)produces higherbackscatterinHHpolarizationthanVVpolarization,resultingingenerallyhighercoherence values obtained with RADARSAT data than ERS data [13,20]. Kim et al. [20] also found that areas dominatedbywoodyvegetationexhibithighercoherenceatC-bandthanareasdominatedbyherbaceous vegetationandmaintaincoherenceforlongertemporalbaselines.JungandAlsdorfalsoattributechanges incoherencetochangesinvegetationtype,whichinfluencesthescatteringcharacteristicsandsuggests thismaybeduetotheimpactonthedouble-bouncescatteringmechanism[21]. Conventionalthinkingsuggestsadouble-bouncereturnmaybeneededtoexplainthecoherence ofwetlandsatSARfrequencieswiththewatersurfaceprovidingasurfaceplaneandtheemergent vegetationprovidingtheverticalornear-verticalcomponentforthedouble-bouncereflection.However, recent observations of coherent backscatter from wetlands in which both the coherence and the polarimetric phase are observed indicate that the backscatter that produces high coherence must include interaction with both the vegetation and the water surface, but that the double-bounce mechanismmaynotbeasprevalentasassumed[22,23]. IndeedaspointedoutbyKasischkeetal.[9], multiplescatteringbetweenthevegetationandthewatersurfacemaystillleadtoenhancedbackscatter especiallyforemergentherbaceousvegetation. HongandWdowinski[22]showedintheEverglades that the interferometric fringe pattern in cross-polarized radiation is the same as like-polarized radiation,indicatingthataninteractionwithcanopyandthewatersurfacecanbecomedepolarized withoutexcessivelossofcoherence. Thus,itappearsthatalthoughthescatteringmechanismmayvary inwoodyversusherbaceouswetlands,theunderlyingwatersurfaceprovidesastableanduniform dielectricplanethatresultsincoherentbackscatter. Random motion of the vegetation caused by wind and growth (enlargement) and cutting (decrease) [19,24] between the two dates will decrease coherence. This factor has been shown to bemoreimportantatshorterwavelengths,becausetoachievehighcoherence,theline-of-sightmotion mustbesmallerthanone-quarterwavelength. Woodyvegetation(treesandshrubs)resistmotionby windmorethanherbaceousvegetation. InCanada,treesgenerallygrowmoreslowlythanshrubs and herbaceous plants. Changes in the dielectric constant of the vegetation or the water surface, RemoteSens.2017,9,158 4of19 Remote Sens. 2017, 9, 158 4 of 19 particularlybyfreezing,candecreasecoherence,asreportedbyRamsayetal.[25]andobservedinour 1.2. Preliminary Studies earlydataacquisitions(Section1.2). Research conducted by the Canada Centre for Remote Sensing (CCRS) using RADARSAT-2 1.2. PreliminaryStudies data acquired in 2010 showed that numerous wetlands in a test area near Ottawa, Ontario, showed high Rcoesheearrecnhceco fnord upcatretd orb ayllt hoef tChaen iacde-aoCffe snetarseofno r[1R5e].m BoatseeSde onns ianng a(CnaClyRsSi)s uosfi tnhge R2A01D0 AdRatSaA aTn-d2 fdiealtda avcisqiutsir edduirnin2g0 1t0hes h2o0w1e1d wthianttenru m(iceer-oouns) wseetalsaonnd s[i2n6]a, ttehset aCreCaRnSe atreOamtt awseale,cOtendta r3i9o ,wsheotwlaneddsh ifgohr cmoohneriteonrciengfo druprairntgo rthaell o20f1th1e icicee--ooffff sseeaassoonn. [1T5h]e.yB amseadppoenda nthaenira ldyesitsaiolefdth vee2g0e1t0atdioatna cahnadraficetledrivsitsicitss, danudri nsgevthene 2w0e1r1ew minotneirto(irceed-o fno)rs ewaastoenr [l2e6v]e,lt hfleuCctCuRatSiotenasm duserilencgt etdhe3 9icwe-eotflfa nsedassfoonr. mIno noirtdoreirn tgod ausrsiensgs tthhee 2c0a1p1aicbeil-iotfyf soefa stohnis. Tahpepyrmoaacphp efdort hweiartdere taleilveedl veesgteimtaatitoinonc haanradc tceorihsteircesn,acne dcsheavnegnew deeretemctoionnit,o rtehde fcoorhweraetnecrel eovfe wlfelutlcatnudast iionn tshdeu mriinxgedth feoricees-to rfefgsieoans oonf .OInntoarrdioe rnteoara sOsettsaswthae hcaasp baebeilnit myoefasthuirsedap apnrdo atchhe froersuwltast errelleavteelde sttoim vaetgioentaatniodnc ochhearreanccteercishtaicnsg eadnedt ercetiloanti,vteh echcoahnegreesn cien owfwateetrla nledvseilns. thTehme ilxoendgf-oterremst roebgjeiocntivoef Oofn ttahriiso rneesaerarOchtt apwroajhecats ibse eton dmeetaesrmuriende awndhetthheerre RsuCltMsr eCl-abteadndto SvAeRge tdaattioa ncachna braec tuesreisdt ictos amnodnrietolart wiveetlcahnadnsg aesndin dwetaetremrilneve eclhs.anTghees lionn wg-atetermr leovbejle.c t iveofthisresearchprojectistodetermine whethTehreR dCeMtaiCle-db aonbdjeScAtivRed oaft athciasn sbtueduys ewdatso tmo orneliatoter wtheet lcaonhdesraenndced oeft ear mnuinmebcehra nogf ewseintlawnadtse rinle vtheel. tempTehraeted etmaiilxeeddo bfojercetsitv eroegfitohnis sotfu dCyawnaadsat otrherloautegthhoeucto htheere niccee-o/sfnaownu-fmrebee rsoefaswoent latnod sini nstihtue toebmseprevraattieomnsi xeodf fovreegsettraetgioionn cohfaCraanctaedraistthicrso, ugahnodu ttoth euiscee -/thsneo wkn-forewelesedagseo ngtaoininedsi tutoo bpsreorpvaotsieo nas omfevtehgoedtoaltoiogny cthhaarta ccoteurlids tliecsa,da ntod otpoeursaetitohneakl nuosew olefd tghee gdaaitnae fdorto wpertolapnodse maomneittohroindgo.l oTghye tfhoaltlocwouinldg lseeacdtiotonso pperroavtiiodnea lmuosreeo dfethtaeild aotna ftohre wdeattlaa ncdolmleoctnioitno rainngd. Tphroecfeoslsloinwgi nmgestehcotidoonlsopgryo, vtihdee rmesoureltds eatnaidl odniscthuessdioanta, tchoel lfeucttuiorne wanodrkp troo cbees scionngdmucettehdo danodlo gimy,ptlhiceartieosnusl tfsoar nadn doipsecruastsiioonna,l tahpepfruotaucrhe two owrkatteor bleevceol nesdtuimctaetdioann adnidm wpelitclaantido nmsofonritoanrinogp eursaintigo nthalisa tpepchronaoclhogtyo. waterlevelestimationandwetland monitoringusingthistechnology. 2. Data and Methods 2. DataandMethods 2.1. Test Site Description 2.1. TestSiteDescription The test area lies mostly in the southern portion of the upper Ottawa Valley (Figure 1). The ThetestarealiesmostlyinthesouthernportionoftheupperOttawaValley(Figure1). Theupper upper Ottawa Valley is defined geologically by the Ottawa-Bonnechere graben [27]. This graben was OttawaValleyisdefinedgeologicallybytheOttawa-Bonnecheregraben[27]. Thisgrabenwasinitially initially formed during the breakup of the supercontinent Rodinia and the formation of the Iapetus formed during the breakup of the supercontinent Rodinia and the formation of the Iapetus ocean ocean about 550 million years ago, in the late Proterozoic [28]. The southwest portion of the study about550millionyearsago,inthelateProterozoic[28]. Thesouthwestportionofthestudyarealies area lies outside of the graben, on the Canadian Shield, approximately 150 m higher in elevation. outsideofthegraben,ontheCanadianShield,approximately150mhigherinelevation. Outsideof Outside of wetland areas, the surficial geology is predominantly glacial till from the quaternary, wetlandareas,thesurficialgeologyispredominantlyglacialtillfromthequaternary,withsmallareas with small areas of glacio-fluvial and ice-contact deposits. In our study wetlands, the surficial ofglacio-fluvialandice-contactdeposits. Inourstudywetlands,thesurficialgeologyhasusuallybeen geology has usually been classified as recent deposits of muck, peat and marl [29], with a few classifiedasrecentdepositsofmuck,peatandmarl[29],withafewwetlandsclassifiedasmodern wetlands classified as modern alluvium composed of clay, silt, sand, gravel and muck. The parent alluvium composed of clay, silt, sand, gravel and muck. The parent material of the soil can play material of the soil can play an important role in the species composition of a wetland. Of particular animportantroleinthespeciescompositionofawetland. Ofparticularinterestforourwetlands, interest for our wetlands, the fertility of a swamp plays an important role in determining the the fertility of a swamp plays an important role in determining the dominant species. Black ash dominant species. Black ash (Fraxinus nigra) requires high fertility; eastern white cedar (Thuja (Fraxinusnigra)requireshighfertility;easternwhitecedar(Thujaoccidentalis)canoccupysiteswith occidentalis) can occupy sites with a wide mid-range of fertility; while tamarack (Larix laricina) can awidemid-rangeoffertility;whiletamarack(Larixlaricina)canthriveinareaswithpoorfertility[30]. thrive in areas with poor fertility [30]. (a) Figure1.Cont. RemoteSens.2017,9,158 5of19 Remote Sens. 2017, 9, 158 5 of 19 (b) Figure 1. (a) Study area, outlined in yellow, at the southern edge of the upper Ottawa Valley, Figure1.(a)Studyarea,outlinedinyellow,atthesouthernedgeoftheupperOttawaValley,Ontario. Ontario. The yellow frame marks the location of the larger-scale map. (b) Enlarged view of the study Theyellowframemarksthelocationofthelarger-scalemap. (b)Enlargedviewofthestudyarea. area. Study wetlands are shown in orange, with wetlands with quantitative water level monitoring Studywetlandsareshowninorange,withwetlandswithquantitativewaterlevelmonitoringnumbered numbered in blue. inblue. 2.2. Field Data Collection 2.2. FieldDataCollection The choice of wetlands for in situ water level monitoring and vegetation characterization was Thechoiceofwetlandsforinsituwaterlevelmonitoringandvegetationcharacterizationwas made using the following criteria: madeusingthefollowingcriteria: • Relatively easy access; • Relativelyeasyaccess; • Landowner permission to install measuring stakes; • Landownerpermissiontoinstallmeasuringstakes; • High coherence exhibited in 2010 imagery. • Highcoherenceexhibitedin2010imagery. The sample consisted of 39 wetlands for which the overall classification was either swamp The sample consisted of 39 wetlands for which the overall classification was either swamp (dominated by woody vegetation) or marsh (dominated by herbaceous vegetation) according to the (dominated by woody vegetation) or marsh (dominated by herbaceous vegetation) according to Canadian Wetland Classification system [31]. However, in most cases, the wetlands were not the Canadian Wetland Classification system [31]. However, in most cases, the wetlands were not homogeneous, so we sub-divided them according to wetland type into 60 homogeneous polygons. homogeneous, so we sub-divided them according to wetland type into 60 homogeneous polygons. These consisted of 28 swamps, 25 marshes and 7 open water areas, for a total of 60 polygons. As Theseconsistedof28swamps,25marshesand7openwaterareas,foratotalof60polygons.Asseen, seen, the number of swamps and marshes is nearly equal. Open water areas were expected, and thenumberofswampsandmarshesisnearlyequal. Openwaterareaswereexpected,andsubsequently subsequently observed, to have low coherence, and a smaller number of this simple cover type was observed,tohavelowcoherence,andasmallernumberofthissimplecovertypewasdeemedacceptable. deemed acceptable. Our sample wetlands are typical of a wide area of the Ottawa Valley. If there is OursamplewetlandsaretypicalofawideareaoftheOttawaValley.Ifthereisanybiasinoursample, any bias in our sample, it will be toward larger wetlands in order to provide large homogeneous itwillbetowardlargerwetlandsinordertoprovidelargehomogeneousareasfortheradarimagery. areas for the radar imagery. Seven different wetland locations for quantitative water-level monitoring were chosen using Seven different wetland locations for quantitative water-level monitoring were chosen using visualobservationsofpermanently-installedtapemeasures. TheseareshowninFigure1b: visual observations of permanently-installed tape measures. These are shown in Figure 1b: •• LLaakkee CCleleaarrW Wesets1t, 12, a2n da3nd(1 ,32 ,(13,) :2T, h3e)s: eTwheetslea nwdsetalraenpdas rtaroef aplaarrtg eofw ae tllaanrgdec owmeptllaenxdc ocmompopsleedx ocofmmparosshe,ds wofa mmaprsahn,d swsoammepo apnedn swoamteer o.pen water. •• LLaakkee DDooyynnee DDoocckk ((44)):: tthhee wweettllaanndd iiss aa mmiixxeedd mmaarrsshh,, ddoommiinnaatteedd bbyy ccaattttaaiillss;; •• CCoorrrriiggaann wweettllaanndd ((55)):: TThhiiss iiss aa llaarrggee aarreeaa ddoommiinnaatteedd wwiitthh ddeeaadd ttrreeeess,, pprreeddoommiinnaannttllyy bbllaacckk aasshh,, aanndd ttaallll ddeeaadd sshhrruubbss,, pprreeddoommiinnaannttllyy aallddeerr ((AAllnnuuss iinnccaannaa)).. •• LLaakkee CClleeaarr OOuuttlleett ((66)):: AA ccaattttaaiill mmaarrsshh tthhaatt hhaass ggrroowwnn oonn aann aarreeaa ooff ssaanndd aanndd ssiilltt ddeeppoossiitteedd aatt tthhee oouuttlleett ooff LLaakkee CClleeaarr.. •• LLaakkee CClleeaarr EEaasstt--11 (7(7):) :ThTihs iwsewtleatnladn ids riesprreepsreensteantitvaeti vofe foofurf oLuarkeL aCkleeaCr lEeaasrt Ewaesttlawndetsl athnadts wthearet wfoeurnedf otou nhdavteo ah caovmepalceoxm shprluexb schovruebr dcuovrienrgd ouurri nwginotuerr w20i1n1t efrie2ld01 v1isfiitesl.d Wveis iintsc.luWdeedin itc lbuedceadusiet btheec auvesegetthaetivoeng eotfa ttihonesoe fwtheetsleanwdest liasn ddsififserdeinffte rfernotmf rothme thveegveetgateitoanti oonf omfmanayn yoof ftthhee ootthheerr hhiigghh--ccoohheerreennccee wweettllaannddssi nino ouurr3 93-9w-wetelatlnadnds asmamplpe.leA. nAand additdioitnioanlawl ewtleatnldan,dLa, kLeakCel eCarleWare sWt(e4s)t, i(s4)i,n ids iicnadteicdaatesdN ausm Nbuemr8beinr 8F iignu Frieg1ubre( d1ibs c(udsissceudsisnedS eicnt iSoenct3io.2n). 3.2). Evidenceofdew,rainorsnowonvegetationandtheairtemperatureandthewinddirectionwere Evidence of dew, rain or snow on vegetation and the air temperature and the wind direction observedandrecorded. Theseinsituobservationsweresupplementedwithweatherrecordsobtained were observed and recorded. These in situ observations were supplemented with weather records atthePembroke-Petawawaairport,obtainedfromEnvironmentCanada. Theinsituobservations obtained at the Pembroke-Petawawa airport, obtained from Environment Canada. The in situ weretakenatapproximatelythesametimeasthesatelliteoverpass. Inadditiontophotographing observations were taken at approximately the same time as the satellite overpass. In addition to photographing our measurement stakes to enable a careful water level reading, in most cases, the wetland area in the vicinity of the measuring stakes was also photographed. These photographs RemoteSens.2017,9,158 6of19 ourmeasurementstakestoenableacarefulwaterlevelreading,inmostcases,thewetlandareain thevicinityofthemeasuringstakeswasalsophotographed. Thesephotographsprovidearecord of changing vegetation condition and the overall wetland environment during the course of the observingperiod. 2.3. VegetationClassification To provide greater understanding about the conditions under which wetlands produce high coherence,additionalinformationaboutthewetlandswasneeded. Theclassificationschemeused includesthefollowingattributes: wetlandtype,dominantgenusorspecies,co-dominantgenusor species,vegetationstructure,canopyclosureofthedominantandco-dominantgenus/speciesand healthofthefoliageofthedominantgenus/species. Wetlandtypeisthetypeofwetlandfollowing theCanadianWetlandClassificationSystem[31]. Theclassesarebogs,fens,swamps,marshesand shallowopenwater, buttherearenobogsorfensinourstudyarea. Weincludedthisattributeas acoarsesortingcriterionandtoprovidecompatibilitywithotherwetlandstudiesinCanada. Dominantandco-dominantgeneraorspeciesarerecordedbecausetheyconstituteaprimary indicator of the type of vegetation that makes up the wetland. Although there are almost always morethantwospeciespresent,wefoundfromfieldvisitsthatthedominanttwogeneraorspecies makeup80%ormoreofthecrown-coverinmostcases. Over-storystructureclassesaretree,shrub, herbaceous,bryophyteandflat. Theseclasseshaveconsiderableredundancywiththewetlandtype, butthestructureclassesaremorerelevanttounderstandingmicrowavebackscatter. Nowetlands wherebryophytecoverpredominatedwerefound. The“flat”classappliestoopenwaterandalsoto watercoveredwithwaterlilies(Nymphaeaceaespp.) orlesserduckweed(Lemnaminor). Thecanopyclosureofthedominantandco-dominantgenusorspecieswasrecordedbecause this attribute is expected to play a role in microwave penetration. The classes low (0%–20%), open(21%–50%),closed(51%–80%)anddense(81%–100%)wereused. Thesewereocularestimates fromverticaltheDigitalRasterAcquisitionProjectfortheEast(DRAPE)imageryacquiredin2008and obliqueaerialphotographyobtainedinOctober2011. Asearlyas2010,wenotedthatmanyofthewetlandswithhighcoherenceconsistedofswamps withadeadorseverelystressedover-story. Thus,itwasimportanttorecordthecanopyhealthofthe over-storyasanattribute. Thisattributemayalsoplayaroleinthemicrowavepenetrationandon coherencebyaffectingthedisplacementbetweenradarimagepairscausedbywind-drivenmotionof branches,twigsandleaves. DigitalOntarioBaseMap(OBM)mapsinpdfformatwerepurchasedformostofthestudyarea andwerehelpfulforconfirmingthattheareasidentifiedaswetlandsfromtheRADARSAT-2imagery werealsoclassifiedaswetlandsontheOBM.DRAPEimagerycoveredapproximately54,000km2 of easternOntarioin2008and2009.TheimagesweusedforthisstudywereobtainedinMayof2008at atimewhentheshade-intoleranthardwoods(primarilyPopulusspp.)werebeginningtoleafout,butthe shade-toleranthardwoods(primarilyAcerspp.)werenotleafedout.Fourspectralbands(blue,green, redandnearIR)andonepanchromaticbandathigherresolutionwereacquiredintheDRAPEproject. Aseamlessrasterdatabaseoforthorectifiedimageryat20-cmpixelspacingwasproducedinnatural colour(red,green,blue)andmadeavailablefromtheOntarioMinistryofNaturalResourcesintheform of1km×1kmtiles.Thegeometricandradiometricqualityofthedatawasexcellent,withlittleevidence ofseamsandgooduseofthestandard8-bitdynamicrangeforeachband. Thiswasaprimarydata sourceforourwetlandclassification,supplementedbyfieldvisitstoalargefractionofthewetlands. Sincethecanopyhealthoftheover-storywasconsideredtobeanimportantattributeandsome ofourstudywetlandswerenotaccessedontheground,weacquiredobliquedigitalphotography fromahigh-winglightaircraft(Cessna150)on5October2011. ThecamerausedwasaNikonCoolPix 5700with2560pixelsinthehorizontaldirectionand1920intheverticaldirection. Thiscamerahas athrough-the-lensviewfinderanda4×opticalzoom.Allimageswereacquiredinnaturalcolour,atthe widest-anglezoom,providingafieldofviewof53degrees. Itwasabright,cloudlessday,allowing RemoteSens.2017,9,158 7of19 forfastexposuresof1/250–1/500s. Thechangingfallcoloursaidedthevegetationinterpretation. Theobliqueaerialimagerywasveryvaluableforprovidinginformationoncanopyhealth. Inaddition, theobliqueviewwassometimesveryhelpfulininterpretingthecanopystructure. Inafewcases, markedchangesincanopyhealthwerenotedbetweentheDRAPEimageryin2008andtheoblique imageryin2011. Duringthecourseof2011,21ofthe39testwetlandswerealsovisitedonthegroundwithmany digitalphotosobtainedoneachvisittohelpinthedetailedspeciesidentificationandindocumenting conditionsatthetimeofsatelliteoverpasses. The mapping was carried out using the Cartalinx system, a small GIS designed for data compilationratherthandataanalysis. Itoffersaccuratevectorprocessingofpoints,linesandpolygons. Geocodedrasterimagescanbeusedasabackdroptopermitheads-updigitizing. Vectoreditingand theadditionofattributedataareeasytodo. Firsteachofthe39wetlandswasoutlinedaspolygons. The primary data source for the wetland boundaries was an average of RADARSAT-2 spotlight modeimagesacquiredin2012(seeTable1). Thisaverageimagewassubsequentlygeocodedforthe delineationofboundaries. Theboundariesweredelineatedvisuallyusingheads-updigitizingwith thatimageasabackdrop.ThebackdropwaschangedtotheDRAPEimagerytoenablethesub-division ofthewetlandsiftherewereobviouschangesinwetlandtypewithintheboundarypolygon. Thetotal numberofpolygonsafterthissub-divisionwas60. Wethenproceededtoassigntheattributedata toeachofthe60polygons. TheDRAPEimagerywastheprimarydatasourcefortheattributedata, aidedbyoursurfaceandobliqueaerialphotography. TherelevantportionsoftheDRAPEimagery andeachobliqueaerialimagewerecontrast-enhancedformaximuminterpretabilityofthedesired information. Asnotedearlier,theobliqueaerialphotographywasparticularlyimportantforassigning theclassforfoliarvigor. Theobliqueviewalsosometimesaidedindistinguishingbetweenthetree andshrubstructureclasses. Table1.The2011–2013datesofSpotlightmodeacquisition.Dateswithbelow-freezingtemperatures areshowninbold.Datacharacteristics:polarization,HH;rangeresolution,1.6m;azimuthresolution, 0.8m;swath,18km;incidenceangle,46.6◦;frequency,5.405GHz(C-band). 2011 2012 2013 10April 27February 23May 4May 23March 16June 28May 10May 10July 21June 3June 3August 15July 27June 27August 8August 21July 20September 1September 7September 14October 25September 1October 7November 19October 25October 1December 12November 18November 25December 6December 2.4. RADARSAT-2DataandProcessing Our previous research demonstrated that C-HH Spotlight mode data were well suited for interferometry [15,32]. Table 1 shows the dates for which Spotlight mode data were acquired in 2011–2013. SpotlightmodedatawereacquiredusingbeamSLA23withanincidenceangleof46.6◦ andaspatialresolutionof1.6minrangeand0.8minazimuth. GammaRemoteSensingandin-house toolswereusedtoprocessthedata. Theprocessingcanbebrokenintotwocategories: dataprojection andinterferometry. Data are used in two projections: radar for processing and geographic for GIS ready output products. The geometric correction of the RADARSAT-2 SAR was performed using both a digital elevationmodel(DEM)andanortho-rectifiedopticalimage. CanadianDigitalElevationData1:50k (CDED, Natural Resources Canada, 2000) were used for the DEM. The vertical error is nominally 7.6 m, and the posting is 0.75”, which corresponds to 23 m N-S by about 15 m E-W at the study RemoteSens.2017,9,158 8of19 area. The ortho-rectified optical image is a GeoBase Orthoimage. They are generated from SPOT 4/5observationsfrom2005–2010,andthepanchromaticbandhasaresolutionof10m. Thefirststepofthegeocodingistocoarselyprojecttheortho-imagetotheradarcoordinatesystem usingtheDEMandradaracquisitionparameters.Theoffsetofgroundcontrolpointsbetweentheradar andortho-imagewasusedtocreateatransformationfunctiontoprovideapreciselygeocodedproduct. The transformation function is used to re-project the DEM to radar coordinates for topographic correctionandtoortho-rectifyoutputradarandInSARproductstogeographiccoordinates. Theortho-rectifiedSpotlightimageswerecomparedwiththepolygonsoutliningourtestwetlands (seeSection2.3). Thesepolygonsweredigitizedusingorthorectifiedhighresolutionairbornedigital opticalimagerywithpositionalaccuracyofapproximately1mprovidedbytheProvinceofOntario. Basedonourinspection,therewereresidualpositionalerrorsofupto30mfortheSpotlightdata. Theboundariesofthepolygonsforourtestareasweremovedtowardsthecentreby30minsome cases to ensure that all of the data were extracted from areas within the wetland as shown on the RADARSATimage. TheinterferometricprocessingoftheSpotlightmodedatawasdonewith1×4blockaveraging, giving pixels with a ground pixel spacing of approximately 1.75 m × 1.75 m. Due to temporal de-correlationofthevegetation,processingwasonlydonefor24-dayintervals,theminimumavailable with RADARSAT-2. The radar products were registered using 3rd order polynomial resampling. The phases of two passes are compared to create an interferogram, which measures the phase displacementoftargetsbetweenthetwodates.Interferogramswithtopographicandbaselinecorrections, as well as coherence products were generated and then adaptively filtered. Due to poor coherence inforestedareasbetweenwetlands,phaseunwrappingcouldnotbeperformed. Thecoherenceand differentialinterferogramarecalculatedasfloating-pointarrays.Eachoftheseisconvertedtoa256-colour imagefordisplaypurposes.Coherencehasarangeofvaluesof0.0–1.0.Tomakeanimagefordisplay, thecolourspectrumfrombluetoredcorrespondstocoherencevaluesof0–1. 3. Results BasedonthevegetationclassificationschemedescribedaboveinSection2.3, the39wetlands produced60polygonsinthedatabase. Thesesamplesweredistributedamongtheclassesasshown inTable2. Ingeneral,thesampleswerewelldistributedacrossmostoftheclasses,althoughthere isslightlylowrepresentationofthe“open”wetlandtype,the“shrub”and“flat”wetlandstructure, the“low”and“dense”canopyclosureandthe“stressed”healthclasses. Table2.Samplenumbersforthedifferenttypesofwetlandsandtheircharacteristics. WetlandCharacteristic NumberofSamples WetlandType Marsh 25 Swamp 28 Open 7 WetlandStructure Tree 22 Shrub 6 Herbaceous 25 Flat 7 CanopyClosure Low 7 Open 11 Closed 33 Dense 8 CanopyHealth Dead 22 Healthy 34 Stressed 4 RemoteSens.2017,9,158 9of19 3.1.RWemeottlea SnednsC. 2o0h17e,r 9e,n 1c58e 9 of 19 3I.1n. tWhiestlasnecdt Cioonh,erwenecep r ovidesomeanalysisanddiscussionofthecoherenceweobserved,stratified by several of the parameters derived from our vegetation classifications. First, we examine the In this section, we provide some analysis and discussion of the coherence we observed, correspondence between vegetation type and vegetation structure. Then, the coherence values stratified by several of the parameters derived from our vegetation classifications. First, we examine observed with the RADARSAT-2 data are examined with respect to vegetation structure, crown the correspondence between vegetation type and vegetation structure. Then, the coherence values closoubrseearvnedd fwoliitahr thhee aRltAhD. ACRoShAeTre-2n cdeatias caarelc uexlaamteidnebdy wcoitrhr erleastpinecgt ttho evescgeentaetisoinn sptrauicrtsursee,p carroawtend by 24dcalyoss.uTreh aendda tfeolgiaivr ehneafoltrh.t hCeochoehreenrecne cies icsatlchuelamteidd pboyi nctobrreetlwateinegn tthhee tswceoneasc qinu ipsiatiirosn sse.pTahraeteedrr obry b ars repr2e4s ednatytsh. eThstea dnadtaer dgiveerrno froor fththee comheearenn.ce is the midpoint between the two acquisitions. The error bars represent the standard error of the mean. 3.1.1. WetlandTypesandTypicalSpecies 3.1.1. Wetland Types and Typical Species In our study site sample, there were no examples of the bryophyte structural class or the bog andInfe onuwr settuladnyd sittye pseams,psloe, tthheesree wweerree noom eixttaemdpflreos mof tthhee bprlyootsphayntde satnruaclytusreasl. cTlahsse owr etthlea nbdogt ype and fen wetland types, so these were omitted from the plots and analyses. The wetland type “swamp”issub-dividedinto“tree”and“shrub”structuralclassesinthenextsection. Inourarea, “swamp” is sub-divided into “tree” and “shrub” structural classes in the next section. In our area, swampsaretypicallydominatedbyeitherconifers(easternwhitecedar,Thujaoccidentalis)withlesser swamps are typically dominated by either conifers (eastern white cedar, Thuja occidentalis) with mixturesoftamarack(LarixLaricina)ordeciduousblackash(Fraxinusnigra). Theshrubspeckledalder lesser mixtures of tamarack (Larix Laricina) or deciduous black ash (Fraxinus nigra). The shrub (Alnusincana)isoftenfoundneartheperipheryandcanbeextensiveorevendominate. speckled alder (Alnus incana) is often found near the periphery and can be extensive or even Marshes are made of mixtures of cattails (Typha spp.), grasses (Poaceae spp.) and sedges dominate. (Carex spp.), with occasional areas of bulrush (Scirpus spp.). Marshes dominated by cattails are Marshes are made of mixtures of cattails (Typha spp.), grasses (Poaceae spp.) and sedges (Carex comsmppo.n), awnidthc aoncceaxsihoinbailt alorewasc oohf ebruelnruceshi f(Sthcierpduesn sspitpy.)i. sMvaerrsyhhesig dho.mTihnearteedis boyn ceaettxaailms parlee ocofmamwoentl and typeadnda sca“nm exahrsibhi”t ,lobwu tcowhietrhenace“ sifh trhueb d”enstsriutyc itsu vraerlyc lhaisgsh.. TThheirsei iss aonsem eaxlalmaprelea oof faa wneutlannuds utyaplewd eatsl and with“mmaurschh”h, buumt awnitmh ao d“sifihrcuabti”o snt.ruTchtueradlo cmlasins.a Tnhtivs eisg ae tsamtiaolnl awreaas ohf earnb uacneuosuuasl, wbuettlathnedr weiwtha mseuncho ugh shruhbu(maladne mr)othdaiftic“asthiornu.b T”hwe adsomthienabnets tvsetgreutcattuiorna lwcalass hsetrobaacsesoiguns, fbourtc tohmerpe awriasso ennwouitghhr sahdraurbb (aacldkesrc)a tter. Thetohpaet n“swhrautebr” wweatsl athned btyespte stcrourcrteusrpaol ncldassse txoa catslsyigtno ftohre csotmrupcaturirsaolnc wlaistsh“ rflaadta”r. bHacokwsceavteter,r.i tTihsei moppeonr tant water wetland type corresponds exactly to the structural class “flat”. However, it is important to torememberthatatcertaintimesoftheyear,theopenwatercanbecoveredtovaryingextentsby remember that at certain times of the year, the open water can be covered to varying extents by waterlilies(Nymphaeaceaespp.) orduckweed(Lemnaminor). water lilies (Nymphaeaceae spp.) or duckweed (Lemna minor). Thecoherenceofthemarshandswampshowssimilarannualtrendswithlowcoherenceduring The coherence of the marsh and swamp shows similar annual trends with low coherence winterandduringthesummerdrought,butcoherencevalueswellabovethe0.4thresholdforInSAR during winter and during the summer drought, but coherence values well above the 0.4 threshold analysesduringmostoftheice-offandsnow-freeseason(Figure2). for InSAR analyses during most of the ice-off and snow-free season (Figure 2). Figure 2. Coherence as a function of time for marsh, swamp and open wetland types. Figure2.Coherenceasafunctionoftimeformarsh,swampandopenwetlandtypes. 3.1.2. Wetland Structure and Canopy Closure 3.1.2. WetlandStructureandCanopyClosure Figure 3 presents a plot of coherence versus time for each structural class. The fact that the data pFoiignutsr aer3e sperpeasreantetsd abyp lao gtroefatceorh deirsetannccee vthearsnu tsheti emrreofro braersa cinhdsictrautecst uthraatl tchlea sfos.uTr shterufcatcutrtahl acltatshseesd ata pointsareseparatedbyagreaterdistancethantheerrorbarsindicatesthatthefourstructuralclasses RemoteSens.2017,9,158 10of19 oftenReexmhotei bSeintss. 2t0a1t7i,s 9t,i 1c5a8l l y-significant differences in coherence. In particular, the “flat” cl1a0s osf 1a9l ways hasthelowestcoherence,whilethefloodedvegetationclasses(herbaceous,shrubandtree)havethe oRfetmeonte eSexnhs.i b20it1 7s, t9a, t1i5s8t i cally-significant differences in coherence. In particular, the “flat” class a1lw0 oafy 1s9 highestcoherenceduringtheice-offseasonwithvaluesmostlyabove0.4. The“tree”classexhibitsthe has the lowest coherence, while the flooded vegetation classes (herbaceous, shrub and tree) have the highestcoherenceearlyintheseason,whilethe“shrub”classconsistentlyhasthehighestcoherence hoifgtehne setx choihbeitr esntacteis dtiucarilnlyg- stihgen iifciec-aonftf dseifafseornen wceitsh i nv aclouheesr menocset.l yIn a bpoavrtei c0u.4la. rT, hthe e“ t“rfelae”t” c clalassss e axlhwibaiytss laterithnhaets h thehigeg hlroeowswt eicsnot ghcoeshreeeanrsceoen ncee.a, rwlyh iilne tthhee flsoeoadsoedn, vwegheitlaet itohne c“lasshsreusb (”h ecrlbaassc ecoounss, isshternutbl ya nhda str ethe)e hhaivgeh tehset Ichnoigh2he0re1es1nt acceno hldaet2ree0rn 1icn2e ,t hdtheue rgrirneogww tihanseg ai sceesa-liosgoffhn st. ed aispona swsiuthm vmaleuresp mroogsrtelys saebdo,vaen 0d.4t. hTehne, “thtreeec”o hclearsesn ecxehiibnictsr eased intoththeef ahIlnilg. h2e0s1t1 caonhder e2n0c1e2 , etahrelyre inw aths ea seslaisgohnt , dwiph ilaes tshuem “msherru pb”ro cglraessss ecdo,n asinsdte nthtleyn ,h aths et hceo hheirgehnecset Ticnhocehreedraeesngecdree i enlatttooe rtw hineh ftiahclhel. gC r-obwainndg smeaicsroonw. avespenetrateacanopyisafunctionofthedensity,orcrown TInh e2 0d1e1g raened t o2 0w1h2i,c hth Cer-eb awnads mai csrloigwhat vdesip p eans esturamtem ae rc apnroopgyr eisss ead f,u anncdti otnh eonf , ththee d ceonhseitrye,n ocer closure,ofthecanopy. Wenextplotcoherenceasafunctionoftimewithcrownclosureasaparameter cinrocwrenas celdo siunrtoe, tohfe tfhaell .c a nopy. We next plot coherence as a function of time with crown closure as a (Figure4). The“low”and“open”crownclosureclassesexhibitthelowestcoherencethroughoutthe paramThetee rd e(Fgirgeue rteo 4w). hTichhe C“l-obwan”d amndic r“oowpeanv”es cproewnent rcaltoes au rcea ncloapsyse sis eax hfuibnict titohne olofw theest dceonhseitryen, coer timeseries, whilethe“closed”and“dense”classesareconsistentlyhigher. Thisindicatesthatthe tchrroowung hcoloustu rthe,e otfi mthee scearnioesp,y w. Whiele n tehxet p“clolot sceodh”e raenndc e“ adse an sfeu”n cctliaosns eosf atirme ec ownistihs tcernotwlyn h cilgohseurr.e Tahs ias vegetationofourwetlandsampleisnotdenseenoughtogreatlyreducethepenetrationofmicrowaves ipnadriacmateetse rt h(aFti gtuhree v4e)g. eTthatei o“nlo owf ”o aunr dw “eotplaennd” scarmowpnle cilso snuorte dcelansssee se neoxhuigbhit ttoh eg rleoawtleys tr ecdohuecere nthcee tothepthwernoaeuttergrahtsoiouunrt foathfc eme .ticimroew saevreiess t,o w thhei lwe athteer “suclrofsaecde.” and “dense” classes are consistently higher. This indicates that the vegetation of our wetland sample is not dense enough to greatly reduce the penetration of microwaves to the water surface. Figure 3. Coherence as a function of time for four structural classes. Figure3.Coherenceasafunctionoftimeforfourstructuralclasses. Figure 3. Coherence as a function of time for four structural classes. Figure 4. Coherence as a function of time for four canopy closure classes. Figure 4. Coherence as a function of time for four canopy closure classes. Figure4.Coherenceasafunctionoftimeforfourcanopyclosureclasses.
Description: