ebook img

Searching for onset of deconfinement via hypernuclei and baryon-strangeness correlations PDF

0.07 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Searching for onset of deconfinement via hypernuclei and baryon-strangeness correlations

Searching for onset of deconfinement via hypernuclei and baryon-strangeness correlations S.Zhanga,J.H.Chenb ,H.Crawfordc,D.Keaneb,Y.G.Maa,Z.B.Xud,e ∗ aShanghaiInstituteofAppliedPhysics,CAS,Shanghai,201800,China bKentStateUniversity,Kent,Ohio,44242,USA cUniversityofCalifornia,Berkeley,California,94720,USA dBrookhavenNationalLaboratory,Upton,NewYork,11973,USA 0 eUniversityofScienceandTechnologyofChina,Hefei,Anhui,230026,China 1 0 2 n a J Abstract 6 1 WearguethattheratioS3 =3ΛH/(3He× Λp)isagoodrepresentationofthelocalcorrelationbetweenbaryonnumber andstrangeness,andthereforeisavaluabletooltoprobethenatureofthedensemattercreatedinhighenergyheavy- ] ioncollision:quarkgluonplasmaorhadrongas.Amultiphasetransportmodel(AMPT)plusadynamicalcoalescence x modelis used to elucidate our arguments. We find that AMPT with string melting predicts an increase of S with e 3 - increasingbeamenergy,andisconsistentwithexperimentaldata,whileAMPTwithonlyhadronicscatteringresults l c inalowS3throughouttheenergyrangefromAGStoRHIC,andfailstodescribetheexperimentaldata. u n Keywords: Onsetofdeconfinement,Baryon-StrangenessCorrelation,StrangenessPopulationFactor,hypernucleus [ 2 DatafromtheRelativisticHeavyIonCollider(RHIC) goodsensitivity. v 7 atBrookhavenNationalLabshowevidenceforpartonic In calculations from lattice QCD at high tempera- 5 collectivity and other likely signatures of quark gluon ture, and in models with an ideal quark gas or hadron 3 plasma(QGP)formationduringthe earlystagesofthe resonance gas, the cross correlations among the con- 3 . collisions [1, 2, 3, 4]. Nevertheless, several important servedchargesshow sensitivity to the confinedhadron 8 questionsremain unresolved, such as the beam energy phaseordeconfinedquark-gluonphase[7,8,9,10,11]. 0 wheretheQGPsignaturesfirstappear,andotherdetails Specifically, in lattice QCD [11], the ratio χBS/χB, the 9 11 2 0 ofthetransitionbetweenhadronicanddeconfinedmat- strangeness-baryoncorrelation(χBS)normalizedbythe 11 : ter. QuantumChromodynamics(QCD)predictsacriti- baryon-baryon correlation (χB), approaches unity at v 2 calpointseparatinga first-orderphase transitionand a hightemperatureinadeconfinedphase,andreaches0.4 i X smooth crossover in the phase diagram of the hot and at low temperature in a hadronic phase. The baryon- r denseQCD matter[5,6]. Itisbelievedthatlargefluc- strangenesscorrelationcoefficientC wasarguedtobe a BS tuations in phase space population or large correlation arobustobservabletocharacterizethenatureofthesys- lengthwillbeoneoftheexperimentalsignaturesofthe tem created in high energy heavy-ion collisions: ideal QCD criticalpoint. Investigationsofallofthese ques- QGPorstronglycoupledQGPorhadronicmatter[8,9]. tionsbeganattheSPSandtheupcomingBeamEnergy Although the local baryon-strangenesscorrelation is a Scan at RHIC [7] will providean opportunityto study sensitive probe of the partonic and hadronic phases as theminmoredetail. Regardlessofhowdifficultoreasy predictedbytheLatticeQCD[10],theproposedexper- itwillbetouncoverspecificexperimentalevidenceofa imental observable (C ) is based on global extensive BS criticalpoint,itisahighprioritytoidentifyandunder- quantities[8,9]. Becauseitrequiresameasurementof standalltheobservablesthatofferaprospectofdiscrim- theglobalbaryonnumberandstrangenessineachevent, inating between hadronic and deconfined matter with anexperimentalanalysisbasedonC representsacon- BS siderable technical challenge. Further detailed theo- emailaddress:[email protected](J.H.Chen) reticalinvestigationindicatedthatarecombination-like ∗ PreprintsubmittedtoPhysicsLettersB January16,2010 hadronization process and hadronic rescattering both ate [23, 24, 25, 26] and highenergies[27, 28, 29, 30]. havetheeffectofblurringthefluctuationsignal[12,13]. Inthismodel,theclustersareformedinhadronphase- On the other hand, hypernuclei are clusters of nu- space at freeze out. The probability for producing a cleons and Λ hyperons [14]. The production of hy- clusterisdeterminedbyitsWignerphase-spacedensity pernuclei happens through a coalescence mechanism without taking the binding energies into account. The by the overlapping of the wave functions of protons, multiplicityofa M-hadronclusterinaheavy-ioncolli- neutrons and hyperons at the final stage of the colli- sionisgivenby sions[15]. Thisprovidesalocalcorrelationofbaryons andstrangenessonanevent-by-eventbasis[16].Specif- N = G dr dq dr dq ically, the deuteron yield is proportionalto the baryon M Z i1 i1··· iM−1 iM−1 × odfenbsaitryyownhciloertrreiltaotnio(nt)[a1n7d, h1e8l]i.umSi(m3Hilaer)lya,rehaypmeertarsiutorne hi1>iX2>···>iMρWi (ri1,qi1···riM−1,qiM−1)i (1) productionisrelatedtotheprimordialΛ-pphasespace In Eq. 1, r , ,r and q , ,q are, respectively, correlation. The ratio S3 = 3ΛH/(3He× Λp), which we the M 1ri1el·a·t·iveiMc−1oordinait1e·s·a·ndiMm−1omentainthe M- call the Strangeness Population Factor, shows model- hadron−restframe;ρW istheWignerphase-spacedensity dependentevidenceofsensitivitytothelocalcorrelation i oftheM-hadroncluster,and denotestheeventav- strength between baryon number and strangeness, and h···i eraging. G representsthestatisticalfactorfortheclus- is demonstratedin this paper to be a promisingtoolto ter;itis1/3fort,3He[31]and3H(Λand3Hhavethe studytheonsetofdeconfinement.TheratioS isquan- Λ Λ 3 samespinastheneutronandtriton,respectively). titativelyagoodrepresentationofχBS/χB [11]sinceS 11 2 3 To determine the Wigner phase-space densities of containsthelocalstrangeness-baryoncorrelationinthe 3Heand3H,wetaketheirhadronwavefunctionstobe numeratorandthebaryon-baryoncorrelationinthede- Λ thoseofasphericalharmonicoscillator[23,24,25,26, nominator [17]. We expect a prominent enhancement 19,32], of the Strangeness Population Factor in a system that passes through a deconfined partonic state, relative to ρ2+λ2 ψ=(3/π2b4) 3/4exp , (2) what would be observed in a system that always re- − − 2b2 ! mainedinahadronicphase[8,9]. Inthis paper,a multiphasetransportmodel(AMPT) andtheWignerphase-spacedensitiesarethengivenby is used to study the effects on S of an existing par- 3 ρ2+λ2 tonicphaseandthesubsequenthadronicscattering.The ρW =82exp exp (k2+k2)b2 ,(3) AMPTmodelissuitableforsuchstudies,sinceitallows 3ΛH(3He) − b2 ! (cid:16)− ρ λ (cid:17) us to switch on and off the string melting mechanism In Eq. 2 and 3, normal Jacobian coordinates for a tosimulateapartonicphasewhenthepartondensityis three-particlesystem are introducedasin Ref. [23, 24, highatearlytimes,anditalsohasdynamictransportin 25, 26]. (ρ,λ) and (k ,k ) are the relative coordinates ρ λ the early partonic phase and hadronic scattering at the and momenta, respectively. The parameter b is deter- latestage.Thenucleiandhypernucleiarethenproduced minedtobe1.74fmfor3He[23,24,25,26,33]and5 atthefinalstateviaWignerwave-functionoverlapping fmfor3H[33]fromtheirrmsradii. Λ oftheirconstituentnucleonsandhyperon. Ifthecorre- Thecoordinateandmomentumspacedistributionsof lationpresentatthepartonicphasewerewashedoutby hadrons (proton, neutron and Λ) at freeze out are ob- thehadronicscatteringatthelaterstage,S wouldhave tainedfromAMPTmodelcalculation[34]. TheAMPT 3 been similar, regardless of whether the string melting model has a good record of agreement with data from mechanismisonoroffinAMPT.Inaddition,AMPTis RHIC [34], including pion-pair correlations [35] and alsousedtocomputeC foracomparisonwithS . flow[36].Themodelhastwomodes:thedefaultAMPT BS 3 In a thermally equilibrated system, the yields of model (version 1.11) involves purely hadronic inter- nuclear clusters via the coalescence mechanism can actions only, while the string melting AMPT (version be related to thermodynamic quantities [19, 20, 21]. 2.11) includes a fully partonic stage at the early time However, large fluctuations away from thermal equi- of the system evolution. Both modes have been used librium can result in a locally non-uniform baryon in the current analysis in order to distinguish the par- and strangeness correlation on an event-by-event ba- tonic and hadronic effect. The overlap Wigner phase- sis [16]. A dynamical coalescence model has been spacedensityofthethree-hadroncluster,3H(p,n,Λ)and Λ used extensively for describing the productionof light 3He(p,p,n),isthencalculatedasdiscussedabove,anda clusters in heavy-ioncollisions [22] at both intermedi- Monte-Carlosamplingis employedto determineif the 2 tionofStrangenessPopulationFactor(S =3H/(3He 10-2 Melting AMPT 0-80% (v 2.11) Default AMPT 0-80% (v 1.11) Λ)) incorporates the Λ/p ratio in order3to rΛemove th×e 5 GeV 5 GeV p absolute difference in Λ and p yields as a function of 17.3 GeV 17.3 GeV 10-3 200 GeV 200 GeV beamenergy. Itis interestingto notethatS increases 3 r with beam energy in a system with partonic interac- 10-4 tions (meltingAMPT) while it is almostunchangedin a purely hadronic system (default AMPT). The mea- 10-5 surement from AGS [33], in spite of large statistical 0.5 1 1.5 2 2.5 0.5 1 1.5 2 2.5 uncertainty, gives the value 1/3. The AGS mea- D |P(L ,p)| (GeV/c) surement of S = 4H/(4He∼ Λ) offers further indi- 4 Λ × p rectsupportforthelowervalueofS attheAGS[33]. 3 Figure 1: (color online) The Wigner phase-space density ρ for A preliminary 3ΛH/3He result for Au+Au collisions at 3HfrommeltingAMPT(leftpanel)anddefaultAMPT(rightpanel) 200GeVfromtheSTARcollaboration[37], incombi- Λ asafunctionof(Λ,p)pairmomentum.Densitiesareshownfor √sNN nation with the measured Λ/p ratio from the same ex- =5GeV,17.3GeVand200GeV.Thedistributionshavebeennormal- periment [38, 39, 40], allows us to infer that the mea- izedbythenumberofeventsateachcollisionenergy. sured S at RHIC is consistent with unity within er- 3 rors. Theseexperimentalresultsareconsistentwiththe clusteristoformanucleusornot.Anucleusemergesif melting AMPT calculations and are in contrast to the thecurrentsamplevalueρislessthanρW .Figure1 default AMPT calculations. The data imply that the 3H(3He) Λ local correlation strength between baryon number and depictsthe3HWignerphase-spacedensitydistribution Λ strangeness is sensitive to the effective number of de- as a function of (Λ,p) pair momentum at various col- grees of freedom of the system created at RHIC, and lision energies in the AMPT model. The coalescence thisnumberissignificantlylargerinasystemdominated probability is larger in melting AMPT than in the de- bypartonicinteractionscomparedwithapurehadronic faultAMPTmodel.Thedifferenceincreaseswithcolli- gas.ThecalculatedS frommeltinganddefaultAMPT sionenergy. 3 modesarecloseatAGSenergiesandareindistinguish- able from the current E864/AGS data. Moving to the topSPSenergyandbeyond,thecalculationusingmelt- 1.6 ingAMPT is morethana factorof two largerthan the 1.4 1) 3HL3eH · pL Melting AMPT + Coal. roenssuelttsoffrodmecdoenffianueltmAeMntPtTak.eItssphloaucledabteanostpeedcitfihactbifetahme Default AMPT + Coal. 1.2 energy,thismayresultinasharperincreaseofS3 than E864/AGS (expt. data) theAMPTpredictionwithstringmeltingscenario.Fur- o 1 2) L /p ti Melting AMPT therexperimentaleffortsareeagerlyanticipated,includ- Ra 0.8 Default AMPT ing3ΛHmeasurementsaspartoftheRHICenergyscan. Furthermore,we investigatethe connectionbetween 0.6 our proposed observable S and the original baryon- 3 0.4 strangenesscorrelationcoefficientCBS[8]: L4H BS B S 0.2 4He · pL CBS =−3h S2i−h Sih2i, (4) 0 h i−h i 1 10 102 where B and S are the global baryon number and strangenessinagivenrapiditywindowinagivenevent. s (GeV) NN As pointed out in Ref. [12], a suitable rapidity win- dow is important to retain the fluctuation signal. We Figure2:(coloronline)TheS3ratioasafunctionofbeamenergyin choose the rapiditywindow of 0.5 < y < 0.5 for the minimum-biasAu+Aucollisions fromdefaultAMPT(opencircles) − presentanalysis. Figure3showstheC inminimum- andmeltingAMPT(opensquares)pluscoalescence modelcalcula- BS tions. Theavailable data from AGS [33]are plotted forreference. bias Au+Au collisions as a function of center-of-mass TheΛ/pratiosfromthemodelarealsoplotted. energyfromtheAMPTmodel. FromtopSPStoRHIC energy, theC lies between 0.2 and 0.4, and is lower BS Figure 2 shows the S results for minimum-bias than the expected value of unity for an ideal QGP or 3 Au+Aucollisionsatvariousbeamenergies.Thedefini- 2 for a hadron gas [8]. In addition, we find that the 3 3 1.8 ment of Energy under Grants DE-AC02-98CH10886 1.6 1) 3HL3eH · L Melting AMPT + Coal. and DE-FG02-89ER40531, and in part by the NNSF p of China under Grants 10610285, 10610286 and Chi- Default AMPT + Coal. 1.4 2) C nese Academy of Science under Grants KJCX2-YW- BS Melting AMPT 1.2 A14 and KJCX3-SYW-N2. Z. B. Xu is supported in o Default AMPT partbythePECASEAward. ti 1 a R 0.8 References 0.6 [1] I.Arsene,etal.,Nucl.Phys.A757(2005)1. 0.4 [2] B.B.Back,etal.,Nucl.Phys.A757(2005)28. [3] J.Adams,etal.,Nucl.Phys.A757(2005)102. 0.2 [4] K.Adcox,etal.,Nucl.Phys.A757(2005)184. 0 [5] Y.Aoki,G.Endrodi,Z.Fodor,S.D.Katz,K.K.Szabo,Nature 10 102 443(2006)675,andreferencestherein. [6] F.Karsch,Prog.Theor.Phys.Suppl.168(2007)237. s (GeV) NN [7] B. I. Abelev, et al. STAR Note SN0493: http://drupal.star.bnl.gov/STAR/starnotes/public/sn0493. [8] V.Koch,A.Majumder,J.Randrup,Phys.Rev.Lett.95(2005) Figure 3: (color online) The comparison between S3 and CBS in 182301. minimum-biasAu+Aucollisionsatvariousbeamenergies. [9] A.Majumder,B.Muller,Phys.Rev.C74(2006)054901. [10] R.V.Gavai,S.Gupta,Phys.Rev.D73(2006)014004. [11] M.Cheng,etal.,Phys.Rev.D79(2009)074505. [12] S.Haussler,S.Scherer,M.Bleicher,Phys.Letts.B660(2008) C valuesfrommeltingAMPTanddefaultAMPTare BS 197. comparable over a wide energy range. As discussed [13] F.Jin,etal.,J.Phys.G35(2008)044070. inRef. [12], the recombination-likehadronizationpro- [14] M.Danysz,J.Pniewski,Phil.Mag.44(1953)348. cessitselfcouldberesponsibleforthedisappearanceof [15] H.H.Gutbrod,etal.,Phys.Rev.Lett.37(1976)667. [16] J.Steinheimer,etal.,Phys.Lett.B676(2009)126. thepredictedC deconfinementsignal. Detailedstudy BS [17] H.Sato,K.Yazaki,Phys.Lett.98B(1981)153. indicates that the hadronic rescattering process further [18] F.Wang,N.Xu,Phys.Rev.C61(2000)021904. blursthesignal[13].TheC increaseswithanincrease [19] R.Scheibl,U.Heinz,Phys.Rev.C59(1999)1585. BS [20] P. Braun-Munzinger, K. Redlich, J. Stachel In Quark Gluon of the baryon chemical potential µ [8] at decreasing B Plasma3, edited byR.C.HwaandX.N.Wang(WorldScien- beam energy. The Strangeness Population Factor S , 3 tific,Singapore,2004),p.491[arXiv:nucl-th/0304013]. ontheotherhand,increaseswithbeamenergyinasys- [21] H.Liu,Z.Xu[arXiv:nucl-ex/0610035]. teminvolvingpartonicinteractions,asshowninFig.3. [22] L. P. Csernai, J. I. Kapusta, Phys. Rep. 131 (1986) 223, and referencestherein. It carries the potential to reliably resolve the number [23] M. Gyulassy, K. Frankel, E. A. Relmer, Nucl. Phys. A 402 of degrees of freedom of the system created in heavy- (1983)596. ion collisions. This suggests that the global baryon- [24] J. Aichelin, A. Rosenhauer, G. Peilert, H. Sto¨cker and W. strangeness correlation coefficient (C ) is less sensi- Greiner,Phys.Rev.Lett.58(1987)1926. BS [25] V.Koch,etal.,Phys.Lett.B241(1990)174. tivetothelocalbaryon-strangenesscorrelationthanthe [26] L.W.Chen,C.M.Ko,B.A.Li,Phys.Rev.C68(2003)017601. StrangenessPopulationFactor (S3) fromhypernucleus [27] J.L.Nagle,Phys.Rev.C53(1996)367. production. Future precise measurements in compari- [28] R.Mattiello,etal.,Phys.Rev.C55(1997)1443. son with our calculations will provide further insight [29] L.W.Chen,C.M.Ko,Phys.Rev.C73(2006)044903. [30] Y.Oh,C.M.Ko,Phys.Rev.C76(2007)054910. into these physics questions that are of central impor- [31] A.Polleri,etal.,Nucl.Phys.A661(1999)452c. tancetorelativisticheavy-ionphysics. [32] A.T.M.Aerts,C.B.Dover,Phys.Rev.D28(1983)450. In summary, we demonstrate that measurements of [33] T.A.Armstrong,etal.,Phys.Rev.C70(2004)024902. [34] Z.W.Lin,C.M.Ko,B.A.Li,B.Zhang,S.Pal,Phys.Rev.C72 Strangeness Population Factor S are especially sen- 3 (2005)064901,andreferencestherein. sitive to the local correlation strength between baryon [35] Z.W.Lin,C.M.Ko,S.Pal,Phys.Rev.Lett.89(2002)152301. numberand strangeness, and can serve as a viable ex- [36] B.I.Abelev,etal.,Phys.Rev.Lett.101(2008)252301. perimentalsignal to search for the onset of deconfine- [37] J. H. Chen for the STAR Collaboration,, Nucl. Phys. A 830 (2009)761c–764c. mentintheforthcomingRHICBeamEnergyScan. [38] B.I.Abelev,etal.,Phys.Rev.Lett.97(2006)152301. WearegratefulfordiscussionswithProf. H.Huang, [39] J.Adams,etal.,Phys.Rev.Lett.98(2007)062301. Prof. C. M. Ko, Prof. B. Muller, Dr. V. Koch, [40] B.I.Abelev,etal.,Phys.Rev.C79(2009)034909. Dr. Z.B. Tang and H. Qiu. This work is supported in part by the Office of Nuclear Physics, US Depart- 4

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.