ebook img

Search for annihilating dark matter in the Sun with 3 years of IceCube data PDF

12 Pages·2017·1.64 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Search for annihilating dark matter in the Sun with 3 years of IceCube data

Eur.Phys.J.C(2017)77:146 DOI10.1140/epjc/s10052-017-4689-9 RegularArticle-ExperimentalPhysics Search for annihilating dark matter in the Sun with 3years of IceCube data IceCubeCollaboration M.G.Aartsen2,M.Ackermann52,J.Adams16,J.A.Aguilar12,M.Ahlers30,M.Ahrens42,D.Altmann24, K.Andeen32,T.Anderson48,I.Ansseau12,G.Anton24,M.Archinger31,C.Argüelles14,J.Auffenberg1,S.Axani14, X.Bai40,S.W.Barwick27,V.Baum31,R.Bay7,J.J.Beatty18,19,J.BeckerTjus10,K.-H.Becker51,S.BenZvi49, D.Berley17,E.Bernardini52,A.Bernhard34,D.Z.Besson28,G.Binder7,8,D.Bindig51,M.Bissok1,E.Blaufuss17, S.Blot52,C.Bohm42,M.Börner21,F.Bos10,D.Bose44,S.Böser31,O.Botner50,J.Braun30,L.Brayeur13, H.-P.Bretz52,S.Bron25,A.Burgman50,T.Carver25,M.Casier13,E.Cheung17,D.Chirkin30,A.Christov25, K.Clark45,L.Classen35,S.Coenders34,G.H.Collin14,J.M.Conrad14,D.F.Cowen47,48,R.Cross49,M.Day30, J.P.A.M.deAndré22,C.DeClercq13,E.delPinoRosendo31,H.Dembinski36,S.DeRidder26,P.Desiati30, K.D.deVries13,G.deWasseige13,M.deWith9,T.DeYoung22,J.C.Díaz-Vélez30,V.diLorenzo31,H.Dujmovic44, J.P.Dumm42,M.Dunkman48,B.Eberhardt31,T.Ehrhardt31,B.Eichmann10,P.Eller48,S.Euler50, P.A.Evenson36,S.Fahey30,A.R.Fazely6,J.Feintzeig30,J.Felde17,K.Filimonov7,C.Finley42,S.Flis42, C.-C.Fösig31,A.Franckowiak52,E.Friedman17,T.Fuchs21,T.K.Gaisser36,J.Gallagher29,L.Gerhardt7,8, K.Ghorbani30,W.Giang23,L.Gladstone30,T.Glauch1,T.Glüsenkamp24,A.Goldschmidt8,J.G.Gonzalez36, D.Grant23,Z.Griffith30,C.Haack1,A.Hallgren50,F.Halzen30,E.Hansen20,T.Hansmann1,K.Hanson30, D.Hebecker9,D.Heereman12,K.Helbing51,R.Hellauer17,S.Hickford51,J.Hignight22,G.C.Hill2, K.D.Hoffman17,R.Hoffmann51,K.Hoshina30,53,F.Huang48,M.Huber34,K.Hultqvist42,S.In44,A.Ishihara15, E.Jacobi52,G.S.Japaridze4,M.Jeong44,K.Jero30,B.J.P.Jones14,W.Kang44,A.Kappes35,T.Karg52,A.Karle30, U.Katz24,M.Kauer30,A.Keivani48,J.L.Kelley30,A.Kheirandish30,J.Kim44,M.Kim44,T.Kintscher52, J.Kiryluk43,T.Kittler24,S.R.Klein7,8,G.Kohnen33,R.Koirala36,H.Kolanoski9,R.Konietz1,L.Köpke31, C.Kopper23,S.Kopper51,D.J.Koskinen20,M.Kowalski9,52,K.Krings34,M.Kroll10,G.Krückl31,C.Krüger30, J.Kunnen13,S.Kunwar52,N.Kurahashi39,T.Kuwabara15,M.Labare26,J.L.Lanfranchi48,M.J.Larson20, F.Lauber51,D.Lennarz22,M.Lesiak-Bzdak43,M.Leuermann1,L.Lu15,J.Lünemann13,J.Madsen41,G.Maggi13, K.B.M.Mahn22,S.Mancina30,M.Mandelartz10,R.Maruyama37,K.Mase15,R.Maunu17,F.McNally30, K.Meagher12,M.Medici20,M.Meier21,A.Meli26,T.Menne21,G.Merino30,T.Meures12,S.Miarecki7,8, T.Montaruli25,M.Moulai14,R.Nahnhauer52,U.Naumann51,G.Neer22,H.Niederhausen43,S.C.Nowicki23, D.R.Nygren8,A.ObertackePollmann51,A.Olivas17,A.O’Murchadha12,T.Palczewski7,8,H.Pandya36, D.V.Pankova48,P.Peiffer31,Ö.Penek1,J.A.Pepper46,C.PérezdelosHeros50,D.Pieloth21,E.Pinat12, P.B.Price7,G.T.Przybylski8,M.Quinnan48,C.Raab12,L.Rädel1,M.Rameez20,25,a,K.Rawlins3,R.Reimann1, B.Relethford39,M.Relich15,E.Resconi34,W.Rhode21,M.Richman39,B.Riedel23,S.Robertson2,M.Rongen1, C.Rott44,T.Ruhe21,D.Ryckbosch26,D.Rysewyk22,L.Sabbatini30,S.E.SanchezHerrera23,A.Sandrock21, J.Sandroos31,S.Sarkar20,38,K.Satalecka52,P.Schlunder21,T.Schmidt17,S.Schoenen1,S.Schöneberg10, L.Schumacher1,D.Seckel36,S.Seunarine41,D.Soldin51,M.Song17,G.M.Spiczak41,C.Spiering52,T.Stanev36, A.Stasik52,J.Stettner1,A.Steuer31,T.Stezelberger8,R.G.Stokstad8,A.Stößl15,R.Ström50,N.L.Strotjohann52, G.W.Sullivan17,M.Sutherland18,H.Taavola50,I.Taboada5,J.Tatar7,8,F.Tenholt10,S.Ter-Antonyan6, A.Terliuk52,G.Tešic´48,S.Tilav36,P.A.Toale46,M.N.Tobin30,S.Toscano13,D.Tosi30,M.Tselengidou24, A.Turcati34,E.Unger50,M.Usner52,J.Vandenbroucke30,N.vanEijndhoven13,S.Vanheule26,M.vanRossem30, J.vanSanten52,M.Vehring1,M.Voge11,E.Vogel1,M.Vraeghe26,C.Walck42,A.Wallace2,M.Wallraff1, N.Wandkowsky30,Ch.Weaver23,M.J.Weiss48,C.Wendt30,S.Westerhoff30,B.J.Whelan2,S.Wickmann1, K.Wiebe31,C.H.Wiebusch1,L.Wille30,D.R.Williams46,L.Wills39,M.Wolf42,T.R.Wood23,E.Woolsey23, K.Woschnagg7,D.L.Xu30,X.W.Xu6,Y.Xu43,J.P.Yanez23,G.Yodh27,S.Yoshida15,M.Zoll42,b 1III.PhysikalischesInstitut,RWTHAachenUniversity,52056Aachen,Germany 2DepartmentofPhysics,UniversityofAdelaide,Adelaide5005,Australia 123 146 Page 2 of 12 Eur.Phys.J.C(2017)77 :146 3DepartmentofPhysicsandAstronomy,UniversityofAlaskaAnchorage,3211ProvidenceDr.,Anchorage,AK99508,USA 4CTSPS,Clark-AtlantaUniversity,Atlanta,GA30314,USA 5SchoolofPhysicsandCenterforRelativisticAstrophysics,GeorgiaInstituteofTechnology,Atlanta,GA30332,USA 6DepartmentofPhysics,SouthernUniversity,BatonRouge,LA70813,USA 7DepartmentofPhysics,UniversityofCalifornia,Berkeley,CA94720,USA 8LawrenceBerkeleyNationalLaboratory,Berkeley,CA94720,USA 9InstitutfürPhysik,Humboldt-UniversitätzuBerlin,12489Berlin,Germany 10FakultätfürPhysik&Astronomie,Ruhr-UniversitätBochum,44780Bochum,Germany 11PhysikalischesInstitut,UniversitätBonn,Nussallee12,53115Bonn,Germany 12ScienceFacultyCP230,UniversitéLibredeBruxelles,1050Brussels,Belgium 13DienstELEM,VrijeUniversiteitBrussel(VUB),1050Brussels,Belgium 14DepartmentofPhysics,MassachusettsInstituteofTechnology,Cambridge,MA02139,USA 15DepartmentofPhysicsandInstituteforGlobalProminentResearch,ChibaUniversity,Chiba263-8522,Japan 16DepartmentofPhysicsandAstronomy,UniversityofCanterbury,PrivateBag4800,Christchurch,NewZealand 17DepartmentofPhysics,UniversityofMaryland,CollegePark,MD20742,USA 18DepartmentofPhysicsandCenterforCosmologyandAstro-ParticlePhysics,OhioStateUniversity,Columbus,OH43210,USA 19DepartmentofAstronomy,OhioStateUniversity,Columbus,OH43210,USA 20PresentAddress:NielsBohrInstitute,UniversityofCopenhagen,2100Copenhagen,Denmark 21DepartmentofPhysics,TUDortmundUniversity,44221Dortmund,Germany 22DepartmentofPhysicsandAstronomy,MichiganStateUniversity,EastLansing,MI48824,USA 23DepartmentofPhysics,UniversityofAlberta,Edmonton,ABT6G2E1,Canada 24ErlangenCentreforAstroparticlePhysics,Friedrich-Alexander-UniversitätErlangen-Nürnberg,91058Erlangen,Germany 25Départementdephysiquenucléaireetcorpusculaire,UniversitédeGenève,1211Geneva,Switzerland 26DepartmentofPhysicsandAstronomy,UniversityofGent,9000Ghent,Belgium 27DepartmentofPhysicsandAstronomy,UniversityofCalifornia,Irvine,CA92697,USA 28DepartmentofPhysicsandAstronomy,UniversityofKansas,Lawrence,KS66045,USA 29DepartmentofAstronomy,UniversityofWisconsin,Madison,WI53706,USA 30DepartmentofPhysicsandWisconsinIceCubeParticleAstrophysicsCenter,UniversityofWisconsin,Madison,WI53706,USA 31InstituteofPhysics,UniversityofMainz,StaudingerWeg7,55099Mainz,Germany 32DepartmentofPhysics,MarquetteUniversity,Milwaukee,WI53201,USA 33UniversitédeMons,7000Mons,Belgium 34Physik-department,TechnischeUniversitätMünchen,85748Garching,Germany 35InstitutfürKernphysik,WestfälischeWilhelms-UniversitätMünster,48149Münster,Germany 36DepartmentofPhysicsandAstronomy,BartolResearchInstitute,UniversityofDelaware,Newark,DE19716,USA 37DepartmentofPhysics,YaleUniversity,NewHaven,CT06520,USA 38DepartmentofPhysics,UniversityofOxford,1KebleRoad,OxfordOX13NP,UK 39DepartmentofPhysics,DrexelUniversity,3141ChestnutStreet,Philadelphia,PA19104,USA 40PhysicsDepartment,SouthDakotaSchoolofMinesandTechnology,RapidCity,SD57701,USA 41DepartmentofPhysics,UniversityofWisconsin,RiverFalls,WI54022,USA 42DepartmentofPhysics,OskarKleinCentre,StockholmUniversity,10691Stockholm,Sweden 43DepartmentofPhysicsandAstronomy,StonyBrookUniversity,StonyBrook,NY11794-3800,USA 44DepartmentofPhysics,SungkyunkwanUniversity,Suwon440-746,Korea 45DepartmentofPhysics,UniversityofToronto,Toronto,ONM5S1A7,Canada 46DepartmentofPhysicsandAstronomy,UniversityofAlabama,Tuscaloosa,AL35487,USA 47DepartmentofAstronomyandAstrophysics,PennsylvaniaStateUniversity,UniversityPark,PA16802,USA 48DepartmentofPhysics,PennsylvaniaStateUniversity,UniversityPark,PA16802,USA 49DepartmentofPhysicsandAstronomy,UniversityofRochester,Rochester,NY14627,USA 50DepartmentofPhysicsandAstronomy,UppsalaUniversity,Box516,75120Uppsala,Sweden 51DepartmentofPhysics,UniversityofWuppertal,42119Wuppertal,Germany 52DESY,15735Zeuthen,Germany 53EarthquakeResearchInstitute,UniversityofTokyo,Bunkyo,Tokyo113-0032,Japan Received:20December2016/Accepted:8February2017/Publishedonline:8March2017 ©TheAuthor(s)2017.ThisarticleispublishedwithopenaccessatSpringerlink.com Abstract Wepresentresultsfromananalysislookingfor theSunasourceof GeVneutrinos.IceCubeisabletodetect darkmatterannihilationintheSunwiththeIceCubeneutrino neutrinoswithenergies>100GeVwhileitslow-energyinfill telescope. Gravitationally trapped dark matter in the Sun’s arrayDeepCoreextendsthisto>10GeV.Thisanalysisuses core can annihilate into Standard Model particles making datagatheredintheaustralwintersbetweenMay2011and May2014,correspondingto532daysoflivetimewhenthe Sun,beingbelowthehorizon,isasourceofup-goingneu- ae-mail:[email protected] be-mail:[email protected] trino events, easiest to discriminate against the dominant 123 Eur.Phys.J.C(2017)77 :146 Page 3 of 12 146 backgroundofatmosphericmuons.Thesensitivityisafac- ofthemuonservesasaproxyforthedirectionoftheinitial toroftwotofourbetterthanprevioussearchesduetoaddi- neutrinoandallowsustoidentifyadirectionalexcessfrom tionalstatisticsandimprovedanalysismethodsinvolvingbet- theSuninreconstructedevents. ter background rejection and reconstructions. The resultant We exploit this fact in the event selection (Sect. 4) for upperlimitsonthespin-dependentdarkmatter-protonscat- this analysis, using only seasons where the Sun is a source teringcrosssectionreachdownto1.46×10−5pbforadark of up-going signal events. Furthermore we devise an event matterparticleofmass500GeVannihilatingexclusivelyinto selection which minimizes atmospheric muon background τ+τ−particles.Thesearecurrentlythemoststringentlimits contamination and limits the impact of mis-reconstructed on the spin-dependent dark matter-proton scattering cross events. The remaining samples of events are then analyzed sectionforWIMPmassesabove50GeV. using an unbinned maximum likelihood ratio method [7], lookingforanexcessofeventsfromthedirectionoftheSun. Thismethodcomparestheobservedanglesandenergyspec- 1 Introduction trumtosignalexpectationsfromdifferentsimulatedWIMP masses and annihilation channels (Sect. 5). Sections 6 and Astrophysical observations provide strong evidence for the 7 present the results of this analysis as well as their inter- existence of dark matter (DM). However its nature and pretationintheframeworkofthelargerefforttodetectdark possible particle constituents remain unknown. Interesting matter. and experimentally accessible candidates are the so called ‘weaklyinteractingmassiveparticles(WIMPs)’–expected toexistinthemassrangeofafewGeVstoafewTeVs(see[1] 2 Thedetector foracomprehensivereview).IfDMconsistsofWIMPs,they can be gravitationally captured by the Sun [2–5], eventu- IceCubeisacubic-kilometerneutrinodetectorinstalledinthe allysinkingtoitscore,wheretheymaypair-annihilateinto ice [8] at the geographic South Pole [9] between depths of standardmodelparticlesproducingneutrinos.Givenenough 1450and2450m.Neutrinoreconstructionreliesontheopti- time,thecaptureandannihilationprocesseswouldreachan cal detection of Cherenkov radiation emitted by secondary equilibrium[6]with,onaverage,onlyasmanyDMparticles particles produced in neutrino interactions in the ice or the annihilatingasarecapturedperunittime.ThisDM-generated nearby bedrock. The photons are detected by photomulti- neutrinofluxmaybedetectedatterrestrialneutrinodetectors plier tubes (PMT) [10] housed in digital optical modules suchasIceCube.AstheregionatthecenteroftheSunwhere (DOM) [11]. Construction of the detector started in 2005 mostoftheannihilationswilloccurisverysmall,thesearch and the detector has been running in its complete configu- isequivalenttolookingforapoint-likesourceofneutrinos. ration since May 2011, with a total of 86 strings deployed, Neutrinosabove1TeVhaveinteractionlengthssignificantly eachequippedwith60DOMs. smallerthantheradiusoftheSunandaremostlyabsorbed. TheprincipalIceCubearrayconsistsof78stringsordered As a result all the signal is expected in the range of a few in a hexagonal grid with a string spacing of approximately GeVsto∼1TeV. 125m,aninter-DOMspacingof17malongeachstring,and IceCube (Sect. 2) detects neutrinos by looking for the candetecteventswithenergiesaslowas∼100GeV.Eight Cherenkovlightfromchargedparticlesproducedintheneu- infill strings are deployed in the central region of IceCube trino interactions. While charged-current (CC) interactions to form DeepCore, optimized in geometry and instrumen- ofνμ(andν¯μ)producemuonsthattraversethedetectorpro- tation for the detection of neutrinos at further lower ener- ducingcleartrack-likesignatures,thevastmajorityofsuch gies,downto∼10GeV.Alayerofdust,causingaregionof eventsobservedbyIceCubearemuonsproducedwhencos- increased scattering and absorption, intersects the detector micraysinteractintheupperatmosphere(Sect.3).Although atdepthsbetween1860and2100m.Sincetheicebecomes they are observed only in the downgoing direction as they more transparent at increasing depth, the main part of the donotcrosstheEarth,theirdominance innumbers byfive DeepCoreinstrumentationisdeployedbelowthedustlayer orders of magnitude with respect to the atmospheric neu- withaninter-DOMspacingofonly7m.Avetocapofaddi- trinofluxrequirestrongmeasuresfortheirrejection.Similar tional 10 DOMs deployed above the dust-layer completes eventscreatedbytheinteractionsofatmosphericneutrinosin the DeepCore strings. A majority of the DeepCore DOMs iceare,exceptfortheirspectralcomposition,indistinguish- are equipped with PMTs of higher quantum efficiency to able from neutrino events of extra-terrestrial origin and so increaselightcollection.TheseDeepCorestrings,alongwith remainanirreduciblebackground.Acorrectlyreconstructed the seven adjacent standard IceCube strings, constitute the up-goingeventthusmustcomefromaneutrinointeraction. fiducialregionoftheDeepCoresubarrayforthepurposeof Thisanalysisfocusesexclusivelyonthesetrack-likeupgoing this analysis [12]. For DM annihilations producing neutri- events.Attheenergiesrelevanttothisanalysis,thedirection nos above ∼100GeV, the full instrumented volume of the 123 146 Page 4 of 12 Eur.Phys.J.C(2017)77 :146 Fig. 1 Differential νμ (solid) and ν¯μ (dashed) fluxes at Earth from ibleaswigglesintheplotontheleft),aspredictedbyWimpSim[13]. theannihilationsof1TeV(left)and50GeV(right)WIMPsintheSun Theν¯μfluxesarehigherthantheνμfluxesatlowerenergiessincetheir respectively,includingabsorptionandneutrinooscillationeffects(vis- interactionswiththematteroftheSunarehelicitysuppressed principalIceCubearraycontributestothesensitivity,while The principal background of muons generated in the for lower DM masses when the signal neutrinos are below interactions of cosmic rays with the Earth’s atmosphere is the IceCube threshold, only the DeepCore fiducial volume simulated using the CORSIKA package [17]. Atmospheric is relevant. The IceCube array nevertheless plays a role in neutrino interactions with the ice and the bedrock sur- identifying and rejecting background events at these lower roundingthedetectoraresimulatedusingneutrino-generator energies. (NuGen)[18]above150GeVwiththecrosssectionsof[19] and GENIE [20] below 150GeV. The atmospheric neu- trinofluxpredictionsof[22]areusedtoweightNuGenand 3 Signalandbackgroundsimulations GENIEsimulateddatasetstovalidatethedataprocessingand eventselection. Neutrino flux predictions at Earth from WIMP annihila- tions in the Sun have been widely studied, for example in Ref.[13].WeusethefluxpredictionsfromDarkSUSY[14] 4 Eventselection andWimpSim[13]tosimulatesignalsfortheIceCubedetec- toraccordingtospecificannihilationscenarios,incorporating Theenergyrangeoftheexpectedsignal(afewTeVatmax- effectsfromabsorptionintheSunaswellasneutrinooscil- imum)andtheeventtopologiesinthedetectorattheseener- lations[15].Eventsfromallthreeflavoursofsignalneutri- giesdictatetheeventselectionstrategies.ForWIMPmasses + − nosaresimulated.WhenWIMPsannihilateintoW W (see less than 200GeV, which produce signal neutrinos mostly Fig.1),theW bosonsdecaypromptlyandneutrinoemission withenergiesbelowtheIceCubethreshold,onlyDeepCore fromtheleptonicdecaychannelspeaksatenergiescloseto will contribute significantly towards the effective volume. themassoftheWIMP.Theτ+τ−channelproducesasimilar However,forhigherWIMPmasses,whereasignificantfrac- distributionofneutrinosinenergywithahigheroverallnor- tionoftheresultantneutrinosareabovetheIceCubethresh- malization. These are referred to as ‘hard’ channels. When old, the full instrumented volume of IceCube comes into theWIMPannihilatespredominantlytoa‘soft’channelsuch play.Consequently weselecttwononoverlapping samples ¯ as bb, the neutrino emission peaks at energies much below ofeventsasillustratedinFig.2. themassoftheWIMP,sincethebquarkshadronizebefore Tooptimizetheeventselectionsfortheanalysis,wecon- they can decay to produce neutrinos. WimpSim does not sider two scenarios: WIMPs annihilating completely into + − ¯ account for modifications to the spectrum originating from W W and WIMPs annihilating completely into bb. For theradiationofelectroweakgaugebosonsbytheintermedi- WIMP masses below 80.4GeV, the mass of the W boson, ateandfinalstatesofthedecayprocess.Theseeffectshave weconsidertheWIMPannihilatingintoτ+τ−,sinceanni- ± + − been studied in [16]. Since both W and Z bosons decay hilationstoW W arenotkinematicallyallowed.Sincethe promptlytoproducehighenergyneutrinos,theneteffectof detectoracceptanceisenergydependent,cutshavetobeopti- theseelectroweakcorrectionsistohardenthefluxesfromthe mized for the spectral composition of the expected signal softerchannelsandenhancesignalrateexpectations. flux. 123 Eur.Phys.J.C(2017)77 :146 Page 5 of 12 146 (a) (b) Fig. 2 The two event selection strategies for this analysis. The Ice- Cubedominatedhighenergysample(a)issensitivetoneutrinosabove ∼100GeV.Mostofthesensitivityforneutrinosignalsbelow100GeV comesfromtheDeepCore(DC)dominatedlowenergysample(b).This approachissimilartothatofearlierIceCubeanalyses[21] WithinIceCube,astandardsetoffilterspre-selectsignal- Fig. 3 Zenith distributions for simulation, indicated for their simu- likeeventsandreducetherateofthedominantbackground latedparticledirection(MC,dashedlines)andreconstructeddirection ofatmosphericmuons,subsequenttowhichreconstructions (reco,solidlines),anddata,withonlyreconstructeddirections(circles), specifictotheeventtopologyarecarriedout,atwhatisknown at filter level (L2) and analysis level. At filter level the down-going atmosphericμ-background(reddashed),dominateseventheup-going as the filter level or level 2 (L2). We focus on a stream of regionfortherecordeddata(solidcircles),becauseoffalsedirection datafromthreeofthesefilters,alow-energyeventfilteron reconstructions (solid grey). The flux expectation of atmospheric νμ the topological region of DeepCore and two further filters (greendashed)areindicated[22].Afterremovalofbackgroundevents selectingmuon-likeeventsinthebiggerIceCubearray.One intheeventselectionreconstructedtrack-likeatmosphericνμ-events (greensolid)dominatetheremainingexp.data(opencircles)atfinal ofthesefiltersfavoursshortlowenergyupwardgoingtracks. level.TheplotalsoshowstheobtainedlimitsonthesolarWIMPνμ The other selects general bright track-like events, both up signalfluxobtainedbythisanalysisfortwodifferentWIMPmodels, anddown-going,wherethelatterclassisrestrictedtoevents whicharereconstructedinDeepCore(50GeVτ+τ−,lightblue)and starting within the detector. After these filters the data rate IceCube(1TeVW+W−,darkblue)atanalysislevel(solid)andscaled bytheirselectionefficiencyatfilterlevel(dashed) is reduced from 3kHz to about 100Hz. Still, atmospheric muons constitute the overwhelming majority of events. At This analysis makes use of a new approach for the nec- this stage, about 30% of the neutrino events recorded by essarynoisecleaningandseparationofcoincidenteventsby IceCubeincludeacoincidentatmosphericmuonevent.The anagglomerativehitclusteringalgorithm[23,24].Itoperates goalistofurtherreducethedatawithaseriesofreconstruc- progressively on the IceCube data stream described by the tionsandcutstoasampleofsignal-likeneutrinoeventsThis time-distributionofhits.Withinthealgorithm,whichtakes sample will be, however comprised almost exclusively of intoaccountthehexagonaldesignofthedetectorandthedif- atmospheric neutrino events, an irreducible background to ferenceininstrumentationdensitybetweenitscomponents, the analysis. Figure 3 provides a comparative summary of thephysicalcausalrelationbetweenconsecutivehitsisana- theeventratesatfilterandanalysislevel. lyzed.Iffoundtobecausallyconnected,hitsareconsidered toformacluster.Clustersgrowbyfurtheradditionofmore 4.1 Datatreatment connected hits, while unconnected hits are rejected. Each such identified cluster can later be attributed to a particle TheprocessingofIceCubedataproceedsinsequentialsteps, (sub)eventwithinthedetector.Persistenterrors,suchasthe referredtoasselectionlevels.Itinvolvestheabstractionofthe splittingofasingleeventintotwoseparatesubeventsarecor- recordedanalogtodigitalconverterdataasphotonsimpact- rected by a subsequent algorithm described in [23], which ingonsinglePMTs(hits),theremovalofnuisancehitscaused probes the recombination of subevents back into a single by detector noise and coincident events,1 event reconstruc- event. The combination of these algorithms performs 50% tionsofincreasingcomplexityandeventselectioncuts.The betterthanpreviousapproaches,inbothselectingthecorrect reconstructionsassumesingleeventtopologiesbuiltuponly hits created by the radiating particle as well as the correct byhitsthatarecausedbytheradiatingparticle.Theycaneas- separationofeventsarrivingincoincidence. ilybemisledbynuisancehits,makinghitcleaningapriority foranyIceCubeanalysis. 4.2 IceCubeeventselection 1 Twoormoreeventsbeingpresentinthedetectoratthesametimeand endingupinthesamereadoutwindow.Aneffectobservedin∼10%of Fromthe∼100Hz ofdatafromthethreefiltersatL2,cuts recordedevents,upto30%dependingonfilterstreamselection. favoring horizontal, well reconstructed events are used to 123 146 Page 6 of 12 Eur.Phys.J.C(2017)77 :146 select ∼3Hz of data (L3). The position of the Sun varies requiring the zenith angle to be reconstructed within 10◦ between ∼66◦ and 104◦ in zenith angle. Consequently the oftheactualSunposition.AsecondBDT,whichistrained signaleventsareexpectedtobehorizontalwithinthedetector. ontheexactsignalpropertiesbyadditionalenergy-sensitive Subsequently, events thathave morehits outsidethe Deep- eventvariables,isusedtofurtherrefinetheeventclassifica- Corefiducialvolumeoratleast7hitsintheIceCubestrings tion(L6).AloosecutonthesecondBDT-scoresufficiently areselected.Moresophisticatedandcomputationallyinten- reducesthesample,sothatthecomputationallydemanding sivereconstructionsareperformedatthisstage.ABayesian energyreconstructiondescribedin[28]canbeappliedtoall likelihood-based reconstruction that uses the prior knowl- remainingevents(L7).Thisreconstructionestimatesthetotal edgethatthedataarestilldominatedbydown-goingmuons energyoftheincomingneutrinofromthelengthofthemuon is used, along with consistency tests between the various track as well as the photons from hadronic debris from the trackreconstructionsperformedsofar.Thisreducesthedata charged current interaction, when the interaction has taken rateto∼140mHz(L4).Subsequently,aBoosted[25]Deci- placewithintheinstrumenteddetectorvolume.Thesample sionTree(BDT)isusedtoquantifyeacheventassignalor nowcontainsallvariablesneededforthelikelihoodanalysis background-like using a score, based on a set of variables procedure.TheBDT-scorecutcanbefurtheroptimizedfor describing the event topology and direction, as well as rel- thebestsensitivityforabroadrangeofWIMPmodelsatthe ative positions and arrival times of the various photon hits lowWIMPmassendandobtainthesampleatL8. withinthedetector.TheBDTistrainedonsimulatedsignal Theselectioncriteriadescribedinthetwosectionsabove + − eventsoftheW W -annihilationchannelof1TeVWIMPs. are applied to data from the austral winters between May TheoptimumthresholdontheBDTscorewasdetermined 2011 and March 2014. This produces two non overlapping usingtheModelRejectionFactormethoddescribedin[26] sampleswiththeνμ+ν¯μeffectiveareasandangularresolu- forthesamesignalhypothesis.Theremaining∼2.9mHzof tionsshowninFig.4,correspondingto532daysofoperation data (L5) are dominated by up-going muons from charged ofIceCube-DeepCore.WhilethisTables1and2summarize current interactions of atmosphericνμ (and ν¯μ).Theangu- theratesandneutrinopuritiesofthetwostreamsatvarious lar resolution of this sample is further improved using a levelsoftheeventselection. reconstruction which utilizes tabulated photon arrival time During the austral summer, when the Sun is above the distributionsobtainedfromsimulationasdescribedin[27]. horizon and a source of down-going neutrinos, an addi- Themedianneutrinoangularresolutionforthisfinalsample tionalbackgroundofdown-goingatmosphericmuons,∼105 rangesfrom∼6◦fora100GeVneutrinoto<1◦fora1TeV higherinratethanatmosphericneutrinosatfilterlevel,dom- neutrino. inatesoverthesignal.Forthisdatatakingperiod,inorderto reachasampleofsuitableeventsforanalysis,considerably 4.3 DeepCoreeventselection hardercutsarerequired,diminishingtheacceptanceofneu- trinoevents.Samplesisolatedfromtheseperiodsofoperation ThefiducialregionofDeepCoreisalreadyembeddeddeep of IceCube-DeepCore [23,29] have been found to not con- within the detector. In consequence, using a selection of tributesignificantlytothesensitivityandarethusnotfurther DeepCoredominatedeventswithlessthan7hitsonregular considered. IceCube strings (the compliment of the selection criterion for the IceCube event selection) already provides a certain degree of background rejection via containment and start- 5 Analysismethod ingrequirementforevents.Thesetwopropertiesarefurther exploited for the identification of events originating from An unbinned maximum likelihood ratio method [7] is sub- neutrinointeractions. sequentlyusedtolookforastatisticallysignificantexcessof TheDeepCoreeventselectionstartswitheventsselected eventsfromthedirectionoftheSun.Thesignalprobability byanyfilteratL2.Straightcutswhichenforceminimalevent densityfunction(p.d.f.),explicitlydependentontheevent’s qualityandalooseselectionforlowenergyhorizontalevents reconstructeddirection,x(cid:4),energy,E ,andobservationtime, i i are applied. To reject down-going events still contained in t ,isgivenby: i thesample,hit-basedvetosrequiringnohitsintheouterand top-mostDOMsareapplied.Subsequently,eventsarerecon- Si(x(cid:4)i,ti,Ei,mχ,cχ)=K(|x(cid:4)i −x(cid:4)(cid:5)(ti)|,κi) structedwiththereconstructiondescribedin[27]followedby ×Emχ,cχ(Ei), (1) furtherstraightcuts,whichreducethecontentofatmospheric muonswithinthesample(L3+L4).AfterthisaBDT,which where K stands for the spatial and E for the spectral parts istrainedontheselectionoftrack-likeνμ-eventsbyvariables ofthep.d.f.andmχ andcχ standforthemassandannihila- expressingtheposition,incomingdirectionandreconstruc- tionchannel of the WIMPrespectively. Here K isapproxi- tion quality of events, is used. Thereafter a cut is applied matedbythemonovariateFisher-Binghamdistribution[30] 123 Eur.Phys.J.C(2017)77 :146 Page 7 of 12 146 Fig. 4 Event selection performance. Left νμ + ν¯μ effective area, DeepCoreselection.ThosethatareincludedintheDeepCoreselection derivedfromMonteCarlosimulationsperformedusingGENIE[20]for aretheonesoflowerenergyandthoseinwhichalargerfractionofthe theDeepCoreselectionandNuGen[18]employingthecrosssections neutrinoenergyhasbeentransferredtothehadroniccascade.Forthe ascalculatedby[19]fortheIceCubeselection.Rightmedianangular latterevents,alargerfractionoftheobservedphotonyieldcomesfrom resolutionasafunctionoftrueneutrinoenergy.Thedashedlinesindi- thehadroniccascade,affectingtheperformanceofthetrackdirection catethemediankinematicanglebetweentheincomingneutrinoandthe reconstruction.Inadditionthekinematicscatteringanglealsoishigher muon.EventsfromCCinteractionsofneutrinoswithenergieshigher forsuchevents.Consequently,asaturationeffectcanbeseeninboth than∼100GeVarepreferentiallyincludedintheIceCubeselectionas angularresolutionandkinematicanglelinesfortheDeepCoreSelec- therangeofthemuonishigherthanthecontainmentrequirementsofthe tion,atenergiesof∼100GeV Table 1 Rate summary for the IceCube event selection. The signal totalMonteCarlorateisduetodeficienciesinCORSIKA.Ascutsreject efficiencies are with respect to L2 for the 1TeV→ W+W− signal. mostoftheatmosphericmuonbackground,thediscrepancybecomes Theatmosphericmuonneutrinoratesindicatethesumofνμandν¯μin smaller.Thefinalanalysismethodusesrandomizeddatatoestimatethe theexpectedratio.ThediscrepancybetweenthedatarateatL2andthe background,andisnotaffectedbythisdiscrepancy Cutlevel Data(Hz) CORSIKA(Hz) Atmosνμ(Hz) Sigeff(%) L2 98.4 72.8 18.6×10−3 100 L3 2.81 3.32 8.4×10−3 82 L4 0.14 0.15 5.2×10−3 63 L5 2.9×10−3 0.8×10−3 2.1×10−3 37 Table2 RatesummaryfortheDeepCoreeventselection.ThesignalefficienciesarewithrespecttoL2forthe50GeV→τ+τ−–signal Cutlevel Data(Hz) CORSIKA(Hz) Atmosνμ(Hz) Sigeff(%) L2 25.6 25.1 5.90×10−3 100 L3 1.37 1.03 3.36×10−3 58 L4 0.74 0.66 3.24×10−3 57 L5 0.55 0.48 2.48×10−3 42 L6 66.9×10−3 59.6×10−3 2.140×10−3 38 L7 1.82×10−3 2.07×10−3 0.423×10−3 16 L8 0.334×10−3 0.143×10−3 0.220×10−3 10 123 146 Page 8 of 12 Eur.Phys.J.C(2017)77 :146 Fig. 6 DistributionofcosineoftheopeninganglestowardstheSun observedineventsoftheIceCube(top)andDeepCore(bottom)sam- Fig. 5 Distributionofthereconstructedenergy(Reco)oftheevents ples.Theblackdots representthenumberofeventsreconstructedat fortheDeepCoreselection.Forbackgroundandsignalsimulations,the thecorrespondingdirection,theredlinesaretheaveragebackground trueenergydistribution(MC)isshownindashedlines.Thedistribu- expectationswiththegrayshadedregionscorrespondingtostatistical tionsforthesignalarescaleddownbyafactorof1/2forimproved uncertaintiesonthebackgroundexpectations,whilethebluelinesindi- visualization.eps catetheeventsexpectedfromWIMPsofmasses1TeVannihilatinginto W+W−at2.84×1019s−1and50GeVannihilatingtoτ+τ−attherate of3.46×1022s−1respectively,thepresentupperlimits.Theanalysis fromdirectionalstatistics,dependentontheopeningangle,θ, methodemployedisunbinnedindirection,consequentlythebinning betweentheeventandthedirectionoftheSunatobservation employedinthisfigureisforindicativepurposesonly time,x(cid:4)(cid:5)(ti),givenby K(|x(cid:4)i −x(cid:4)(cid:5)(ti)|,κi)= κi2eπκi(ceoκsi(θ−|x(cid:4)i−ex(cid:4)−(cid:5)κ(iti))|) (2) tihneRyecfa.n[b3e2c].oCmobninfieddesntcaetisintitcearlvlaylussoinngtthheemnuemthboedrdoefscsriigbneadl events present within the sample are constructed using the The concentration factor κ of the event i is obtained from i methodof[33]. thelikelihood-basedestimateoftheangularresolutionofthe trackreconstruction[31].Theenergypartofthesignalp.d.f. 5.1 Systematicuncertainties isconstructedfromsignalsimulations. Thebackgroundp.d.f.is: Background levels are estimated in this analysis method B (x(cid:4),E )= D(δ )× P(E |φ ) (3) using data randomized in right ascension (see Fig. 6) and i i i i i atm soare,byconstruction,freeofsignificantsystematicuncer- where D(δ ) is the declination dependence and P(E|φ ) i atm tainties.Apreviousstudyofthesignaluncertaintiesondata indicates the distribution of the energy estimator E in the fromthe79-stringconfigurationofIceCube[21]concluded eventsamplewhichisconstructedfromthedatadominated thatthefollowingsourcesofuncertaintyareintrinsictothe byatmosphericneutrinos. signalsimulation(percentageimpactonsensitivityinparen- Theenergypartofthesignalandbackgroundp.d.f.sare thesis): thedistributionsofreconstructedenergyobtainedfromsignal simulations and observed data, respectively, and are used 1. Neutrino-nucleon cross sections (7% at mχ <35GeV onlyfortheDeepCoresample.TheyareillustratedinFig.5. downto3.5%formχ >100GeV) For a sample of N events consisting of n signal events s 2. Uncertaintiesinneutrinooscillationparameters(6%) fromtheSunand N −n backgroundevents,thelikelihood s 3. Uncertaintiesinmuonpropagationinice(<1%), canthenbewrittenas: (cid:2)(cid:3) (cid:3) (cid:4) (cid:4) n n L(ns)= sSi + 1− s Bi (4) whilethefollowingsourcesdominatethedetectionprocess N N N Thebestestimateforthenumberofsignaleventsinthesam- 1. AbsoluteDOMefficiency pleisobtainedbymaximizingthelikelihoodratioasdefined 2. Photonpropagationinice(absorptionandscattering). inRef.[7].Thesignificanceoftheobservationcanbeesti- mated without depending on Monte Carlo simulations by Sincethefirstclassofsourcesofuncertainties,directinputs repeatingtheprocessondatasetsrandomizedinrightascen- totheWimpSimsignalgeneratorthatmostlyaffectthesig- sion.Asthetwoeventselectionshavenoeventsincommon, nalfluxnormalisations,havenotsignificantlychangedwith 123 Eur.Phys.J.C(2017)77 :146 Page 9 of 12 146 Table3 Systematicssummarystatinguncertaintiesinthedetectionprocess.Thelastcolumnstatesthetotaluncertaintyestimate,whichisthe largestsuminquadratureoftheindividualuncertainties mχ (GeV) Annih.channel AbsoluteDOMeff(%) Photonprop.inice(%) Total(%) 20 τ+τ− −11/+29 −13/+18 35 50 τ+τ− −8/+23 −9/+13 29 100 W+W− −9/+19 −9/+11 23 500 bb¯ −7/+11 −8/+7 15 1000 W+W− −6/+9 −6/+4 12 respect to the study in Ref. [21], we assume them to be direct detection. Even though these tend to be significantly similar. The second class of sources of uncertainties also stronger,theyaresubjecttodifferentuncertaintiesfromthe includeeffectsalteringthesignal’sapparentspectralcompo- nuclearscatteringprocessandfromastrophysics.Limitshave sition in the detection process and are thus more important improved by a factor of ∼2 to 4 with respect to previous tothisanalysiswhichissensitivetothereconstructedevent IceCubeanalyses[21,42].Whiletheseconstraintsexplicitly energy. assumeequilibriumbetweencaptureandannihilationinthe TostudytheeffectoftheabsoluteDOMefficiencyaswell Sun,forthenaturalscaleof(cid:7)σ v(cid:8)∼3×10−26cm3s−1[43], A as the absorption and scattering properties of the ice, a set the time required for equilibrium to be achieved becomes of signal simulations were generated for one year of data as large as the age of the Sun only for σχS−Dp as low as by individually varying each quantities by ±10% from the 10−43cm2,makingthisaveryreasonableassumption[44]. baselinevalueforcertainbenchmarksignalsofinterest. Theuncertaintiesontheselimitsduetouncertaintiesinveloc- The percentage impact of these variations on the muon itydistributionsofDMhavebeenquantifiedinRef.[45]and flux(cid:10)¯μ+μ¯,whichcanbeconvertedtotheotherquantitiesin do not exceed ∼50%. The study also concludes that these Table4,aresummarizedinTable3.Thepercentageimpactof limits are conservative with respect to the possible exis- theuncertaintiesonneutrino-nucleoncrosssections,neutrino tence of a dark-disk [46], since a population of DM parti- oscillationsandmuonpropagationinicearetakenfrom[21] cles with lower velocities in the disk will enhance the cap- andsummedinquadraturetotheonesfromuncertaintiesin ture rate. For a dark disk contributing an additional 25% DOMefficiencyandiceopticalpropertiestoobtainthetotal to the local DM density, co-rotating with the visible stel- systematicuncertainty. lardiskwithnolaginvelocityandavelocitydispersionof σ = 50km/s,thespin-dependentcapturerateisboostedby afactorof∼20athighDMmasses,improvingtheconstraint 6 Results on the spin-dependent cross section by a corresponding amount. No significant excess of events over the expected back- AsdemonstratedinFig.7,theseconstraintsexcludesome ground was found in the direction of the Sun, allowing us models corresponding to neutralinos from a scan of ∼500 to setlimitson theneutrino flux fromthe Sun inthe GeV– million points in the 19 parameter realization of the phe- TeV range. Assuming a conservative local DM density of nomenological minimally super-symmetric standard model 0.3GeV/cm3 [41],astandardMaxwellianhalovelocitydis- (pMSSM)[47,48]performedusingmicrOMEGAs[49]with tributionandtheStandardSolarModel,thislimitcanalsobe logarithmically distributed priors (chosen to preferentially interpreted as a limit on the WIMP-proton scattering cross populatelowmass,highσχS−Dp models)onthemassparam- section. Table 4 summarizes the best fit number of signal eters typically in the range 50–10,000GeV/c2. The points eventsandtheupperlimitonthemuonandneutrinofluxes,as were required to yield a relic dark matter density consis- wellasspin-dependentandspin-independentWIMP-proton tent with PLANCK measurements [50] and a Higgs mass scatteringcrosssections. withinthecurrentlyknownuncertaintyrange[51],inaddi- tion to being consistent with recent measurements of the Bs → μ+μ− branching ratio [52] and the CKM matrix 0 7 Conclusionsandinterpretations elementVub [53].Furtherdetailsaregivenin[54]. BeyondtheWIMPparadigm,thissearchissensitivetoany For spin-dependent WIMP-proton scattering, IceCube lim- scenario with a DM particle in the 20GeV to 10TeV mass its are the most competitive in the region above ∼80GeV rangethatcanscatteroffnucleisufficientlystronglytocause (Fig. 7). The constraints on spin-independent scattering anover-densityatthecenteroftheSun,andcanannihilateto (Fig.8)fromthissearcharecomplementarytothelimitsfrom produce neutrinos asprimaryorsecondary products.Some 123 146 Page 10 of 12 Eur.Phys.J.C(2017)77 :146 einitsendent .L(pb) 06 05 07 05 07 06 07 08 06 08 08 06 08 08 06 08 08 06 07 08 05 07 07 05 06 07 e-DeepCorspin-indep .σ90%CSI −4.06e −4.77e−6.95e −2.44e−3.02e −7.38e−2.13e−6.48e −3.50e−6.62e−3.52e −2.82e−3.49e−1.35e −2.00e−5.28e−1.60e −4.65e−3.70e−8.25e −1.06e−9.14e−2.19e −3.46e−3.88e−9.11e ubnd b) Ca p perationofIcepin-dependent ..σ90%CL(SD −4.85e04 −9.25e03−1.35e04 −6.39e03−7.90e05 −3.29e03−9.52e05−2.91e05 −2.80e03−5.30e05−2.82e05 −3.06e03−3.76e05−1.46e05 −2.59e03−6.80e05−2.07e05 −6.76e03−5.42e04−1.21e04 −1.58e02−1.37e03−3.28e04 −5.27e02−5.96e03−1.40e03 os ) ofhe −1 threeyearsnrate,andt ..(cid:12)90%CL(sχχ→SM 9.19e+23 7.39e+24 1.08e+23 2.79e+24 3.46e+22 4.09e+23 1.18e+22 3.60e+21 5.96e+22 1.13e+21 5.99e+20 1.66e+22 2.04e+20 7.96e+19 3.56e+21 9.34e+19 2.84e+19 1.04e+21 8.33e+19 1.85e+19 8.74e+20 7.59e+19 1.82e+19 7.31e+20 8.26e+19 1.94e+19 oo orrespondingtflux,annihilati −−21myear) c e,on (k oflivetimonthemu ..(cid:10)90%CLμ+¯μ 1.52e+05 2.38e+05 3.22e+04 1.27e+05 1.45e+04 3.22e+04 3.73e+03 2.75e+03 8.57e+03 6.02e+02 8.64e+02 3.37e+03 5.53e+01 5.93e+01 1.55e+02 3.31e+01 3.46e+01 7.56e+01 3.13e+01 2.90e+01 7.24e+01 2.84e+01 2.93e+01 6.87e+01 3.11e+01 3.21e+01 daysmits ) ∼532perli −1ear p y esinasu −2m wosampld,aswell ¯(cid:10)(kμ+¯μ 1.58e+05 2.44e+05 3.33e+04 1.29e+05 1.39e+04 3.05e+04 2.81e+03 2.13e+03 6.79e+03 5.03e+02 7.74e+02 3.04e+03 4.04e+01 4.71e+01 1.30e+02 3.06e+01 3.30e+01 7.29e+01 3.07e+01 2.85e+01 7.11e+01 2.78e+01 2.86e+01 6.74e+01 3.08e+01 3.18e+01 te ed ventswithintharealsoprovi 3V(km)eff −4.40e04 −2.79e04−1.26e03 −4.71e04−2.31e03 −1.39e03−6.64e03−9.40e03 −4.42e03−7.38e02−7.20e02 −1.54e02−1.87e01−1.95e01 −3.24e02−2.67e01−2.86e01 −6.62e02−2.86e01−2.92e01 −7.72e02−3.09e01−3.10e01 −8.26e02−3.18e01−3.19e01 berofsignalehethreeyears ..90%CLns 97.2 96.8 59.1 87.3 48.9 65.2 36.1 37.6 55.1 64.7 90.6 75.6 36.0 45.1 43.1 24.6 28.6 32.1 23.1 21.1 33.7 22.4 22.3 32.5 25.2 25.0 umert % nv e ontheumeso pvalu >50 >50>50 >50 48.4 46.1 34.7 31.3 28.2 39.8 42.1 46.1 39.3 38.7 37.2 48.9 46.5 48.2 49.6 49.4 49.1 49.8 49.8 49.8>50>50 upperlimitseffectivevolections Dataset DC DC DC DC DC DC DC DC DC+IC DC+IC DC+IC DC+IC IC IC IC IC IC IC IC IC IC IC IC IC IC IC valuesand90%C.L.uration.Theaverageonscatteringcrosss Annih.channel +−ττ ¯bb+−ττ ¯bb+−ττ ¯bb+−WW+−ττ ¯bb+−WW+−ττ ¯bb+−WW+−ττ ¯bb+−WW+−ττ ¯bb+−WW+−ττ ¯bb+−WW+−ττ ¯bb+−WW+−ττ Pnfigprot V) Table4finalcoWIMP- m(Geχ 20 35 35 50 50 100 100 100 250 250 250 500 500 500 1000 1000 1000 3000 3000 3000 5000 5000 5000 10,000 10,000 10,000 123

Description:
K. D. de Vries13, G. de Wasseige13, M. de With9, T. DeYoung22, J. C. K. Meagher12, M. Medici20, M. Meier21, A. Meli26, T. Menne21, G. Merino30, T. Meures12, . 125 m, an inter-DOM spacing of 17 m along each string, and.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.