ebook img

Search for chargino-neutralino production in p-pbar collisions at 1.96 TeV with high pT leptons PDF

0.66 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Search for chargino-neutralino production in p-pbar collisions at 1.96 TeV with high pT leptons

Search for chargino-neutralino production in pp¯ collisions at √s = 1.96 TeV with high-p leptons T T. Aaltonen,23 J. Adelman,13 T. Akimoto,54 M.G. Albrow,17 B. A´lvarez Gonz´alez,11 S. Amerio,42 D. Amidei,34 A. Anastassov,51 A. Annovi,19 J. Antos,14 M. Aoki,24 G. Apollinari,17 A. Apresyan,47 T. Arisawa,56 A. Artikov,15 W. Ashmanskas,17 A. Attal,3 A. Aurisano,52 F. Azfar,41 P. Azzi-Bacchetta,42 8 P. Azzurri,45 N. Bacchetta,42 W. Badgett,17 A. Barbaro-Galtieri,28 V.E. Barnes,47 B.A. Barnett,25 0 S. Baroiant,7 V. Bartsch,30 G. Bauer,32 P.-H. Beauchemin,33 F. Bedeschi,45 P. Bednar,14 S. Behari,25 0 2 G. Bellettini,45 J. Bellinger,58 A. Belloni,22 D. Benjamin,16 A. Beretvas,17 J. Beringer,28 T. Berry,29 A. Bhatti,49 M. Binkley,17 D. Bisello,42 I. Bizjak,30 R.E. Blair,2 C. Blocker,6 B. Blumenfeld,25 A. Bocci,16 n a A. Bodek,48 V. Boisvert,48 G. Bolla,47 A. Bolshov,32 D. Bortoletto,47 J. Boudreau,46 A. Boveia,10 B. Brau,10 J A. Bridgeman,24 L. Brigliadori,5 C. Bromberg,35 E. Brubaker,13 J. Budagov,15 H.S. Budd,48 S. Budd,24 5 K. Burkett,17 G. Busetto,42 P. Bussey,21 A. Buzatu,33 K. L. Byrum,2 S. Cabrerar,16 M. Campanelli,35 1 M. Campbell,34 F. Canelli,17 A. Canepa,44 D. Carlsmith,58 R. Carosi,45 S. Carrillol,18 S. Carron,33 B. Casal,11 M. Casarsa,17 A. Castro,5 P. Catastini,45 D. Cauz,53 M. Cavalli-Sforza,3 A. Cerri,28 ] x L. Cerritop,30 S.H. Chang,27 Y.C. Chen,1 M. Chertok,7 G. Chiarelli,45 G. Chlachidze,17 F. Chlebana,17 e K. Cho,27 D. Chokheli,15 J.P. Chou,22 G. Choudalakis,32 S.H. Chuang,51 K. Chung,12 W.H. Chung,58 - p Y.S. Chung,48 C.I. Ciobanu,24 M.A. Ciocci,45 A. Clark,20 D. Clark,6 G. Compostella,42 M.E. Convery,17 e J. Conway,7 B. Cooper,30 K. Copic,34 M. Cordelli,19 G. Cortiana,42 F. Crescioli,45 C. Cuenca Almenarr,7 h J. Cuevaso,11 R. Culbertson,17 J.C. Cully,34 D. Dagenhart,17 M. Datta,17 T. Davies,21 P. de Barbaro,48 [ S. De Cecco,50 A. Deisher,28 G. De Lentdeckerd,48 G. De Lorenzo,3 M. Dell’Orso,45 L. Demortier,49 3 J. Deng,16 M. Deninno,5 D. De Pedis,50 P.F. Derwent,17 G.P. Di Giovanni,43 C. Dionisi,50 B. Di Ruzza,53 v 1 J.R. Dittmann,4 M. D’Onofrio,3 S. Donati,45 P. Dong,8 J. Donini,42 T. Dorigo,42 S. Dube,51 J. Efron,38 6 R. Erbacher,7 D. Errede,24 S. Errede,24 R. Eusebi,17 H.C. Fang,28 S. Farrington,29 W.T. Fedorko,13 1 R.G. Feild,59 M. Feindt,26 J.P. Fernandez,31 C. Ferrazza,45 R. Field,18 G. Flanagan,47 R. Forrest,7 3 S. Forrester,7 M. Franklin,22 J.C. Freeman,28 I. Furic,18 M. Gallinaro,49 J. Galyardt,12 F. Garberson,10 . 1 J.E.Garcia,45 A.F.Garfinkel,47 K.Genser,17 H. Gerberich,24 D. Gerdes,34 S.Giagu,50 V.Giakoumopoloua,45 1 P. Giannetti,45 K. Gibson,46 J.L. Gimmell,48 C.M. Ginsburg,17 N. Giokarisa,15 M. Giordani,53 P. Giromini,19 7 M. Giunta,45 V. Glagolev,15 D. Glenzinski,17 M. Gold,36 N. Goldschmidt,18 A. Golossanov,17 G. Gomez,11 0 : G. Gomez-Ceballos,32 M. Goncharov,52 O. Gonz´alez,31 I. Gorelov,36 A.T. Goshaw,16 K. Goulianos,49 v A. Gresele,42 S. Grinstein,22 C. Grosso-Pilcher,13 R.C. Group,17 U. Grundler,24 J. Guimaraes da Costa,22 i X Z. Gunay-Unalan,35 C. Haber,28 K. Hahn,32 S.R. Hahn,17 E. Halkiadakis,51 A. Hamilton,20 B.-Y. Han,48 r J.Y. Han,48 R. Handler,58 F. Happacher,19 K. Hara,54 D. Hare,51 M. Hare,55 S. Harper,41 R.F. Harr,57 a R.M. Harris,17 M. Hartz,46 K. Hatakeyama,49 J. Hauser,8 C. Hays,41 M. Heck,26 A. Heijboer,44 B. Heinemann,28 J. Heinrich,44 C. Henderson,32 M. Herndon,58 J. Heuser,26 S. Hewamanage,4 D. Hidas,16 C.S. Hillc,10 D. Hirschbuehl,26 A. Hocker,17 S. Hou,1 M. Houlden,29 S.-C. Hsu,9 B.T. Huffman,41 R.E. Hughes,38 U. Husemann,59 J. Huston,35 J. Incandela,10 G. Introzzi,45 M. Iori,50 A. Ivanov,7 B. Iyutin,32 E. James,17 B. Jayatilaka,16 D. Jeans,50 E.J. Jeon,27 S. Jindariani,18 W. Johnson,7 M. Jones,47 K.K. Joo,27 S.Y. Jun,12 J.E. Jung,27 T.R. Junk,24 T. Kamon,52 D. Kar,18 P.E. Karchin,57 Y. Kato,40 R. Kephart,17 U. Kerzel,26 V. Khotilovich,52 B. Kilminster,38 D.H. Kim,27 H.S. Kim,27 J.E. Kim,27 M.J. Kim,17 S.B. Kim,27 S.H. Kim,54 Y.K. Kim,13 N. Kimura,54 L. Kirsch,6 S. Klimenko,18 M. Klute,32 B. Knuteson,32 B.R. Ko,16 S.A. Koay,10 K. Kondo,56 D.J. Kong,27 J. Konigsberg,18 A. Korytov,18 A.V. Kotwal,16 J. Kraus,24 M. Kreps,26 J. Kroll,44 N. Krumnack,4 M. Kruse,16 V. Krutelyov,10 T. Kubo,54 S. E. Kuhlmann,2 T. Kuhr,26 N.P. Kulkarni,57 Y. Kusakabe,56 S. Kwang,13 A.T. Laasanen,47 S. Lai,33 S. Lami,45 S. Lammel,17 M. Lancaster,30 R.L. Lander,7 K. Lannon,38 A. Lath,51 G. Latino,45 I. Lazzizzera,42 T. LeCompte,2 J. Lee,48 J. Lee,27 Y.J. Lee,27 S.W. Leeq,52 R. Lef`evre,20 N. Leonardo,32 S. Leone,45 S. Levy,13 J.D. Lewis,17 C. Lin,59 C.S. Lin,28 J. Linacre,41 M. Lindgren,17 E. Lipeles,9 A. Lister,7 D.O. Litvintsev,17 T. Liu,17 N.S. Lockyer,44 A. Loginov,59 M. Loreti,42 L. Lovas,14 R.-S. Lu,1 D. Lucchesi,42 J. Lueck,26 C. Luci,50 P. Lujan,28 P. Lukens,17 G. Lungu,18 L. Lyons,41 J. Lys,28 R. Lysak,14 E. Lytken,47 P. Mack,26 D. MacQueen,33 R. Madrak,17 K. Maeshima,17 K. Makhoul,32 T. Maki,23 P. Maksimovic,25 2 S. Malde,41 S. Malik,30 G. Manca,29 A. Manousakisa,15 F. Margaroli,47 C. Marino,26 C.P. Marino,24 A. Martin,59 M. Martin,25 V. Martinj,21 M. Mart´ınez,3 R. Mart´ınez-Ballar´ın,31 T. Maruyama,54 P. Mastrandrea,50 T. Masubuchi,54 M.E. Mattson,57 P. Mazzanti,5 K.S. McFarland,48 P. McIntyre,52 R. McNultyi,29 A. Mehta,29 P. Mehtala,23 S. Menzemerk,11 A. Menzione,45 P. Merkel,47 C. Mesropian,49 A. Messina,35 T. Miao,17 N. Miladinovic,6 J. Miles,32 R. Miller,35 C. Mills,22 M. Milnik,26 A. Mitra,1 G. Mitselmakher,18 H. Miyake,54 S. Moed,22 N. Moggi,5 C.S. Moon,27 R. Moore,17 M. Morello,45 P. Movilla Fernandez,28 J. Mu¨lmensta¨dt,28 A. Mukherjee,17 Th. Muller,26 R. Mumford,25 P. Murat,17 M. Mussini,5 J. Nachtman,17 Y. Nagai,54 A. Nagano,54 J. Naganoma,56 K. Nakamura,54 I. Nakano,39 A. Napier,55 V. Necula,16 C. Neu,44 M.S. Neubauer,24 J. Nielsenf,28 L. Nodulman,2 M. Norman,9 O. Norniella,24 E. Nurse,30 S.H. Oh,16 Y.D. Oh,27 I. Oksuzian,18 T. Okusawa,40 R. Oldeman,29 R. Orava,23 K. Osterberg,23 S. PaganGriso,42 C. Pagliarone,45 E. Palencia,17 V. Papadimitriou,17 A. Papaikonomou,26 A.A. Paramonov,13 B. Parks,38 S. Pashapour,33 J. Patrick,17 G. Pauletta,53 M. Paulini,12 C. Paus,32 D.E. Pellett,7 A. Penzo,53 T.J. Phillips,16 G. Piacentino,45 J. Piedra,43 L. Pinera,18 K. Pitts,24 C. Plager,8 L. Pondrom,58 X. Portell,3 O. Poukhov,15 N. Pounder,41 F. Prakoshyn,15 A. Pronko,17 J. Proudfoot,2 F. Ptohosh,17 G. Punzi,45 J. Pursley,58 J. Rademackerc,41 A. Rahaman,46 V. Ramakrishnan,58 N. Ranjan,47 I. Redondo,31 B. Reisert,17 V. Rekovic,36 P. Renton,41 M. Rescigno,50 S. Richter,26 F. Rimondi,5 L. Ristori,45 A. Robson,21 T. Rodrigo,11 E. Rogers,24 S. Rolli,55 R. Roser,17 M. Rossi,53 R. Rossin,10 P. Roy,33 A. Ruiz,11 J. Russ,12 V. Rusu,17 H. Saarikko,23 A. Safonov,52 W.K. Sakumoto,48 G. Salamanna,50 O. Salt´o,3 L. Santi,53 S. Sarkar,50 L. Sartori,45 K. Sato,17 A. Savoy-Navarro,43 T. Scheidle,26 P. Schlabach,17 E.E. Schmidt,17 M.A. Schmidt,13 M.P. Schmidt,59 M. Schmitt,37 T. Schwarz,7 L. Scodellaro,11 A.L. Scott,10 A. Scribano,45 F. Scuri,45 A. Sedov,47 S. Seidel,36 Y. Seiya,40 A. Semenov,15 L. Sexton-Kennedy,17 A. Sfyria,20 S.Z. Shalhout,57 M.D. Shapiro,28 T. Shears,29 P.F. Shepard,46 D. Sherman,22 M. Shimojiman,54 M. Shochet,13 Y. Shon,58 I. Shreyber,20 A. Sidoti,45 P. Sinervo,33 A. Sisakyan,15 A.J. Slaughter,17 J. Slaunwhite,38 K. Sliwa,55 J.R. Smith,7 F.D. Snider,17 R. Snihur,33 M. Soderberg,34 A. Soha,7 S. Somalwar,51 V. Sorin,35 J. Spalding,17 F. Spinella,45 T. Spreitzer,33 P. Squillacioti,45 M. Stanitzki,59 R. St. Denis,21 B. Stelzer,8 O. Stelzer-Chilton,41 D. Stentz,37 J. Strologas,36 D. Stuart,10 J.S. Suh,27 A. Sukhanov,18 H. Sun,55 I. Suslov,15 T. Suzuki,54 A. Taffarde,24 R. Takashima,39 Y. Takeuchi,54 R. Tanaka,39 M. Tecchio,34 P.K. Teng,1 K. Terashi,49 J. Thomg,17 A.S. Thompson,21 G.A. Thompson,24 E.Thomson,44 P.Tipton,59 V.Tiwari,12 S.Tkaczyk,17 D. Toback,52 S. Tokar,14 K.Tollefson,35 T.Tomura,54 D. Tonelli,17 S. Torre,19 D. Torretta,17 S. Tourneur,43 W. Trischuk,33 Y. Tu,44 N. Turini,45 F. Ukegawa,54 S. Uozumi,54 S. Vallecorsa,20 N. van Remortel,23 A. Varganov,34 E. Vataga,36 F. Va´zquezl,18 G. Velev,17 C. Vellidisa,45 V. Veszpremi,47 M. Vidal,31 R. Vidal,17 I. Vila,11 R. Vilar,11 T. Vine,30 M. Vogel,36 I. Volobouevq,28 G. Volpi,45 F. Wu¨rthwein,9 P. Wagner,44 R.G. Wagner,2 R.L. Wagner,17 J. Wagner-Kuhr,26 W. Wagner,26 T. Wakisaka,40 R. Wallny,8 S.M. Wang,1 A. Warburton,33 D. Waters,30 M. Weinberger,52 W.C. Wester III,17 B. Whitehouse,55 D. Whitesone,44 A.B. Wicklund,2 E. Wicklund,17 G. Williams,33 H.H. Williams,44 P. Wilson,17 B.L. Winer,38 P. Wittichg,17 S. Wolbers,17 C. Wolfe,13 T. Wright,34 X. Wu,20 S.M. Wynne,29 A. Yagil,9 K. Yamamoto,40 J. Yamaoka,51 T. Yamashita,39 C. Yang,59 U.K. Yangm,13 Y.C. Yang,27 W.M. Yao,28 G.P. Yeh,17 J. Yoh,17 K. Yorita,13 T. Yoshida,40 G.B. Yu,48 I. Yu,27 S.S. Yu,17 J.C. Yun,17 L. Zanello,50 A. Zanetti,53 I. Zaw,22 X. Zhang,24 Y. Zhengb,8 and S. Zucchelli5 (CDF Collaboration∗) 1Institute of Physics, Academia Sinica, Taipei, Taiwan 11529, Republic of China 2Argonne National Laboratory, Argonne, Illinois 60439 3Institut de Fisica d’Altes Energies, Universitat Autonoma de Barcelona, E-08193, Bellaterra (Barcelona), Spain 4Baylor University, Waco, Texas 76798 5Istituto Nazionale di Fisica Nucleare, University of Bologna, I-40127 Bologna, Italy 6Brandeis University, Waltham, Massachusetts 02254 7University of California, Davis, Davis, California 95616 8University of California, Los Angeles, Los Angeles, California 90024 9University of California, San Diego, La Jolla, California 92093 10University of California, Santa Barbara, Santa Barbara, California 93106 11Instituto de Fisica de Cantabria, CSIC-University of Cantabria, 39005 Santander, Spain 12Carnegie Mellon University, Pittsburgh, PA 15213 3 13Enrico Fermi Institute, University of Chicago, Chicago, Illinois 60637 14Comenius University, 842 48 Bratislava, Slovakia; Institute of Experimental Physics, 040 01 Kosice, Slovakia 15Joint Institute for Nuclear Research, RU-141980 Dubna, Russia 16Duke University, Durham, North Carolina 27708 17Fermi National Accelerator Laboratory, Batavia, Illinois 60510 18University of Florida, Gainesville, Florida 32611 19Laboratori Nazionali di Frascati, Istituto Nazionale di Fisica Nucleare, I-00044 Frascati, Italy 20University of Geneva, CH-1211 Geneva 4, Switzerland 21Glasgow University, Glasgow G12 8QQ, United Kingdom 22Harvard University, Cambridge, Massachusetts 02138 23Division of High Energy Physics, Department of Physics, University of Helsinki and Helsinki Institute of Physics, FIN-00014, Helsinki, Finland 24University of Illinois, Urbana, Illinois 61801 25The Johns Hopkins University, Baltimore, Maryland 21218 26Institut fu¨r Experimentelle Kernphysik, Universit¨at Karlsruhe, 76128 Karlsruhe, Germany 27Center for High Energy Physics: Kyungpook National University, Daegu 702-701, Korea; Seoul National University, Seoul 151-742, Korea; Sungkyunkwan University, Suwon 440-746, Korea; Korea Institute of Science and Technology Information, Daejeon, 305-806, Korea; Chonnam National University, Gwangju, 500-757, Korea 28Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, California 94720 29University of Liverpool, Liverpool L69 7ZE, United Kingdom 30University College London, London WC1E 6BT, United Kingdom 31Centro de Investigaciones Energeticas Medioambientales y Tecnologicas, E-28040 Madrid, Spain 32Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 33Institute of Particle Physics: McGill University, Montr´eal, Canada H3A 2T8; and University of Toronto, Toronto, Canada M5S 1A7 34University of Michigan, Ann Arbor, Michigan 48109 35Michigan State University, East Lansing, Michigan 48824 36University of New Mexico, Albuquerque, New Mexico 87131 37Northwestern University, Evanston, Illinois 60208 38The Ohio State University, Columbus, Ohio 43210 39Okayama University, Okayama 700-8530, Japan 40Osaka City University, Osaka 588, Japan 41University of Oxford, Oxford OX1 3RH, United Kingdom 42University of Padova, Istituto Nazionale di Fisica Nucleare, Sezione di Padova-Trento, I-35131 Padova, Italy 43LPNHE, Universite Pierre et Marie Curie/IN2P3-CNRS, UMR7585, Paris, F-75252 France 44University of Pennsylvania, Philadelphia, Pennsylvania 19104 45Istituto Nazionale di Fisica Nucleare Pisa, Universities of Pisa, Siena and Scuola Normale Superiore, I-56127 Pisa, Italy 46University of Pittsburgh, Pittsburgh, Pennsylvania 15260 47Purdue University, West Lafayette, Indiana 47907 48University of Rochester, Rochester, New York 14627 49The Rockefeller University, New York, New York 10021 50Istituto Nazionale di Fisica Nucleare, Sezione di Roma 1, University of Rome “La Sapienza,” I-00185 Roma, Italy 51Rutgers University, Piscataway, New Jersey 08855 52Texas A&M University, College Station, Texas 77843 53Istituto Nazionale di Fisica Nucleare, University of Trieste/ Udine, Italy 54University of Tsukuba, Tsukuba, Ibaraki 305, Japan 55Tufts University, Medford, Massachusetts 02155 56Waseda University, Tokyo 169, Japan 57Wayne State University, Detroit, Michigan 48201 58University of Wisconsin, Madison, Wisconsin 53706 59Yale University, New Haven, Connecticut 06520 (Dated: February 2, 2008) We present a search for the associated production of charginos and neutralinos in pp¯ collisions at √s = 1.96 TeV. The data were collected at the Collider Detector at Fermilab (CDF II) and 4 correspond to integrated luminosities between 0.7 and 1.0 fb−1. We look for final states with one high-p electron ormuon,andtwoadditionalleptons. Ourresultsareconsistentwith thestandard T model expectations, and we set limits on the cross section as a function of the chargino mass in threedifferent supersymmetric scenarios. For a specific MSSM scenario with no slepton mixing we set a 95% C.L. limit at 151 GeV/c2. PACSnumbers: I. INTRODUCTION set by the LEP experiments at 103.5 GeV/c2 for thelightestchargino,inscenarioswithlargesfermion masses [5], and at 50.3 GeV/c2 for the lightest neu- Supersymmetry [1, 2] (SUSY) is a proposed sym- tralino in mSUGRA. These constraints are very ro- metry of nature. It predicts the existence of su- bustwithin mSUGRA-inspiredSUSYmodelsanddo persymmetric partners for the standard model (SM) notdependonthecharginodecaymodes,exceptfora particles, called gauginos (higgsinos) for the gauge few pathological cases [6]. The DO collaboration ex- (Higgs) bosons, and squarks/sleptons for fermions. cludesthecharginomassbelow117GeV/c2 inaspe- The lightest SUSY particle is referredto as the LSP. cific SUSY breaking scenario described in [7], where If SUSY is an exact symmetry, the supersymmetric the standard mixing between the left and the right andtheSMparticleshavethesamemass,relatedcou- components in the third generation families is sup- plings, and spin differing by 1/2. As a consequence pressed. of the non-observation of light SUSY particles, such In this article we present a search for the associ- as the selectron, SUSY must be a broken symme- ± ated production of the lightest chargino χ˜ and the 1 try, if realized. Several symmetry breaking models second-lightest neutralino χ˜0 (shown in Fig. 1), per- 2 have been discussed in the past years. The gravi- formedasacountingexperimentindatacollectedby tational interactions are responsible for the symme- the CDF detector. Charginos and neutralinos can try breaking in the mSUGRA [3] scenario, whereas the ordinary gauge interactions are the source of SUSY breaking in the GMSB [2] model. In bro- ken SUSY, gauginos and higgsinos combine to form ± masseigenstatescalledcharginos(χ˜ )andneutrali- 1,2 nos(χ˜0 ). The lightestneutralino,χ˜0,canbe the 1,2,3,4 1 LSP. SUSY is one of the most promising theories of physics beyond the SM as it can accommodate grav- ity and unify the gauge interactions. In SUSY mod- els where R-parity [4] is conserved,the LSP is stable FIG. 1: Leading-order Feynman diagrams for chargino andonlyweaklyinteracting,andthusisaviabledark and neutralino associated production. The interaction is matter candidate. mediatedthroughvirtualW(left)andsquark(q˜,right). Experimental bounds on the gaugino masses are be among the lightest SUSY particles in the mod- els we explore, with associated production cross sec- ∗With visitors from aUniversity of Athens, 15784 Athens, tions within the reach of the Tevatron collider [8]. If Greece,bChineseAcademyofSciences,Beijing100864,China, these sparticles decay leptonically within the detec- cUniversity of Bristol, Bristol BS8 1TL, United Kingdom, tor, the final state is characterized by the presence dUniversity Libre de Bruxelles, B-1050 Brussels, Belgium, eUniversityofCaliforniaIrvine,Irvine,CA92697,fUniversity ofleptons andsignificantmissingenergy[9], E/T, due of California Santa Cruz, Santa Cruz, CA 95064, gCornell to particles escaping detection. While the process University, Ithaca, NY 14853, hUniversity of Cyprus, Nicosia χ˜±1χ˜01 ℓνχ˜01χ˜01 results in a final state with ℓ+E/T, CY-1678, Cyprus, iUniversity College Dublin, Dublin 4, Ire- which→has a large inclusive W background, the dis- land, jUniversity of Edinburgh, Edinburgh EH9 3JZ, United tinct signature of χ˜±χ˜0 ℓℓℓνχ˜0 makes the search Kingdom,kUniversityofHeidelberg,D-69120Heidelberg,Ger- 1 2 → 1 ± many, lUniversidad Iberoamericana, Mexico D.F., Mexico, fortheassociatedproductionofcharginoχ˜1 andneu- mUniversity of Manchester, Manchester M13 9PL, England, tralinoχ˜0 (seeFig.2),oneofthemostpowerfultests 2 nNagasaki Institute of Applied Science, Nagasaki, Japan, of SUSY at hadron colliders. oUniversitydeOviedo,E-33007Oviedo,Spain,pQueenMary, The paper is organized as follows. Section II con- UniversityofLondon,London,E14NS,England,qTexasTech University, Lubbock, TX 79409, rIFIC(CSIC-Universitat de tains a brief description of the CDF detector. Sec- Valencia),46071Valencia,Spain, tion III presents the lepton identification procedure 5 pseudorapidity range η < 2.0. For the leptons in | | oursearch,theresolutionontheimpactparameteris 40 µm, including 30 µm for the beam size. Sur- ≈ ≈ rounding the tracking system is a solenoidal magnet which provides a 1.4 T field aligned parallel to the beam. Fromthecurvatureofatrackinthe magnetic field, we determine the transverse momentum pT of charged particles. The momentum resolution of the outer tracking is σ(pT)/p2T =0.0017 c/GeV. Twolayersofsamplingcalorimeters,onefordetect- ing electromagnetic particles and the other to mea- sure the remaining hadronic energy, cover the range η < 3.6. The central electromagnetic calorimeter FIG.2: Charginoandneutralinodecaymodes. Theℓ˜and (|C|EM) surrounds the solenoid within η < 1.1. It | | the ν˜ are the SUSY counterparts of the lepton and the consistsof leadsheets separatedby polystyrenescin- neutrino. tillator with an energy resolution of 13.5%/√ET ⊕ 1.5%, where ET = E sinθ is measured in GeV. | | TheCEMissegmentedinto 24wedgesperside; each wedge spans an angle of approximately15 degrees in and measurement of misidentification rate. In Sec- φandisdividedintotentowersof∆η =0.11. Atnor- tionIV we discuss the backgroundsandin SectionV mal incidence the total depth corresponds to about we describe the event selection. In Section VI we present the estimated systematic uncertainties, fol- 18 radiation lengths (X0). A proportional chamber (CES)isembeddedineachCEMwedgeattheshower lowed by the validation of the analysis procedure in maximum and provides good spatial resolution and SectionVII. Thesearchespresentedinthispaperare shower shape information used for electron and pho- not targeted at a specific model, but rather are de- ton identification. The central hadronic calorimeter signed to cover a large range of possible new physics (CHA), positioned outside the CEM, matches the scenarios in which events with three leptons and sig- CEMsegmentationinto 24 wedges but uses steel ab- nificant missing transverse energy are predicted at sorbers interspersed with acrylic scintillators. There rates larger than the SM predictions. Nevertheless, are 23 layers in the CHA and each layer is com- based on the results presented in Section VIII, we posed of one inch of steel and one centimeter of set limits as a function of the chargino mass in sev- scintillator. The end wall calorimeter and the end eral SUSY scenarios (Section IX). The results of the plug calorimeter complete the coverage in the re- analysis presented in this paper are combined with gions 0.8 < η < 1.2 and 1.1 < η < 3.6, re- results of similar searches carriedout at CDF to fur- | | | | spectively. The plug calorimeter consists of a lead- ther improve the sensitivity [10]. scintillator electromagnetic section (PEM) and an iron-scintillator hadronic section (PHA). The PEM resolution is 16%/√ET 1%. The PEM also con- II. EXPERIMENTAL APPARATUS ⊕ tains a shower maximum detector (PES). Themuonsystemisinstalledoutsidethecalorime- The CDF II detector [11] is a general-purpose ters. The innermost four-layer drift chamber system detector with approximate azimuthal and forward- (CMU) can detect minimum ionizing particles with backward symmetry. CDF combines precision transverse momenta larger than 1.4 GeV/c. An ad- charged-particletrackingwith projective calorimeter ditional four-layer drift chamber (CMP) is located towers and muon detection. In the detector coor- outside the magnet return yoke and detects parti- dinate system, φ is the azimuthal angle around the cles with pT > 2.0 GeV/c. The CMU-CMP cover- beam axis and η is the pseudorapidity defined as age (η < 0.6) is extended up to η < 1.0 by the η = lntan(θ/2), where θ is the polar angle from centra|l|muon extension chambers |(C|MX). Outside − the beam axis. The radial distance to the beam axis the CMP and CMX chambers are scintillator detec- is referred to as r. tors providing additional timing measurements. The The tracking system is composed of an inner sili- last set of muon detectors (IMU) covers the region con detector (1.5 < r < 29.0 cm) and an outer drift 1.0 < η < 1.5. The information from the IMU chamber (COT, 40 < r < 140 cm). These detec- chambe|rs|is not used in this analysis. tors provide three-dimensional vertex measurement Theluminosityismeasuredfromthetotalinelastic and track reconstruction efficiency above 90% in the 6 pp¯ cross-sectionusing Cherenkovcounters locatedin theshowerprofileintheCES,andtotestbeamdata. the 3.7< η <4.7 region. Asimilarprocedurebasedontheχ2 fromcomparing | | The CDF trigger has a three-level architecture. the tower energy distribution is applied to electrons The first level (L1) is a custom-designed hardware reconstructed in the plug calorimeter. In this case trigger which makes a fast trigger decision based on only tracks within η < 2 and with silicon hits are | | preliminary informationfrom the tracking,calorime- accepted. The collimationoftheshowershapeinthe ter, and muon systems with an average accept rate PES is also restricted, by requiring that the energy of 25 kHz. The second level (L2) uses both custom in the middle five strips of a PES cluster should be hardware and a software-based event reconstruction morethan65%ofthe energyinallnine strips. If the with an accept rate of 750 Hz. The third level (L3) track associated to the candidate electron is consis- uses the offline reconstruction software and selects tent with coming from a γ e+e− conversion, the → events for storage with a rate of up to 85 Hz [12]. candidateelectronisrejected. Thephotonconversion identification algorithm defines an electron as origi- nating from a conversionif the azimuthal separation ofthe electroncandidateandanyoppositely-charged III. LEPTON IDENTIFICATION track at the tangency point (D = R ∆φ where xy × R is the conversion radius) is less than 0.2 cm and A. Lepton identification probability the difference in polarangle (∆cotθ) is smaller than 0.04. The measurement of the conversion identifica- We use different constraints on identification vari- tion efficiency is described in Section IVB1. ables for high-pT (pT > 20 GeV/c) and low-pT (pT Trackswith small energy deposits in the calorime- < 20 GeV/c) leptons due to different detection char- ters and matched stubs [14] in the CMU and CMP acteristics and also due to the trigger requirements. (or CMX only) muon chambers are candidates for These identification criteria are described below and the CMUP (CMX) muon category. The matching are summarized in Tables I through III. between the extrapolated track and the stub in the Reconstructedcentraltracksmusthaveatleastfive chamber(∆x, wherexis the locallinearcoordinate hits out of 12 possible in at least three (two) out of in the tra|nsve|rse plane) has to be within a certain four axial (stereo) COT super layers, to ensure high range (refer to Table III). If a track has pT less reconstruction efficiency and purity. We accept only than 20 GeV/c, the effect of multiple scattering is tracks originating within 60 cm from the center of enhanced and thus we set a less stringent require- ± the detector, and we apply a cut on the impact pa- ment. For CMX muons we restrict our selection to rameter(d0,seeTableI)tosuppresscosmicraysand tracks that pass through all eight super layers of the secondary vertices. The impact parameter is the ra- COT.Theefficiencyoffindingastubinthefirstplace dial distance of closest approach between the track is measured separately and combined with the other and the beam line. For each beam-constrained COT identification measurements. track, we place a requirement on the fit quality χ2 Other muons in an event are also included if they normalized by the number of degrees of freedom in fall in the muon category called “central minimum the track fitting. The efficiency of reconstructing a ionizing objects” (CMIO’s). This category is com- track is measuredseparatelyin calorimetertriggered posed of tracks with pT greater than 10 GeV/c for W eν events as described in [13]. which the track does not extrapolate to the fidu- → Acandidateelectroninthecentralregionisatrack cial region of the CMU and CMP or CMX cham- pointing to an electromagnetic calorimeter cluster. bers [15]. In this case we constrain the selection to If the ratio of the energy measured in the hadronic muon candidate tracks with a non-zero calorimeter calorimeter to that measured in the electromagnetic energy deposit to suppress tracks entering uninstru- calorimeter is small, we define it as a “loose” elec- mented parts. This extends the muon coverage to tron. Additional requirements on the shower shape η < 1.5, with lower efficiency and lower purity for andtheenergytomomentumratioareimposedtose- |η|>1.2. lect high purity, “tight” electrons. One such require- | |Since leptons from χ˜± and χ˜0 decays are expected 1 2 ment, the lateral shower sharing profile (Lshr) com- to be well separated from each other and from other pares the energy sharing between neighboring CEM objects in the event, [16], we restrict our studies to towers to the expectation from test beam data. We isolated electrons and muons. To decide whether a also restrict the matching between the shower and lepton is isolated or not we sum up the calorime- the track, both the distance in the r-φ plane (Q∆x, ter transverse energy (Econe) in a cone of ∆R = · T where Q is the lepton charge), and in the r-z plane p∆η2+∆φ2 < 0.4 around, but not including, the (∆z ). Inadditionwealsorestricttheχ2 ofthefitto | | 7 energy deposited by the lepton. We require Econe to T TABLE III: Muon selection criteria be less than 2 GeV for the loose CMUP and CMX muons. TheEcone isrequiredtobesmallerthan10% Variable Cut T of the muon pT (electron ET) for other lepton cate- Base muon: gories, or if the muon pT (electron ET) is above 20 Central track GeV/c (GeV). E < 2 GeV EM E (p 20 GeV/c) < 6 GeV Had T ≥ TABLEI: Requirementsfor central tracks EHad (pT < 20 GeV/c) < 3.5 + pT/8 GeV Tight CMUP/CMX muon: Variable Cut Base muon no. axial COT super layers 3 with 5 hits ≥ ≥ Econe/p < 0.1 no. stereo COT super layers 2 with 5 hits T T z0 ≥ <≥60 cm |∆xCMU| (CMUP) < 7 cm or χ2 < 9 |d0| (no silicon hits) < 0.2 cm |∆xCMP| (CMUP) < 5 cm or χ2 < 9 |d0|(silicon hits) < 0.02 cm |∆xCMX| (CMX) < 6 cm or χ2 < 9 | | Loose CMUP/CMX muon: Muon tracks: As muon1except: COT exit radius (CMX) > 140 cm χ2 (first 350 pb−1) < 2.8 ETcone (pT < 20 GeV/c) < 2 GeV χ2 (otherwise) < 2.3 CMIO muon: Base muon Not fiducial toCMUP, CMX p 10 GeV/c T ≥ Econe/p < 0.1 TABLE II:Electron selection criteria T T E + E > 0.1 GeV EM Had Variable Cut Loose electron: Central track Not conversion > 20 GeV/c (GeV) is the single-electron or single- η < 1 muon triggered sample with a pT (ET) threshold of | | E /E < 0.055+0.00045 E GeV 18 GeV/c (GeV) used for the analysis itself, as de- Had EM EM · Econe/E < 0.1 scribed in Section IV. Samples of simulated events T T neededinthisstudyarealsopresentedinSectionIV. Tight electron: Additional data samples are used to measure effi- As electron1 except ciencies and misidentification probabilities for lower- E/p (p < 50 GeV/c) < 2 T energyleptons. Theseinclude samplescollectedwith Lshr < 0.2 single-lepton trigger thresholds of 8 GeV/c for muon χ2strips < 10 pT and 8 GeV for electron ET, and inclusive central Q ∆x > -3.0, < 1.5 cm jet samples collected with jet trigger thresholds at · ∆z < 3.0 cm ET > 20, 50, 70, and 100 GeV. | | Plug electron: For high-pT leptons, we measure the identifica- Track with Silicon hits tionefficienciesusingsame-flavor,oppositely-charged dilepton candidate events in the invariant mass win- Not conversion dowfrom76to106GeV/c2. Werequirethatatleast η > 1.2 < 2.0 | | one of those candidate leptons fulfills all the tight E /E < 0.055 GeV Had EM electronortightCMUP/CMXcriteria,definedinTa- Econe/E < 0.1 T T bles II and III respectively,andsatisfying the trigger E/p < 3 requirements. We then measure the efficiencies of PES 5/9 (see text) > 0.65 ouridentificationcriteriaonthe othercandidate lep- χ2 < 10 ton. In the case of Z e+e− candidates we sub- PEM → tract background using same-charge dilepton events in the mass window. The effect of background sub- The primary data sample used to measure trigger traction is found to be negligible in the Z µ+µ− → andidentificationefficienciesforleptonswithpT(ET) sample [17]. 8 The efficiency of low-pT leptons is measured in Drell-Yan candidate events requiring same-flavor, 100 oppositely-chargedleptonswith∆φ(ℓ1ℓ2)>160◦. In order to reject events in which a cosmic ray is recon- %] 80 structed as a pair of muons, we require the timing of the trackhits inthe trackingsystemtobe consistent cy [ n with particles originating from the center of the de- e ci 60 tector and moving outwards, and reject events with Effi significant E/T. At least one lepton candidate must n pass all the identification criteria (to reduce instru- o mental and non-prompt background) and must sat- cati 40 isfythe8GeV/ctriggerrequirements. Wethenmea- ntifi CEM (Observed Events) sure the efficiency of the identification variables on e 20 d thesecondleptoncandidateintheevent. Ineventsin I CEM (Simulated events) whichbothleptons passthe triggerrequirements,we use both to determine the efficiency. The remaining 0 10 20 30 40 50 60 70 80 background to be subtracted is estimated in events Electron E (GeV) with lepton candidates of the same electric charge. T Aspartofthecrosschecksandsystematicuncertain- ties evaluation, we also verify the results using J/ψ FIG. 3: The identification efficiency of tight electrons as a function of E using theDrell-Yan selection. and Υ candidate events and sideband subtraction, T exceptforthe isolationcut,asonly the Drell-Yanse- lection gives well-isolated,prompt leptons with good 100 statistics in the full pT range. The resulting total identification efficiency ranges between 75% for for- %] 80 ward electrons and 80% for central electrons to 90% y [ for most muon categories. c n In both observed events and Monte Carlo (MC) e ci 60 simulated events, we check for possible dependence Effi of the efficiency of identifying leptons on additional n factors: thenumberofprimaryvertices,thegeometry atio 40 of the detector, and changes in the detector perfor- c mance and/or configuration over time. We include ntifi CMUP (Observed events) deviations as part of the uncertainty on lepton iden- de 20 I CMUP (Simulated events) tification efficiency measurements. Fig. 3 and Fig. 4 show examples of ET (pT) dependence in observed and simulated events. The dependence is mainly 0 0 10 20 30 40 50 60 causedbyphotonsradiatedbytheleptons;duetothe Muon p (GeV) pT spectrum of Drell-Yan events this effect is most T visible in the 20-30 GeV range with our selection. FIG.4: Theidentificationefficiency(includingstubfind- Thepresenceofextraphotonsmeanstheisolationre- ingefficiency) of CMUPmuonsas afunction of p using quirement(andforthe muons,alsotheEEM require- theDrell-Yan selection. T ment) is notfully efficientin thatpT-rangefor Drell- Yan events. This effect is adequately described by the Drell-Yan simulation. For very high pT electrons the efficiency measured in observed events is lower thantheonemeasuredinDrell-Yansimulatedevents low-pT end are caused by non-isolated, non-prompt due to the E/p cut becoming inefficient. For CMUP background. Because the MC does not completely muonstheefficiencymeasuredinobservedeventsand reproduce the identification efficiency found in the insimulatedeventsshowsthesamedependency with observedevents,wedefineascalefactor(SID)asthe respect to the muon transverse momentum. The ef- ratio of the identification efficiency measured in the ficiency measured in observed events is lower than observed events to the identification efficiency found the one measured in simulated ones because of mis- in the simulated samples. Typical scale factors ap- modellingofmultiplescattering. Discrepanciesatthe plied to the MC predictions lie between 0.9 and 1.0 and are pT and ET dependent. 9 B. Probability of hadrons to be misidentified as leptons Jet: E>20 GeV 0.16 T Ajetofhadronsisdefinedasaclusterofenergyin Jet: E>50 GeV the calorimeter and reconstructed using a fixed cone %]0.14 T algorithm (∆R = 0.4). A jet can be misidentified as ate [0.12 Jet: ET>70 GeV an electron if it consists of an energetic track point- e r ing to a large energy deposit in the electromagnetic Fak 0.1 Jet: ET>100 GeV cshaloowreimreintetrh.eChahdarrognedickcaaloonrsimaentder,poiorntshowsieththaatldatee- ctron 0.08 e cay in flight, can also mimic muons. El0.06 e We use reconstructed jets to estimate the proba- os o0.04 bility to misidentify them as electrons. In the study L of misidentified muons, we use tracks with ETcone < 0.02 4 GeV (called “isolatedtracks”). The isolation is re- quiredto reduce the dependence onthe sample com- 0 5 10 15 20 25 30 position. In the following we will refer to these jets Ejet (GeV) andtracksas“fakeableobjects”. Sincesuchfakeable T objects originate from hadrons, we use the four data FIG.5: Fakerateofloosecentralelectrons. Thesolidline samples collected with jet-based triggers to measure representsthelinearfittotheaverageandthedottedlines their misidentification probability. We expect only a are 50%. negligible contribution from inclusive W and Z pro- ± duction with the gauge bosons decaying into leptons anddonotapplyanycorrections. Toavoidatrigger- induced bias, we remove the highest ET jet from the collection of fakeable objects. 1.2 The misidentification probability, or fake rate, is Jet: E>20 GeV T calculated as the ratio of the number of identified lepton candidates over the number of fakeable ob- 1 Jet: ET>50 GeV jects. It is parametrized as a function of the trans- %] verse energy (transverse momentum) of the jet (iso- ate [ 0.8 Jet: ET>70 GeV latedtrack)andaveragedoverthe fourjetdatasam- e r Jet: E>100 GeV k T ples. The results for one of the electron and muon Fa n 0.6 categoriesareshowninFig.5andFig.6respectively. o u The probability for misidentifying hadrons as muons M P 0.4 is higher than that for electrons since the muon-type U M fakeableobjectisbasedonanisolatedtrackandthus C more likely to pass our identification cuts. The ap- 0.2 plicationof these rates inthe analysisis describedin the next section. An uncertainty of 50% is assessed 0 from the variation in the fake rates measured in the 0 5 10 15 20 25 different jet data samples. Ptrack (GeV/c) T FIG. 6: Fake rate of CMUP muons. The solid line rep- IV. SAMPLES OF OBSERVED AND resents the linear fit to the average and the dotted lines SIMULATED EVENTS are 50%. ± A. Sample of observed events The data used in this analysis were collected be- tral muon with a stub in both the CMU and CMP tween March 2002 and February 2006 via electron- or in the CMX chambers. The data correspond to based and muon-based triggers. The former requires an integratedluminosity of 1.0 fb−1 and 0.7 fb−1 for one central (η < 1) electron with ET > 18 GeV, thesamplesbasedontheelectronandmuontriggers, | | whereas the latter requires one pT > 18 GeV/c cen- respectively. 10 B. Background Samples convertintooppositely-chargedelectrons[23],wecan predictthepossibleφlocationoftheclusterbasedon the charge of the seed electron. In Fig. 7 the “cor- In the search based on three leptons and miss- rect” and “incorrect” sides with respect to the seed ing transverse energy the SM backgrounds are Wγ, WZ/γ∗, ZZ/γ∗, tt¯and Drell-Yan production, along electron are defined. Furthermore the electrons from with hadrons misidentified as leptons. The b¯b con- γ conversions are expected to have the same z co- ordinate at the CES, since the magnetic field B is tamination is suppressed because the soft and typ- along the z direction. Based on this, a candidate ically non-isolated leptons from B decays are re- photon conversionis a seed electron accompaniedby jected by our lepton selection. The first set of back- a CES cluster locatedon the “correct”side and hav- grounds are estimated using a Monte Carlo tech- nique, whereas the contribution from misidentified ing ∆zseed,cluster < 20 cm. In order to improve the | | hadrons is measured using observed events (Sec- tion III). The simulated samples are generated Incorrect Side Correct Side using pythia [18] version 6.216 with the underly- seed partner ing event model tuned to the CDF observed events cluster cluster [19]. In the case of the WZ sample, pythia is used e− e+ only for the parton showering and the hadronization of events that are generated with the leading-order matrix element programmadevent [20]. photon All simulated background samples were run through B the full CDF detector simulation, which is based on the geant [21] framework, and the same recon- structionalgorithm[22] thatis used forthe observed events. All simulation-driven background estimates are corrected for the different trigger efficiency (see for instance [13]) and identification efficiency mea- FIG. 7: Sketch of the r φ view of a photon conversion − sured in observed events with respect to the one in signaturewithCESclusterslocations. Themagneticfield B is along thez direction. simulated events (Section III). An additional correc- tion factor (Sconv) is needed for the Drell-Yan pro- duction, as explained in the next section. purity of the sample of candidate conversions,we re- To avoid overestimation of the background due to ject events in which the seed electron comes from a hadrons misidentified as leptons, we require each W and is accompanied by a bremsstrahlung photon identifiedleptoninsimulatedeventstooriginatefrom the hard interaction (this does not apply to the tt¯ byrequiringE/Ttobelessthan10GeV.Furthermore, if the invariant mass of the seed electron and a sec- background where we only ask for three electrons or ondsame-flavorlepton in the eventfalls in the range muons). from 50 to 106 GeV/c2, the event is considered non- conversionbackground(Z +bremsstrahlungphoton) and rejected. Events in which the bremsstrahlung 1. Drell-Yan photonconvertsaresuppressedbyrejectingelectrons having the sum of the measured energy deposit in Events from Z/γ ℓℓ constitute a background the electromagnetic calorimeter larger than the cor- ∗ → to our search if an additional lepton is present in responding track momentum. Several other back- the event. In this section we present the estimate of grounds mimic the conversion candidate signature, this background contribution when the third lepton suchaselectronsaccompaniedbyaπ0 (decayinginto comes from a photon radiated from one of the pri- γγ)oraK± (decayinginthedetectorandproducing mary leptons, and has converted into an e+e− pair. a shower in the electromagnetic calorimeter as well In order to measure the efficiency of the conver- as in the hadronic calorimeter), or photons from ex- sion identification algorithm described in Section III tra interactions and jets. These components of the wecollectapuresampleofcandidateconversionsus- backgroundareexpectedtocontributeequallytothe ingacalorimeterbasedapproachwhichdoesnotrely “correct” and “incorrect” sides. Consequently, they ontrackinginformation. Thesampleconsistsofiden- can be estimated by the number of events with clus- tified electrons with pT larger than 8 GeV/c (called tersonthe“incorrect”side. Wemeasuretheremain- “seedelectrons”)accompaniedbyanadditionalclus- ingbackgroundintheincorrectsidethroughafitand ter found in the shower max detector. Since photons subtract it from the signal.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.