ebook img

Search for beta plus/EC double beta decay of 120Te PDF

0.21 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Search for beta plus/EC double beta decay of 120Te

Search for β+/EC double beta decay of 120Te E.Andreottia,C.Arnaboldib,c,F.T.AvignoneIIId,M.Balatae,I.Bandacd,M.Baruccif,J.W.Beemang,F.Bellinih,C.Brofferiob,c, A.Bryantg,i,C.Buccie,L.Canonicaj,k,S.Capellib,c,L.Carbonec,M.Carrettonib,c,M.Clemenzab,c,O.Cremonesic, R.J.Creswickd,S.DiDomizioj,k,M.J.Dolinskil,i,L.Ejzakm,R.Faccinih,H.A.Farachd,E.Ferrib,c,E.Fiorinib,c,L.Foggettaa, A.Giacheroc,L.Gironib,c,A.Giuliania,P.Gorlae,E.Guardincerrie,k,T.D.Gutierrezn,E.E.Hallerg,o,K.Kazkazl,S.Kraftb,c, L.Koglerg,i,C.Maianob,c,R.H.Maruyamam,C.Martinezd,M.Martinezc,S.Newmand,S.Nisie,C.Nonesa,E.B.Normanl,p, A.Nucciottib,c,F.Orioh,M.Pallavicinij,k,V.Palmieriq,L.Pattavinab,c,M.Pavanb,c,M.Pedrettil,G.Pessinac,S.Pirroc, E.Previtalic,L.Risegarif,C.Rosenfeldd,C.Rusconia,C.Salvionia,S.Sangiorgiom,D.Schaefferb,c,N.D.Scielzol,M.Sistib,c, A.R.Smithg,C.Tomeih,G.Venturaf,M.Vignatih aDip.diFisicaeMatematicadell’Univ.dell’InsubriaandSez.INFNdiMilano,ComoI-22100-Italy bDip.diFisicadell’Universita` diMilano-BicoccaI-20126-Italy 1 cSez.INFNdiMi-Bicocca,MilanoI-20126-Italy 1 dDept.ofPhys.andAstron.,Univ.ofSouthCarolina,Columbia,SC29208-USA 0 eLaboratoriNazionalidelGranSasso,I-67010,Assergi(L’Aquila)-Italy 2 fDip.diFisicadell’Universita` diFirenzeandSez.INFNdiFirenze,FirenzeI-50125-Italy gLawrenceBerkeleyNationalLaboratory,Berkeley,CA94720-USA n hDip.diFisicadell’Universita` diRomaLaSapienzaandSez.INFNdiRoma,RomaI-00185-Italy a iDept.ofPhysics,Univ.ofCalifornia,Berkeley,CA94720-USA J jDip.diFisicadell’Universita` diGenova-Italy 1 kSez.INFNdiGenova,GenovaI-16146-Italy 1 lLawrenceLivermoreNationalLaboratory,Livermore,CA94550-USA mUniv.ofWisconsin,Madison,WI-USA ] nCaliforniaPolytechnicStateUniv.,SanLuisObispo,CA93407-USA x oDept.ofMaterialsSc.andEngin.,Univ.ofCalifornia,Berkeley,CA94720-USA e pDept.ofNuclearEngineering,Univ.ofCalifornia,Berkeley,CA94720-USA - qLaboratoriNazionalidiLegnaro,I-35020Legnaro(Padova)-Italy l c u n [ 2 Abstract v Wepresentasearchforβ+/ECdoublebetadecayof120TeperformedwiththeCUORICINOexperiment,anarrayofTeO cryogenic 1 2 1bolometers.Aftercollecting0.0573kg·yof120Te,weseenoevidenceofasignalandthereforesetthefollowinglimitsonthehalf- 8life:T0ν >1.9·1021yat90%C.L.forthe0νmodeandT2ν >7.6·1019yat90%C.L.forthe2νmode.Theseresultsimprovethe 1/2 1/2 4existinglimitsbyalmostthreeordersofmagnitude(fourinthecaseof0νmode). . 1 1 0 The discovery of neutrino oscillations [1] proved that neu- Sasso NationalLaboratories. The 120Te isotope hasbeen only 1trinos are massive, but there are fundamental issues that os- minimallyinvestigatedfromatheoreticalpointofview.Nocal- v:cillation experiments cannot address: measuring the absolute culationsofthehalf-lifeof0νβ+/ECdecayof120Teareavailable ineutrinomassanddeterminingwhethertheneutrinoisthean- for comparison with our result. The predictions for the same X tiparticle of itself, thus being of Majorana nature, or not. To decaymechanisminothernuclei,assumingtheeffectiveMajo- r aanswer these questionsit is necessary to look for neutrinoless ranamasshmνi=1eV,rangebetween1026–1027 y[3,4]. The doublebeta, 0νββ, decays, which would bringconclusiveevi- largervalueismostlyduetotheneedtohavesimultaneouslya denceoftheMajorananatureoftheneutrinoandwhosedecay decay anda captureand to the reducedphase space available. ratesconstraintheabsoluteneutrinomass[2]. Theonlyreferenceforthetwoneutrinomode[5]yieldsatheo- Double beta decays can occur by either emitting two elec- reticalvalueforthehalf-lifeof4.4·1026y. trons or two positrons. In the latter case, either of the Inrecentyears,experimentallimitsonthe120Tedecayshave positronemissionscanbereplacedbyanelectroncapture(EC). beensetusinganarrayofCdZnTedetectorslocatedattheGran Whileβ−β− decayshavethelargestexpectedrates,β+/EC and Sasso UndergroundLaboratory [6, 7] and a HPGe detector at β+β+decaysprovideclearsignaturesfromthe511-keVannihi- the ModaneUndergroundLaboratory[8, 9]. The presentbest lationgammarays. Energyandmomentumconservationinthe limitsintheliteratureareT0ν > 4.1·1017 y[7]andT(0ν+2ν) > EC/EC decayrequiresanextraradiativeprocess, reducingthe 1/2 1/2 1.9·1017y[8]. ratebyseveralordersofmagnitude. Thispaperreportsonasearchforβ+/ECdecays120Te →120 The search strategy is the following: the emitted positron Sn+e+ and 120Te →120 Sn+e+ +2ν with the CUORICINO carriesakineticenergyuptoK =Q-2m c2 -E ,whereE max e b b experiment,anarrayofTeO cryogenicbolometersattheGran isthebindingenergyofthecapturedelectronwithintheatomic 2 PreprintsubmittedtoElsevier January12,2011 capacity 2.3·10−9J/K.Tomeasuretemperaturevariationscor- respondingtofewkeV(∆T ∼0.1µK/keV)heavilydopedhigh- resistance germanium thermistors (NTD, Neutron Transmuta- tionDoped)aregluedtoeachcrystal. The CUORICINO detector consists of 62 TeO crystals ar- 2 rangedin13planes.Eachoftheupper10planesandthelowest oneconsistsoffour5×5×5cm3TeO crystals,whilethe11th 2 and 12th planes have nine, 3×3× 6 cm3 crystals. All crys- talshavenaturalisotopicabundancesexceptfourofthesmaller crystals, two ofwhichareenrichedto82.3%in 128Te andtwo to75%in130Te. Thenaturalabundanceof120Teis0.096%[13],sothe39.4kg of the CUORICINO experiment(enriched crystals are not in- cluded)containN =1.43·1023nucleiof120Te. ββ Theexperimentisshieldedwithtwolayersofleadof10cm minimumthicknesseach. Theouterlayerismadeofcommon lowradioactivitylead,whiletheinnerlayerismadeofspecial Figure1: AsketchoftheCUORICINOassemblyshowingthetowerhanging leadwithalowactivityof210Pb. Theelectrolyticcopperofthe fromthemixingchamber,thevariousheatshieldsandtheexternalshielding. refrigeratorthermalshieldsprovidesanadditionalshieldwitha minimumthicknessof2cm.Anexternal10cmlayerofborated shellandQ= (1714.8±1.3)keV[10]isthedifferencein120Te polyethylenewasinstalledtoreducethebackgroundduetoen- and 120Sn atomic masses. The electron capture is most likely vironmentalneutrons.Thedetectoritselfisshieldedagainstthe to occur from the K shell, whose binding energy is 30.5 keV. intrinsicradioactivecontaminationofthedilutionunitmaterials TheratioofL-capturetoK-captureformostelementsisaround by an internallayer of 10 cm of Roman lead [14], located in- 10%(12%for120Sb→120SnECdecay)[11]. Inthefollowing sidethecryostatimmediatelyabovethetower.Thebackground wewillalwaysassumeacapturefromtheKshell. fromtheactivityinthelateralthermalshieldsofthedilutionre- Thebolometerwherethedecayoccurswillseethedeposition frigeratorisreducedbyalateralinternal1.4cmthickshieldof ofboththebindingenergyandthekineticenergyofthepositron Romanlead. Another8cmleadshieldislocatedatthebottom (maximumenergy:E = K +E = Q−2m c2 =692.8keV, ofthetower. TherefrigeratorissurroundedbyaPlexiglasanti- 0 max b e independentofEb).1 Onceatrest,thepositronannihilateswith radonboxflushedwithclean N2 fromaliquidnitrogenevapo- anelectronandtwophotonswithanenergyE =511.0keVare ratorand is also enclosedin a Faradaycage to eliminate elec- γ emitted.Thesephotonscaninteractwiththesamebolometeror tromagneticinterference.Asketchoftheassemblyisshownin byanearbyone,ortheycanescapeundetected. Fig.1. Theanalysispresentedheresearchesforthesignatureswith thebestsignal-to-noiseratio. Thisisnotthecasefortheevents Signature[energiesinkeV] µ ε[%] wheretheentireenergyisdepositedinsidethedetector,dueto (30.5–692.8) 1 3.00±0.02 the low detection efficiency (see Table 1). For the 0ν mode, (30.5–692.8)+511 2 3.40±0.02 where the positron is monochromatic, this means the coinci- (30.5–692.8)+511+511 3 0.45±0.01 dence between a bolometer with an energydeposition consis- (541.5–1203.8) 1 16.28±0.04 tent with E and one with either E or E + E and the co- γ 0 0 γ (541.5–1203.8)+511 2 6.23±0.03 incidence of one bolometerwith a signal of E and two other 0 (1052.5–1714.8) 1 10.04±0.03 bolometers with a signal of E . For the 2ν mode, where the γ positron is emitted with a continuum of kinetic energies be- tween 0 and K , this means the triple coincidence of one Table1: Signatures of120Teβ+/ECdecayinanarrayofTeO2 detectors and max their corresponding multiplicity (µ), that is the number of detectors with an bolometerwithasignalbetweenEbandE0andtwootherswith energydepositionabovethreshold. Thedetection efficiencyforthe0νmode asignalofEγ. inCUORICINOisreportedinthelastcolumn(ε). Wedenotewiththe+sign thecoincidenceofenergiesreleasedindifferentdetectors.Forthe0νmodethe energy released inthedetector wherethedecay occurred corresponds tothe 1. TheCUORICINOdetector upperboundoftheinterval.Theerrorsarestatisticalonly. The CUORICINO experiment is detailed in Ref. [12]. Briefly, it is an array of TeO crystals acting as cryogenic 2 Forthepresentanalysis,thefullCUORICINOstatistics(data bolometersataworkingtemperatureof8–10mKandwithheat collected between May 2004 and May 2008)for a totalexpo- sureof0.0573kg·yof120Teisused. Thetotalenergyspectrum 1HereandinthefollowingweassumethattheX-raysfollowingtheECdo ofalldetectorsisshowninFig.2. Severalpeaksofradioactive notescapefromthecrystalwherethedecayoccurs. isotopesareclearlyvisible,themostprominentarelabeled. 2 Figure2: TotalenergyspectrumofallCUORICINOdetectors. Themostprominentpeaksarelabeledandcomefromknownradioactivesourcessuchas: e+e− annihilation(1),214Bi(2),40K(3),208Tl(4),60Co(5)and228Ac(6). Figure3:ResolutionfitsatE=511keV(left)andE=1238keV(right).ThefitfunctionisaGaussianpluslinearbackground. 2. Dataacquisitionandanalysis voltage pulse to the Si resistors. Their Joule dissipation pro- duces heat pulses in the crystal with a shape which is almost identicaltothecalibrationγ-rays. CUORICINO dataaredividedindatasets,eachonebeinga collection of about a month of daily measurements. Routine calibrations are performed at the beginning and at the end of 3. Searchstrategy each datasetusingtwo wiresofthoriatedtungsteninsertedin- side the external lead shield. The signals coming from each As detailed in the introduction, a β+/EC decay of 120Te in bolometerareamplifiedandfilteredwithasix-poleBessellow- an array of TeO detectors releases an energy up to E = 2 0 passfilterandfedtoa16-bitADC.Thesignalisdigitizedwith 692.8keVinthebolometerwherethedecayoccursand,ifthe asamplingtimeof8ms. Witheachtriggeredpulse,asetof512 annihilationgammasdonotescapeundetected,oneortwoad- samplesisrecordedtodisk. Thetypicalbandwidthisapproxi- ditionalenergydepositsof E = 511.0keVineitherthesame γ mately10Hz,withsignalriseanddecaytimesoforder30and or a nearby bolometer. There are therefore several distinctive 500ms,respectively.Moredetailsofthedesignandfeaturesof signaturesaslistedinTab.1. theelectronicssystemarefoundinRef.[15]. For the 0ν mode the energy released in the detector where Each bolometer has a different trigger threshold, optimized thedecayoccurredcorrespondstotheupperboundoftheinter- accordingtothebolometer’stypicalnoiseandpulseshape.The val. Thedetectionefficienciesforthe0νmodewereestimated trigger rate is time and channeldependent, with a mean value bymeansofaGEANT4simulationoftheCUORICINOsetup of about 1 mHz. The amplitude of the pulses is estimated by (see last column of Tab. 1) where the decays are located uni- means of an Optimal Filter technique [16]. The gain of each formlywithinallnon-enricheddetectorsandthedecayproducts bolometerismonitoredbymeansofaSiresistorof50–100kΩ are emitted isotropically. We always assume that the binding attachedtoitthatactsasaheater. Heatpulsesareperiodically energyof the capturedelectronis released within the detector supplied by an ultra-stable pulser [17] that sends a calibrated where the decay occurs. The efficiency estimate includes the 3 Figure4:Energyspectraofcoincidenceswithasingle511keVevent(left)andofcoincidenceswithtwo511keVphotons(right). Themostprominentpeaksare labeledandcomefromthesingleescapeandthedoubleescapeofknownlinesfromthefollowingisotopes: 208Tl(1),214Bi(2)and40K(3). Inthespectrumof doublecoincidences(left)the511keVpeakisalsovisible(4). dead time evaluated separately for each detector. To account 4. Resultsofthe0νβ+/ECdecaysearch for the different energy resolution of CUORICINO detectors weassignedtoeachdetectorinthesimulationaFWHMgiven In the spectra of Fig. 4 we search for a signal with mean bytheweightedmeanoftheFWHMscalculatedinallCUORI- energy 692.8 keV (spectra of double and triple coincidences) CINO calibrationruns. Thehighestdetectionefficienciescor- or 1203.8 keV (spectrum of double coincidences only). The respondtothecaseswhereoneorbothoftheelectron-positron expectedresolutionat1203.8keVisestimatedonthe214Biline annihilation photons are fully absorbed in the detector where at1238keVandfoundtobeσ=1.67±0.05keV(seeFig.3),in the β+/EC decay occurs. Thisis consistent with the relatively agreementwiththevalueof1.7keVfoundforthe511keVline largesizeoftheCUORICINOdetectorsandthemeanfreepath and consistent with being constant over the energy region of ofa511keVphotoninTeO (1.9cm).Thesesignaturesarecal- interest. 2 culatedtoaccountfornearlyhalfofalldecays. Theremainder Fig. 5 shows the energy regions of interest of the double involve only partial energydeposition of the 511 keV gamma and triple coincidences spectra. The observed lines, as ex- rayenergyandthereforearemoredifficulttodistinguishfrom plainedabove,correspondtosingle-anddouble-escapepeaks. background. Due to the extremely short range of positrons Specifically,themeasuredspectrashowthesingleescapelines in CUORICINO crystals, the efficiencies estimated for the 0ν of the 1173.2 keV transition from 60Co at 662.2 keV and of mode are also validfor the 2νmode, apartfromsmall correc- the 1729.6 keV transition from 214Bi at 1218.6 keV plus the tions (see below). Consideringalso the expectedbackground, double escape lines of the 2204.06 keV transition from 214Bi we limited ouranalysisto the signaturesthatfeature a coinci- at 1182.06 keV, of the 1764.5 keV transition from 214Bi at denceoftwoorthreeeventsforthe0νmodeandofthreeevents 742.5 keV and again of the 1729.6 keV transition from 214Bi forthe2νmode. at 707.6 keV. The observed SE and DE peaks produce a neg- ligiblecontributiontothebackgroundintheenergyregionsof We consequently search only for double or triple coinci- interest. denceswhereoneortwooftheenergydepositionsareinthein- Thesearchforthe0νβ+/ECdecayof120Teonthespectrain terval±2.5σofEγ =511keV,whereσ=1.7keV,asestimated Fig.5isperformedwithunbinnedmaximumlikelihoodfits. In intheinclusiveenergyspectrum(seeFig.3). Thecoincidence thelikelihoodfitthebackgroundisthereforeparametrizedwith window is 100 ms. The probabilityof accidentalcoincidence thesumofaflatcomponentandaGaussianforeachoftheex- isestimatedfromthemeasurementofthesinglecrystalrate(∼ pectedescapelines,withmeanvaluesfixedtothecorrespond- 1.6mHz)to bearound0.7%fordoublecoincidencesbetween ingknownenergiesandthewidthfixedtoσ=1.7keV.Thesig- detectors in the same plane or in adjacent planes. For triple nalisalsoparametrizedwithaGaussianwithmeanvaluefixed coincidencesitisevenless. totheexpectations,thatis692.8keVor1203.8keV,depending onwhetherornotoneoftheannihilationphotonsisabsorbedin Theenergyspectraoftheeventsincoincidencewithoneor thesamecrystalwhereitisemitted.Thewidthofthesignalline two 511 keV photons are shown in Fig. 4. The structures in isfixedto2.2keVwhichisobtainedbysumminginquadrature both spectra have been identified and correspond to single or the sigma (1.7 keV) , the error on the Q-value (1.3 keV), and double escape lines from known radioactive lines present in theuncertaintyontheenergyscale(0.4keV)asestimatedfrom theCUORICINObackgroundspectrum. Thecontinuumback- the calibration fit2. In summary for each spectrum the fitted groundisduebothto accidentalcoincidencesandtruecoinci- dencesinwhichtheenergydepositionoftheeventthataccom- paniesthe511keVgamma(s)isnotcomplete. 2Fromabayesian pointofview (i.e. ourapproach), youshouldsumthe 4 we calculate with the same procedurethe pdfs for the param- eter N /ǫ , the number of signal events divided by the cor- sig tot responding efficiency. The efficiency is calculated as ǫ = tot ǫ ×(ǫ ǫ )µ, where ǫ is the efficiency tabulated in Tab. 1, noise heat µ=2,3isthemultiplicityofthegivensignaturefromthesame table,ǫ =99.1%accountsforthelossofsignalduetonoise noise as estimated on heater pulses, and ǫ = 97.7%accountsfor heat the dead time induced by the presence of heater. This proce- dure, togetherwith the inclusionof the uncertaintyon the en- ergyscaleinthefitsofthespectra,accountsforthesystematic errors,whichhaveanegligibleimpactontheresult. From the combinedpdf, we extracta 90% C.L. upperlimit on the total number of double beta decays regardless of their detection,n = 100. Wecanthensetalimitonthehalf-lifeof B 0νβ+/ECdecayof120Te T T0ν >ln2N =1.9·1021y (1) 1/2 ββn B whereN isthenumberof120TenucleiandT isthelivetime. ββ 5. Resultsofthe2νβ+/ECdecaysearch The energyspectrum of the eventsin coincidencewith two 511 keV photons in the region below 692.8 keV contains 15 events (see Fig. 6). We can exclude from our analysis the re- gions±3σaroundtheenergieswhereweexpecttheDEpeaks from known radioactive gamma lines in the CUORICINO in- clusivespectrum. Theseenergiesareindicatedwithredarrows in Fig. 6 and listed in the caption. We have listed only the gamma lines that are expected to contribute with at least one event. This expectation is based on the comparison with the 40Klinethatproduces5eventsat438.8keVintheexperimen- tal spectrum of triple coincidences(see Fig. 6, line labeled as 1). Afterthesubtraction,only8eventsremaininthespectrum fromthresholdto end-point. These eventscan be due to acci- dental coincidences or to true coincidences (double escape of Figure5:Energyspectra,intheregionsofinterest,ofcoincidenceswithasingle 511 keV event [two instances] (top) and ofcoincidences with two 511 keV alreadycomptonscatteredgammas).Toestimatethefirstcom- photons(bottom). Thearrowsindicatetheenergyoftheexpectedsignal. Fit ponentwelookedatthespectraofeventsintriplecoincidence results,asexplainedinthetext,areoverlaid. with the side-band of 511 keV (left side-band: from 470 keV to502.5keV,rightside-band:from519.5keVto560keV)cor- quantitiesarethenumberofeventsinthesignal,theflatback- rectlynormalizedtotheexperimentalspectrumofFig.6. This groundandtheescapelines. Thecurvesresultingfromthefits accountsfor4.3±0.5events.Theothercomponentoftheback- areoverlaidinFig.5andthecorrespondingfittedquantitiesare groundcannotbereliablyestimatedduetolimitedstatisticsand reportedinTab.2. we cannotdiscriminate against it. Therefore, we set an upper The upper limit on the numberof observedsignal eventsis limitassumingconservativelythattheremainingeventsmaybe extracted by means of a Bayesian procedure. By integrating signal. withaMonteCarlotechniquethelikelihoodoverthenuisance The upperlimit on the numberof observed signalevents is parameters,wecalculate,foreachsignature,theposteriorprob- extractedby meansof a Bayesian procedure. From the likeli- abilitydensityfunction(pdf)fortheparameterN anddefine hoodfunctionforPoissondistributeddatawithunknownmean sig our90%C.L.upperlimitasthevaluewhereitsintegralreaches s and known backgroundb and using as prior pdf a flat prior the90%ofthetotalarea(seeTab.2). differentfromzeroonlyforpositivevaluesof s,weextractour To combine the results coming from the three signatures, 90%C.L.upperlimitonthenumberofobservedeventsasthe valuewheretheintegraloftheposteriorpdfreachesthe90%of the total area [18], n = 9.04. We can then set a limit on the B likelihoodsfordifferentQ-valuesweightingthembytheprobabilityofthatQ- half-lifeof2νβ+/ECdecayof120Te valuebeingcorrect. Thisisequivalenttoconvolutingthepeakpositionwitha gaussian,andthereforetoagaussianwhosewidthisthesuminquadratureof T2ν >ln2N ǫtotT =0.76·1020y (2) theuncertaintyontheQ-valueandtheresolution. 1/2 ββ n B 5 spectrum N N N N N 90%U.L. sig flat L1 L2 H I 1.7±3.5 214±16 17.5±5.3 14±5 34±6 8.5 II 0.3±3.1 78±10 26±6 N/A 9.5±4.3 7.25 III 0.0±0.5 1±1 N/A N/A 8±3 2.62 Table2: Resultsoftheunbinnedlikelihoodfitstotheenergyspectrumofthedoublecoincidences aroundE = 692.8keV(”I”,showninthetopplotofFig.5), aroundE =1209.8keV(”II”,showninthemiddleplotofFig.5),andthetriplecoincidencesaroundE =692.8keV(”III”,showninthebottomplotofFig.5). HereNsig estimatesthenumberofsignalevents,Nflat thetotalnumberofflatbackgroundeventsinthefitinterval, NL1andNL2arethenumberofeventsinthe escapepeaksoflowerenergiesandNHisthenumberofeventsintheescapepeakofhigherenergies.Finally,the90%C.L.upperlimitsonthenumberofobserved eventsarereported. withrespecttotheconstraintsfrompreviousexperiments. The limitsobtainedwithCUORICINOcouldbeimprovedinthefu- turebyanadditional∼2ordersofmagnitudewiththeCUORE experiment[19] because of increased mass, higher coincident detectionefficiency,andlowerbackgrounds. References [1] Y.Fukudaetal.[Super-KamiokandeCollaboration],Phys.Rev.Lett.81 (1998)1562,Y.Fukudaetal.[Super-KamiokandeCollaboration], Phys. Rev.Lett.82(1999)2430,S.Fukudaetal.[Super-KamiokandeCollabo- ration],Phys.Rev.Lett.86(2001)5651,Q.R.Ahmadetal.[SNOCol- laboration],Phys.Rev.Lett.87(2001)071301,Q.R.Ahmadetal.[SNO Collaboration],Phys.Rev.Lett.89(2002)011301,K.Eguchietal.[Kam- LANDCollaboration],Phys.Rev.Lett.90(2003)021802,T.Arakietal. Figure6:Energyspectrumoftriplecoincidenceswithtwo511keVphotonsin [KamLANDCollaboration],Phys.Rev.Lett.94(2005)081801. theenergyregionwhereweexpectasignalfromthe2νβ+/EC.Theredarrows [2] ExamplesofrecentreviewsareS.ElliottandP.Vogel,Ann.Rev.Nucl. indicate theenergieswhereweexpecttheDEpeaksfromknownradioactive Part.Sci.52(2002)115,A.MoralesandJ.Morales,Nucl.Phys.B(Proc. gammalinesintheCUORICINOinclusivespectrum.Foreachoftheseenergies Suppl.) 114 (2003) 141, F. T. Avignone III, S. R. Elliott and J. Engel wesubtractanenergyregionof±3σ. Thelinesthatcangiveadouble-escape (2006),Rev.Mod.Phys.80(2008)481andK.Zuber,ActaPhys.Polon. peakbetween50keVand692.8keVare1120.3keVand1238.1keVof214Bi B37(2006)1905. (3),1173.2keVand1332.5keVof60Co(2)and1460.8keVof40K(1). [3] V.I. Tretyak and Yu.G. Zdesenko, ATOMIC DATA AND NUCLEAR DATATABLES61,43(1995). [4] V.I. Tretyak and Yu.G. Zdesenko, ATOMIC DATA AND NUCLEAR whereN isthenumberof120TenucleiandT isthelivetime. DATATABLES80,83(2002). ββ [5] J.Abadetal.,J.dePhysique45C3(1984). Theefficiencyiscalculatedasǫ =ǫ×(ǫ ǫ )3×(1−ǫ ), tot noise heat corr [6] T.Bloxhametal.,Phys.Rev.C76,(2007)025501. where ǫ, ǫnoise and ǫheat have been defined above and ǫcorr = [7] J.V.Dawsonetal.,Phys.Rev.C80,(2009)025502. 12.5±0.5%isthecorrectiontobeappliedtothedetectioneffi- [8] A.S.Barabashetal.,J.Phys.G34(2007)1721-1728. ciencyofthe0νmodeandaccountsforthefactthatwearenot [9] A.S.Barabashetal.,J.Phys.Conf.Ser.120(2008)052057. [10] N.D.Scielzoetal.,Phys.Rev.C80(2009)025501. sensitive to the portionof the positronspectrumbetween30.5 [11] W.Bambyneketal.,Rev.Mod.Phys.Vol.49,No.1(1997). and50keV(threshold)andthatwesubtractfive10keVenergy [12] C.Arnaboldietal.,Phys.Rev.C78(2008)035502. regions from the experimental spectrum, as explained above. [13] http://nucleardata.nuclear.lu.se/nucleardata/toi/. [14] A.Alessandrelloetal.,Nucl.Instrum.andMeth.B142(1998)163. Since we do not know the exact shape of the positron spec- [15] C.Arnaboldietal.,IEEETrans.Nucl.Sci.49(2002)2440. trum from the 2νβ+/EC decay of 120Te the estimation of ǫ corr [16] C.Arnaboldietal.,Nucl.Instr.Meth.A518(2004)775. hasbeenperformedonastandardβspectrumwithend-pointat [17] C.Arnaboldietal.,IEEETrans.Nucl.Sci.50(2003)979. 692.8 keV and the error is estimated from the comparison of [18] C.Amsleretal.(ParticleDataGroup),PhysicsLettersB667,1(2008). [19] R.Arditoetal.(CUORECollaboration),arXiv:hep-ex/0501010. ǫ estimatedasexplainedaboveandǫ estimatedonaflat corr corr spectrumfrom0toendpoint.Systematicerrorsontheefficien- cieshaveanegligibleimpactontheresult. 6. Conclusions We searched for double beta decays β+/EC of 120Te in the TeO cryogenicbolometersofCUORICINO,using0.0573kg·y 2 of120Teofdata.Weseenoevidenceofasignalandthereforeset newlimitsonthehalf-lifefor0νand2νdecayT0ν >1.9·1021y 1/2 andT2ν > 0.76·1020 y extendingtheexclusionregionbyal- 1/2 most three orders of magnitude (four in the case of 0ν mode) 6

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.