ebook img

Search for Transient Astrophysical Neutrino Emission with IceCube-DeepCore PDF

32 Pages·2015·0.83 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Search for Transient Astrophysical Neutrino Emission with IceCube-DeepCore

Search for Transient Astrophysical Neutrino Emission with IceCube-DeepCore IceCube Collaboration: M. G. Aartsen1, K. Abraham2, M. Ackermann3, J. Adams4, J. A. Aguilar5, M. Ahlers6, M. Ahrens7, D. Altmann8, T. Anderson9, I. Ansseau5, 5 1 M. Archinger10, C. Arguelles6, T. C. Arlen9, J. Auffenberg11, X. Bai12, S. W. Barwick13, 0 2 V. Baum10, R. Bay14, J. J. Beatty15,16, J. Becker Tjus17, K.-H. Becker18, E. Beiser6, c e D S. BenZvi6, P. Berghaus3, D. Berley19, E. Bernardini3, A. Bernhard2, D. Z. Besson20, 4 G. Binder21,14, D. Bindig18, M. Bissok11, E. Blaufuss19, J. Blumenthal11, D. J. Boersma22, ] E C. Bohm7, M. Bo¨rner23, F. Bos17, D. Bose24, S. Bo¨ser10, O. Botner22, J. Braun6, H L. Brayeur25, H.-P. Bretz3, N. Buzinsky26, J. Casey27, M. Casier25, E. Cheung19, . h p D. Chirkin6, A. Christov28, K. Clark29, L. Classen8, S. Coenders2, D. F. Cowen9,30, - o r A. H. Cruz Silva3, J. Daughhetee27, J. C. Davis15, M. Day6, J. P. A. M. de Andr´e31, t s a C. De Clercq25, E. del Pino Rosendo10, H. Dembinski32, S. De Ridder33, P. Desiati6, [ 2 K. D. de Vries25, G. de Wasseige25, M. de With34, T. DeYoung31, J. C. D´ıaz-V´elez6, v 9 V. di Lorenzo10, J. P. Dumm7, M. Dunkman9, R. Eagan9, B. Eberhardt10, T. Ehrhardt10, 2 0 5 B. Eichmann17, S. Euler22, P. A. Evenson32, O. Fadiran6, S. Fahey6, A. R. Fazely35, 0 . A. Fedynitch17, J. Feintzeig6, J. Felde19, K. Filimonov14, C. Finley7, T. Fischer-Wasels18, 9 0 5 S. Flis7, C.-C. Fo¨sig10, T. Fuchs23, T. K. Gaisser32, R. Gaior36, J. Gallagher37, 1 : L. Gerhardt21,14, K. Ghorbani6, D. Gier11, L. Gladstone6, M. Glagla11, T. Glu¨senkamp3, v i X A. Goldschmidt21, G. Golup25, J. G. Gonzalez32, D. Go´ra3, D. Grant26, J. C. Groh9, r a A. Groß2, C. Ha21,14, C. Haack11, A. Haj Ismail33, A. Hallgren22, F. Halzen6, E. Hansen38, B. Hansmann11, K. Hanson6, D. Hebecker34, D. Heereman5, K. Helbing18, R. Hellauer19, S. Hickford18, J. Hignight31, G. C. Hill1, K. D. Hoffman19, R. Hoffmann18, K. Holzapfel2, A. Homeier39, K. Hoshina6,49, F. Huang9, M. Huber2, W. Huelsnitz19, P. O. Hulth7, K. Hultqvist7, S. In24, A. Ishihara36, E. Jacobi3, G. S. Japaridze40, K. Jero6, M. Jurkovic2, A. Kappes8, T. Karg3, A. Karle6, M. Kauer6,41, A. Keivani9, J. L. Kelley6, J. Kemp11, – 2 – A. Kheirandish6, J. Kiryluk42, J. Kla¨s18, S. R. Klein21,14, G. Kohnen43, R. Koirala32, H. Kolanoski34, R. Konietz11, L. Ko¨pke10, C. Kopper26, S. Kopper18, D. J. Koskinen38, M. Kowalski34,3, K. Krings2, G. Kroll10, M. Kroll17, J. Kunnen25, N. Kurahashi44, T. Kuwabara36, M. Labare33, J. L. Lanfranchi9, M. J. Larson38, M. Lesiak-Bzdak42, M. Leuermann11, J. Leuner11, L. Lu36, J. Lu¨nemann25, J. Madsen45, G. Maggi25, K. B. M. Mahn31, R. Maruyama41, K. Mase36, H. S. Matis21, R. Maunu19, F. McNally6, K. Meagher5, M. Medici38, A. Meli33, T. Menne23, G. Merino6, T. Meures5, S. Miarecki21,14, E. Middell3, E. Middlemas6, L. Mohrmann3, T. Montaruli28, R. Morse6, R. Nahnhauer3, U. Naumann18, G. Neer31, H. Niederhausen42, S. C. Nowicki26, D. R. Nygren21, A. Obertacke18, A. Olivas19, A. Omairat18, A. O’Murchadha5, T. Palczewski46, H. Pandya32, D. V. Pankova9, L. Paul11, J. A. Pepper46, C. P´erez de los Heros22, C. Pfendner15, D. Pieloth23, E. Pinat5, J. Posselt18, P. B. Price14, G. T. Przybylski21, J. Pu¨tz11, M. Quinnan9, C. Raab5, L. Ra¨del11, M. Rameez28, K. Rawlins47, R. Reimann11, M. Relich36, E. Resconi2, W. Rhode23, M. Richman44, S. Richter6, B. Riedel26, S. Robertson1, M. Rongen11, C. Rott24, T. Ruhe23, D. Ryckbosch33, S. M. Saba17, L. Sabbatini6, H.-G. Sander10, A. Sandrock23, J. Sandroos10, S. Sarkar38,48, K. Schatto10, F. Scheriau23, M. Schimp11, T. Schmidt19, M. Schmitz23, S. Schoenen11, S. Sch¨oneberg17, A. Sch¨onwald3, L. Schulte39, D. Seckel32, S. Seunarine45, M. W. E. Smith9, D. Soldin18, M. Song19, G. M. Spiczak45, C. Spiering3, M. Stahlberg11, M. Stamatikos15,50, T. Stanev32, N. A. Stanisha9, A. Stasik3, T. Stezelberger21, R. G. Stokstad21, A. Sto¨ßl3, R. Stro¨m22, N. L. Strotjohann3, G. W. Sullivan19, M. Sutherland15, H. Taavola22, I. Taboada27, J. Tatar21,14, S. Ter-Antonyan35, A. Terliuk3, G. Teˇsi´c9, S. Tilav32, P. A. Toale46, M. N. Tobin6, S. Toscano25, D. Tosi6, M. Tselengidou8, A. Turcati2, E. Unger22, M. Usner3, S. Vallecorsa28, J. Vandenbroucke6, N. van Eijndhoven25, S. Vanheule33, J. van Santen3, J. Veenkamp2, M. Vehring11, M. Voge39, M. Vraeghe33, C. Walck7, A. Wallace1, M. Wallraff11, N. Wandkowsky6, Ch. Weaver26, C. Wendt6, S. Westerhoff6, B. J. Whelan1, – 3 – N. Whitehorn6, K. Wiebe10, C. H. Wiebusch11, L. Wille6, D. R. Williams46, H. Wissing19, M. Wolf7, T. R. Wood26, K. Woschnagg14, D. L. Xu46, X. W. Xu35, Y. Xu42, J. P. Yanez3, G. Yodh13, S. Yoshida36, and M. Zoll7 – 4 – 1Department of Physics, University of Adelaide, Adelaide, 5005, Australia 2Technische Universita¨t Mu¨nchen, D-85748 Garching, Germany 3DESY, D-15735 Zeuthen, Germany 4Dept. of Physics and Astronomy, University of Canterbury, Private Bag 4800, Christchurch, New Zealand 5Universit´e Libre de Bruxelles, Science Faculty CP230, B-1050 Brussels, Belgium 6Dept. of Physics and Wisconsin IceCube Particle Astrophysics Center, University of Wisconsin, Madison, WI 53706, USA 7Oskar Klein Centre and Dept. of Physics, Stockholm University, SE-10691 Stockholm, Sweden 8Erlangen Centre for Astroparticle Physics, Friedrich-Alexander-Universita¨t Erlangen- Nu¨rnberg, D-91058 Erlangen, Germany 9Dept. of Physics, Pennsylvania State University, University Park, PA 16802, USA 10Institute of Physics, University of Mainz, Staudinger Weg 7, D-55099 Mainz, Germany 11III. Physikalisches Institut, RWTH Aachen University, D-52056 Aachen, Germany 12Physics Department, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA 13Dept. of Physics and Astronomy, University of California, Irvine, CA 92697, USA 14Dept. of Physics, University of California, Berkeley, CA 94720, USA 15Dept. of Physics and Center for Cosmology and Astro-Particle Physics, Ohio State Uni- versity, Columbus, OH 43210, USA 16Dept. of Astronomy, Ohio State University, Columbus, OH 43210, USA 17Fakult¨at fu¨r Physik & Astronomie, Ruhr-Universita¨t Bochum, D-44780 Bochum, Ger- many 18Dept. of Physics, University of Wuppertal, D-42119 Wuppertal, Germany 19Dept. of Physics, University of Maryland, College Park, MD 20742, USA – 5 – 20Dept. of Physics and Astronomy, University of Kansas, Lawrence, KS 66045, USA 21Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA 22Dept. of Physics and Astronomy, Uppsala University, Box 516, S-75120 Uppsala, Sweden 23Dept. of Physics, TU Dortmund University, D-44221 Dortmund, Germany 24Dept. of Physics, Sungkyunkwan University, Suwon 440-746, Korea 25Vrije Universiteit Brussel, Dienst ELEM, B-1050 Brussels, Belgium 26Dept. of Physics, University of Alberta, Edmonton, Alberta, Canada T6G 2E1 27School of Physics and Center for Relativistic Astrophysics, Georgia Institute of Tech- nology, Atlanta, GA 30332, USA 28D´epartement de physique nucl´eaire et corpusculaire, Universit´e de Gen`eve, CH-1211 Gen`eve, Switzerland 29Dept. of Physics, University of Toronto, Toronto, Ontario, Canada, M5S 1A7 30Dept. of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802, USA 31Dept. of Physics and Astronomy, Michigan State University, East Lansing, MI 48824, USA 32Bartol Research Institute and Dept. of Physics and Astronomy, University of Delaware, Newark, DE 19716, USA 33Dept. of Physics and Astronomy, University of Gent, B-9000 Gent, Belgium 34Institut fu¨r Physik, Humboldt-Universita¨t zu Berlin, D-12489 Berlin, Germany 35Dept. of Physics, Southern University, Baton Rouge, LA 70813, USA 36Dept. of Physics, Chiba University, Chiba 263-8522, Japan 37Dept. of Astronomy, University of Wisconsin, Madison, WI 53706, USA 38Niels Bohr Institute, University of Copenhagen, DK-2100 Copenhagen, Denmark 39Physikalisches Institut, Universit¨at Bonn, Nussallee 12, D-53115 Bonn, Germany 40CTSPS, Clark-Atlanta University, Atlanta, GA 30314, USA – 6 – Received ; accepted 41Dept. of Physics, Yale University, New Haven, CT 06520, USA 42Dept. of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794-3800, USA 43Universit´e de Mons, 7000 Mons, Belgium 44Dept. of Physics, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104, USA 45Dept. of Physics, University of Wisconsin, River Falls, WI 54022, USA 46Dept. of Physics and Astronomy, University of Alabama, Tuscaloosa, AL 35487, USA 47Dept. of Physics and Astronomy, University of Alaska Anchorage, 3211 Providence Dr., Anchorage, AK 99508, USA 48Dept. of Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP, UK 49Earthquake Research Institute, University of Tokyo, Bunkyo, Tokyo 113-0032, Japan 50NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA – 7 – ABSTRACT We present the results of a search for astrophysical sources of brief transient neutrino emission using IceCube and DeepCore data acquired between May 15th 2012 and April 30th 2013. While the search methods employed in this analysis are similar to those used in previous IceCube point source searches, the data set being examined consists of a sample of predominantly sub-TeV muon neu- trinos from the Northern Sky (-5◦ < δ < 90◦) obtained through a novel event selection method. This search represents a first attempt by IceCube to identify astrophysical neutrino sources in this relatively unexplored energy range. The reconstructed direction and time of arrival of neutrino events is used to search for any significant self-correlation in the dataset. The data revealed no significant source of transient neutrino emission. This result has been used to construct limits at timescales ranging from roughly 1s to 10 days for generic soft-spectra transients. We also present limits on a specific model of neutrino emission from soft jets in core-collapse supernovae. Subject headings: neutrino astronomy, neutrinos, GRB, supernova, astroparticle physics – 8 – 1. Introduction The nascent field of high-energy neutrino astronomy opens the possibility of answering several open questions in astrophysics due in large part to the neutrino’s ability to escape the densest regions of astrophysical environments. Specifically, the detection of transient astrophysical neutrino sources will help shed light on the acceleration mechanisms at work in some of the most energetic phenomena in the Universe such as gamma-ray bursts, supernovae, and active galactic nuclei. Previous attempts to detect such sources with the IceCube Neutrino Observatory (Achterberg et al. 2006) are most sensitive to neutrino fluxes above 1 TeV with poor sensitivity below 100 GeV. Searches for astrophysical sources at lower energies (1–100 GeV) have been performed by Super-Kamiokande (Thrane et al. 2009), however the detector’s 50 kton instrumented volume limits its sensitivity to astrophysical neutrino fluxes. A newly developed 30–300 GeV muon neutrino sample collected by IceCube and its low energy extension DeepCore (Abbasi et al. 2012b) enhances IceCube’s sensitivity in this under-explored energy range. In this paper we will present the results of a search for transient neutrino emission in this GeV-scale neutrino sample. The detection of astrophysical neutrino sources is a primary design goal of the IceCube Neutrino Observatory (Achterberg et al. 2006). Located at the geographic South Pole, IceCube utilizes the clear Antarctic glacial ice ice cap as a detection medium for the Cherenkov light produced by secondary products of neutrino interactions. The detector consists of 5,160 Digital Optical Modules (DOMs) distributed among 86 cables or “strings” to form a 1 km3 instrumented volume. These DOMs house photomultiplier tubes (PMTs), to detect Cherenkov photons, as well as digitizing electronics for initial processing of the PMT data (Abbasi et al. 2009). A centrally located region of denser instrumentation featuring DOMs with more sensitive PMTs comprises the DeepCore sub-array. This extension to the IceCube array enhances the detector’s response to lower energy neutrino – 9 – events. Typical searches for astrophysical sources with IceCube make use of a sample primarily comprised of an irreducible background of high-energy atmospheric muon neutrinos (E (cid:38) 1 ν TeV) to look for both steady (Aartsen et al. 2014b) and transient sources (Aartsen et al. 2015). As of yet, these searches have not found any significant self-correlations within the data sample nor correlations between the neutrino data and known astrophysical objects of interest. So far, these analyses have largely eschewed low energy neutrino events collected by DeepCore for two reasons. First, the poorer angular resolution of these events renders them less suitable for pointing analyses. Second, the soft spectrum of the atmospheric neutrino flux results in higher rate of background neutrino events. However, the increased background can be somewhat mitigated by searching solely for transient sources. Therefore, applying previously developed search techniques (Braun et al. 2010) to a sample of low energy (30 GeV E < 300 GeV) muon neutrino events from DeepCore can enhance ν ≤ IceCube’s sensitivity to short transient neutrino sources with softer spectra. Due to the large atmospheric neutrino background in this energy range, searches using a data set composed of these low energy events will only be sensitive to emission timescales on the order of one day or shorter. Active galactic nuclei (AGN) undergoing flaring events are one potential source for emission on this timescale. Protons may be accelerated in relativistic jets, powered by accretion onto the AGN, resulting in the production of pions (and subsequently neutrinos) in shocks due to proton-photon interactions and proton self-collisions (Becker & Biermann 2009). For some of the timescales under consideration in this search, AGN-powered hadron acceleration must occur over a compact region and will require very large acceleration gradients (Klein et al. 2013). The presence of these large gradients will result in significant acceleration of muons prior to decay, leading to spectral hardening of the neutrino flux. Thus, if neutrino emission is occurring over short timescales, – 10 – it will feature enhanced visibility at higher energies. Sub-photospheric neutrino emission from gamma-ray bursts (GRBs) represents another possible source for this search. A model for photospheric gamma-ray emission in GRBs by Murase et al. (2013) suggests that a substantial flux of 100 GeV-scale neutrinos may be produced during the initial stages of relativistic outflow in the GRB. Decoupling of protons and neutrons during the initial formation of the relativistic jet causes hadronuclear collisions resulting in the production of pions and the production of neutrinos via pion decay. The predicted energy for the neutrinos produced in these sub-photospheric collisions is on the order of 100 GeV, and therefore this GRB neutrino flux may only be visible to IceCube searches with the inclusion of sub-TeV neutrino events. Perhaps the most promising potential source for this study is a special class of core-collapse supernova referred to as choked GRBs (M´esz´aros & Waxman 2001). The standard GRB model assumes that relativistic jets are generated during the accretion of material onto the compact object formed during core-collapse (Rees & Meszaros 1992). Fermi-acceleration of charged particles occurs within the internal shocks of these jets leading to gamma ray emission once the jets breach the surrounding stellar envelope. There is an observed correlation between long duration GRBs and core-collapse supernovae (CC SNe) ((Woosley & Bloom 2006), (Modjaz 2011)). While the observed fraction of SNe resulting in the occurrence of a GRB is quite low, it may be that a larger fraction of core-collapse SNe still manage to produce mildly relativistic jets. Due to insufficient energy, these jets fail to break through the stellar envelope and any gamma ray emission is effectively ‘choked’ off. If protons are accelerated in these jets, then neutrino production will occur in the shocks of the jet irrespective of whether or not the jet successfully escapes. A model of this neutrino emission proposed by Razzaque et al. (2004) and extended upon by Ando & Beacom (2005), hereafter referred to as the RMW/AB model, suggests that these neutrinos may be

Description:
2014b) and the results of this fit are used for the final data analysis. In order to . The spatial component of the signal p.d.f., Si, is the Kent-Fisher distribution (Kent 1982), .. Abbasi, R., Abdou, Y., Abu-Zayyad, T., et al. 2011 Klein, S. R., Mikkelsen, R. E., & Becker Tjus, J. 2013, ApJ, 779
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.