ebook img

Search for a Standard Model Higgs boson decaying to b quarks and produced in association with Z/W bosons with the CMS detector PDF

0.29 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Search for a Standard Model Higgs boson decaying to b quarks and produced in association with Z/W bosons with the CMS detector

Search for a Standard Model Higgs boson decaying to b quarks and produced in association with Z/W bosons with the CMS detector MicheleDeGruttola1,2,a 1 UniversityofFlorida,InstituteforHighEnergyPhysicsandAstrophysics,DepartmentofPhysics,Gainesville,FLUSA 2 FermiNationalAcceleratorLaboratory,Batavia,ILUSA Abstract. A search for the standard model Higgs boson is performed in a data sample corresponding to an 2 integratedluminosityof1.1fb−1,recordedbytheCMSdetector[4]inproton-protoncollisionsattheLHCwitha 1 7TeVcenter-of-massenergy.Thefollowingmodesarestudied:W(µν)H,W(eν)H,Z(µµ)H,Z(ee)HandZ(νν)H, 0 withtheHiggsdecayingtobbpairs.95%C.L.upperlimitsontheVHproductioncrosssectionarederivedfora 2 Higgsmassbetween110and135GeV.Theexpected(observed)upperlimitat115GeVisfoundtobe5.7(8.3) n timesthestandardmodelexpectation. a J 2 1 Introduction Anoptimizationoftheeventselection,thatdependson 2 the Higgs mass, is performed, and 95% C.L. upper limits on the pp → VH production cross section are obtained ] The search for the Higgs boson [1] is currently one of x forHiggsmassesbetween110-135GeV.Theselimitsare the most important undertakings of experimental particle e based on the observed event count and background esti- - physics. mateinsignalregionsdefinedineithertheinvariantmass p e At the LHC the main Higgs production mechanism is distribution of H → bb¯ candidates (“M(jj) or cut-and- h direct production through gluon fusion, with a cross sec- countanalysis”),orintheoutputdiscriminantofaboosted [ tionof∼ 17·103 fbforaHiggsmassmH = 120GeV[2]. decisiontreealgorithm(“BDTanalysis”)[5].Thelatteren- However,inthisproductionmode,thedetectionoftheH → hancesthestatisticalpoweroftheanalysisbymakingfull 1 bb¯ decayisrenderednearlyimpossibleduetooverwhelm- useofcorrelationsbetweendiscriminatingvariablesinsig- v 1 ing QCD di-jet production. The same holds true for the nalandbackgroundevents. 1 nextmostcopiousproductionmode,throughvector-boson Forlackofspacewewillpresenthereonlytablesand 6 fusion,withacrosssectionof∼1,300fb.Insteadwecon- plotsforthe115GeVmasshypothesis,whileonlythefinal 4 sider processes in which the Higgs is produced in asso- limitsplotswillcontainsallmassrangesearch. . ciation with a vector boson which have cross sections of 1 ∼ 660and∼ 360fbforWH andZH respectively.Evenif 0 the resulting sensitivity of the H → bb¯ decay is less than 2 2 Event selection 1 otherfinalstatessuchas H → γγand H → ττforexam- : ple,itisparamounttosearchfortheHiggsinthesemodes v giventhat theobservation ofthe H → bb¯ decayis keyto CandidateW(→ (cid:96)ν)decaysareidentifiedbyrequiringthe i presence of a single, isolated, lepton and additional miss- X determine the nature of this particle, if and when discov- ingtransverseenergy(MET).Muons(electrons)arerequired r ered. tohavea p above20(30)GeV.CandidateZ →(cid:96)(cid:96)decays a t We summarize a search for the standard model Higgs are reconstructed by combining isolated, opposite charge boson in the pp → VH production mode with the CMS pairsofelectronsandmuonsandrequiringthedileptonin- detector.Theanalysisisperformedinadatasamplecorre- variant mass to satisfy 75 <m < 105GeV. For Z candi- spondingtoanintegratedluminosityof1.1fb−1,collected (cid:96)(cid:96) datestheelectron p isloweredto20GeV.Theidentifica- t bytheCMSexperimentata7TeVcenter-of-massenergy. tionofZ → ννdecaysrequiresMET> 160GeV(thehigh Thefollowingfinalstatesareincluded:W(µν)H,W(eν)H, thresholddictatedbythetrigger). Z(µµ)H,Z(ee)HandZ(νν)H–allwiththeHiggsdecaying ThereconstructionoftheH →bb¯decayismadebyre- tobb¯ pairs. quiringthepresenceoftwocentral(|η|<2.5)jets,abovea BackgroundsarisefromproductionofWandZbosons minimump thresholdandb-tagged.Ifmorethantwosuch t associatedwithjets(allflavors),singly(ST)andpair-produced jetsarefoundintheevent,thepairwiththehighestsumof topquarks,anddi-bosons(VV).Simulatedsamplesofall theb-tagoutputsforthetwojetsischosen(exceptforthe backgrounds are used to provide guidance in the analy- WHanalyses,inwhichthett¯backgroundislarger,where sis optimization, and an initial evaluation of their contri- thepairofjetswithhighesttotal p ischosen).Thesecom- t butions in the search region. For the main backgrounds, binationsarefoundtoyieldhigherefficiencyandrejection high-puritycontrolregionsareusedtoestimatetheircon- ofwrongcombinationsinsignalevents,asopposedtosim- tributioninthesignalregion. ply selecting the two highest p jets in the event. After b- t taggingthefractionofH →bb¯ candidatesthatcontainthe a e-mail:[email protected] twob-jetsfromtheHiggsdecayisnearunity. EPJWebofConferences After b-tagging, the background from V+jets and di- Table1.Purityandscalefactors(Data/MC)derivedfromback- bosonsisreducedsignificantlyandbecomesdominatedby ground enriched control regions (CR), as described in the text. the sub-processes where the two jets originate from real The scale factors for W → µνHand W → eνH were averaged b-quarks. Events with additional jets (N ) or additional together,andthesamewasdoneforZ→µµHandZ→eeH. aj leptons (N ) are rejected to further reduce backgrounds al fromtt¯andWZ. W →(cid:96)νH Z→(cid:96)(cid:96)H The topology of VH production is such that the W/Z CR Purity SF Purity SF and the Higgs recoil away from each other with signifi- V+udscg 79.4% 0.84±0.10 92.8% 0.88±0.02 cant pt.Cutsontheazimuthalopeninganglebetweenthe tt¯ 85.8% 1.01±0.11 97.5% 0.99±0.05 vectorbosonandthereconstructedmomentaoftheHiggs V+bb¯ 20.2% 1.40±0.29 81.6% 1.16±0.08 candidate, ∆φ(V,H), on the p of the V-boson and on the t b-tagged dijet pair achieve significant rejection for most backgroundprocessesandimprovetheanalysisreach. Table2.Z Purityandscalefactors(SF,Data/MC)derivedfrom FortheZ →ννchannel,QCDbackgroundsarefurther inv backgroundenrichedcontrolregions,asdescribedinthetext. reducedbyafactorof∼ 30whenrequiringthattheMET doesnotoriginatefrommismeasuredjets. ThetrainingoftheBDTisdonewithsimulatedsamples CR Purity SF for signal and background that pass a looser event selec- Z+udscg 92.4% 0.97±0.06 tion relativeto the M(jj) analyses.Several input variables W+udscg 94.1% 0.92±0.05 were chosen by iterative optimization. These include the Z→bb 44.4% 1.00±0.30 di-jetinvariantmassandmomentum:M(jj)andp ,theV tt¯ 89.9% 0.91±0.09 tjj transverse momentum p (V) , the b-tag value for each of T thetwojets,theazimuthalanglebetweentheVandthedi- jets,∆φ(V,H),andthepseudorapidityseparationbetween tt¯) or vetoing (for W+jets) b-jets. Table 2 lists the con- thetwojets,∆η(J1,J2).TheBDTanalysiswasexpectedto trol regions and the corresponding purities and scale fac- improve the sensitivity with respect to the M(jj) analysis torsobtained. byabout10%ineverychannel. The QCD background in the signal region is also es- timated from data using control regions of high and low values of two uncorrelated variables with significant dis- 3 Control regions criminating power towards QCD events. One is the angle betweenthemissingenergyvectorandtheclosestjetinaz- Appropriatecontrolregionsthatareorthogonaltothesig- imuth,∆φ(pfMET,J) andtheotheristhesumoftheCSV nal region are identified in data and used to adjust Monte valuesofthetwob-taggedjets.Thesignalregionisathigh Carlo estimates for the most important background pro- cesses: W+jets and Z+jets (with light and heavy-flavor valuesofbothdiscriminants,whileQCDpopulatesregions jets),tt¯andQCDmultijetandheavy-quarkproduction.Dif- withlowvaluesofeither.Themethodpredictsanegligible ferent control regions are found for each of the different contaminationofthisbackground. search channels by changing the event selection in a way thatenrichesthecontentofeachspecificbackground.For all cases, control regions with purity ranging from about 4 Systematics 20% to nearly 100% have been successfully found. Dis- crepancies between the expected and observed yields in Thefollowingsystematicuncertaintiesontheexpectedsig- thedatainthesecontrolregionsareusedtoobtainascale nalandbackgroundyieldsaffecttheupperlimit.Theval- factor bywhich the estimatesfrom the simulationare ad- ueslistedareanapproximationofwhatisactuallyusedin justed.Thebackgroundfromthesesourcesinthesignalre- thelimitcalculation. gionarethenestimatedfromtheadjustedsimulationsam- The total uncertainty on the signal prediction is taken ples, taking into account the associated systematic uncer- to be 26% and 28% for ZH and WH production, respec- tainty.Thepreciseconstructionofallthecontrolregionsis tively. Background uncertainties range from 12% to 20% involvedandoutsidethescopeofthissummary.Theproce- dependingonmodeandmasspoint. duresappliedinclude,forexample:reversingtheb-tagging Experimentalsourcesofsystematicsaretheb-tageffi- requirements to enhance W+jets and Z+jets with light- ciency(∼10%),thejetenergyresolution(∼10%)andscale flavor jets; enforcing a tighter b-tag requirement and re- (∼1%) uncertainty, the machine luminosity (∼4.5%), the quiring extra jets to enhance tt¯and requiring low “boost” trigger efficiency (∼2%). The signal cross section is af- inordertoenhanceV → bbovertt¯.Table1liststhecon- fectedbyelectroweakcorrectionsforaboostof∼150GeV trol regions and the corresponding purities and scale fac- are5%forZHand10%forWH,andQCDcorrection,rel- torsobtained. evantinthecomparisonNNLOvs.NLO,whereanuncer- TheZ →ννHchannelisuniqueamongthefivemodes taintyof10%forbothZHandWHisestimated. analyzed, in that it does not include charged leptons. An importantcheckistocomparetheobservedpfMETdistri- butionwiththepredicteddistributionfromsimulation.To accomplish this, muons are removed from the Z → µµJ 5 Results data sample. Reasonably pure samples of tt¯and W+jets eventscanbeobtainedbyrequiringatleastoneadditional Thefinalpredictednumberofeventsinthesignalregions isolated lepton in the event,and then either requiring (for oftheBDTandM(jj)analysesaredeterminedwithamixof ConferenceTitle,tobefilled data-drivenestimatesbasedonthecontrolregions,andex- pectationsfromsimulation.Wesummarizethefinalsignal GeV) CMS Preliminary DVHat afi bb ainngdtbhaecksygsrtoeumnadtiecstuimncaetretsaiinntibeosthsusmetmsoafriaznedalyinsetsh,einpcrleuvdi-- nts/(16 10 Ws( m=n 7)H T(ebVb,) L = 1.1 fb-1 WZWWS i+W n++ gj +eubleWtdbs TsZogp ous section, and the expected and observed upper limits Eve tQtCD using1.1fb−1ofintegratedluminosity.Wereportintables 1 3 and 4 and figures 1 and 2 the results for a single mass point, 115 GeV. While the final limits plots include mass pointsfrom110to135GeV. 10-1 Table 3. Predicted backgrounds, signal yields with total uncer- 0 50 100 150 20M0 [Ge2V5]0 jj tainty,andtheobservednumberofeventsfor115masspointfor tohneM5c(jhj)anfonreltsheM1(1jj5)amnaaslsyspios.inWteseraerpcohr.talsotheslidingwindows GeV) CMS Preliminary DVHat afi bb s/(16 10 Ws( e=n 7)H T(ebVb,) L = 1.1 fb-1 WZWW +W ++ j +eubWtdbssZg nt Single Top Process W(→µν)H W(→eν)H Z(→µµ)H Z(→ee)H Z(→νν)H Eve tQtCD M(jj)cut 100–130 100–130 95–125 95–125 100–130 W+udscg 0.081±0.038 0.01±0.004 - - 0.023±0.007 1 W→bb¯ 0.829±0.221 0.344±0.093 - - 0.310±0.084 Z+udscg - - 0.110±0.065 0.006±0.003 0.180±0.039 Z→bb¯ 0.184±0.131 0.204±0.146 2.050±0.396 1.545±0.254 1.890±0.578 tt¯ 1.109±0.287 0.543±0.136 0.090±0.036 0.133±0.073 1.470±0.504 ST 0.24±0.105 0.122±0.049 0.090±0.036 0.009±0.007 0.410±0.156 10-1 VV 0.153±0.064 0.065±0.026 0.160±0.064 0.189±0.074 0.460±0.174 Bexp 2.596±0.449 1.288±0.242 2.410±0.358 1.883±0.232 4.793±0.938 WH 0.354±0.099 0.296±0.083 - - 0.091±0.012 0 50 100 150 200 250 ZH 0.006±0.002 0.002±0.001 0.195±0.051 0.193±0.050 0.502±0.104 Mjj [GeV] Nobs 4 4 3 2 5 V e CMS Preliminary Data s / 30 G102 Zs(m =-m 7+) THe(bV,b L) = 1.1 fb-1 ZZZZZ H+++( 1ubW1db5Zs +cGWgeWV) nt tt + S.T. ve 10 E Table 4. Predicted backgrounds, signal yields with total uncer- tainty,andtheobservednumberofeventsfor115masspointfor 1 the5channelsBDTanalysis.WereportalsotheBDTcutwechoose forthesearch. 10-1 10-2 Process W(→µν)H W(→eν)H Z(→µµ)H Z(→ee)H Z(→νν)H 0 50 100 150 200 250 300 BDT >0.050 >0.040 >−0.145 >0.160 >−0.175 M [GeV] W+udscg 0.667±0.192 0.155±0.063 - - - jj ZWZ+→→udbsbbc¯b¯g 20..003056±±-00..503036 10..317988±±-00..317441 02..181508±±-00..066455 00..097074±±-00..013869 10..315098±±00..039379 GeV102 CMS Preliminary DZHat(a115 GeV) VStTVt¯ 010...316575533±±±000...132406041 010...226955243±±±000...132116751 000...320396460±±±000...010311084 00..119759±±−00..017383 000...524795173±±±000...201177672 nts / 30 10 Zs(e =-e 7+) HTe(bVb, )L = 1.1 fb-1 ZZZttZ ++++ ubWSdb.ZTs.+cWgW Bexp 4.889±0.806 3.930±0.658 4.773±0.641 1.354±0.240 2.901±0.572 ve WH 0.587±0.164 0.477±0.134 - - 0.507±0.112 E 1 ZH 0.011±0.003 0.004±0.001 0.328±0.085 0.183±0.048 0.049±0.007 Nobs 7 9 4 2 1 10-1 10-2 6 Upper Limits 0 50 100 150 200 250 300 M [GeV] jj Preliminary 95% C.L. upper limits on the Higgs produc- V103 tioncrosssectionintheVHmodewithH → bb¯ wereob- 0 Ge CsM =S 7 P TreelVim, Lin =a r1y.1 fb-1 DVHat(a115) QZ+CuDdscg tcaoirnreedspforonmdinbgotthoathneinBtDeTgraanteddMlu(mjj)inaonsailtyysoefs1fo.1rfabd−1a.taFsoert Events/ 311002 Z(n n )H(bb) VtsttV ZWW+++bubbdbscg theexpectedandobservedlimits,andthe1-and2-σbands, theCLsmethodcurrentlyrecommendedbytheLHCHiggs 1 CombinationGroupwasemployed[6]. The results of the five BDT analyses are combined to 10-1 produce limits on Higgs production in the bb¯ channel for the assumed masses: 110 − 135 GeV. The identical pro- 10-2 cedurewasappliedtotheresultsofthe M(jj)analysis.Ta- 0 50 100 150 200 250 300 ble5summarizestheresulting,expectedandobserved,up- Mjj [GeV] per95%C.L.crosssectionlimits,withrespecttothestan- Fig. 1. Distributions of dijet invariant mass after all M(jj) se- dard model cross section, for each of the mass points for lectioncriteriahavebeenappliedin(fromtoptobottom:W(→ µν)H,W(→eν)H,Z(→µµ)H,Z(→ee)H,Z(→νν)H). EPJWebofConferences s Event11002 CWsM( m=Sn 7 )PH Tr(eeblVbim,) Lin =a r1y.1 fb-1 DVWZWWtSQt HiaC+W n++t Dgafij +eubleWt dbbs TsZbogp ss/95% C.L. Limit on SM2233405050 CVsHM =(bCCCCS 7bLLLL )TP,SSSS ec rOEEEVeo,xxxm blLipppsm b=eeeei nicccr1nvettt.eee1adeddd rdfyb ––-1 12 ss 15 1 10 5 10-1 0 110 115 120 125 130 135 Higgs Mass [GeV] -0.6 -0.4 -0.2 0 0.2 0.4 BDT Output SM40 CMS Preliminary Events102 CWsM( e=Sn 7 )PH Tr(eeblVbim,) Lin =a r1y.1 fb-1 DVWZWWtt Ha+W ++t afij +eubWt dbbssZbg ss/95% C.L. Limit on 22330505 VsH =(b 7bCCCC )TLLLL, ecSSSSVo ,OEEEm Lxxxb bppp=si neeee1ecccr.1dvttteee efdddbd- 1–– 12 ss Single Top 10 QCD 15 10 1 5 0 110 115 120 125 130 135 Higgs Mass [GeV] 10-1 Fig.3.Expectedandobserved95%C.L.combinedupperlimits on the ratio of VHbb production for the BDT (top) and M(jj) -0.6 -0.4 -0.2 0 0.2 0.4 BDT Output (bottom)analyses.Themedianexpectedlimitandthe1-and2-σ bandsareobtainedwiththeLHCCLsmethodasimplementedin ents / 0.05110023 CZs(Mm =-m S7+) THPe(rbVe,b Ll)i m= 1in.1a frby-1 DZZZZZ Ha+++t( a1ubW1db5Zs +cGWgeWV) LandS,asaretheobservedlimitsateachmasspoint. Ev tt + S.T. Table5.Expectedandobserved95%CLupperlimitsonthepro- 10 ductionofaSMHiggsbosoninassociationwithWandZbosons 1 anddecayingtobquarksrelativetotheexpectedcrosssection. LimitsarelistedseparatelyfortheBDTandM(jj)analyses. 10-1 10-2 MH(GeV) BDTExpected BDTObserved M(jj)Expected M(jj)Observed 10-3 110 5.8 8.0 6.4 8.2 115 5.7 8.3 6.0 11.3 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 120 7.7 9.5 8.1 11.4 BDT Output 125 9.6 15.3 8.6 11.6 130 11.0 16.3 12.1 14.0 s103 135 14.4 22.5 15.0 19.9 ent CMS Preliminary DZHat(a115 GeV) Ev102 s = 7 TeV, L = 1.1 fb-1 ZZZ ++ uWdZs+cWgW Z(e-e+)H(bb) Ztt ++ bSb.T. 10 theBDTandM(jj)analyses.Theresultsaredisplayedsepa- ratelyinFig.3.TheprimaryresultistheonefromtheBDT 1 analysis. 10-1 10-2 References 10-3 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1. P.W.Higgs,“Brokensymmetryandthemassofgauge BDT Output vectormesons”,Phys.Rev.Lett.13(1964)508. nts104 CMS Preliminary Data QCD 2. ALEPH,CDF,D0,DELPHI,L3,OPAL,SLDCollabo- Eve103 Zs(n =n )7H T(bebV), L = 1.1 fb-1 VVVH(115) ZZ++ubdbscg rtraotinonEsl,etchteroLwEePakElWecotrrkoiwnegakGWroourpk,inagndGtrhoeupS,LthDeTEelveac-- 102 tstt WW++ubdbsgc troweak and Heavy Flavour Groups, “Precision elec- 10 troweak measurements and constraints on the Standard Model”,ArXiv:1012.2367. 1 3. CMS Collaboration, “Search for the Standard Model 10-1 HiggsBosonDecayingtoBottomQuarksandProduced 10-2 in Association with a W or a Z Boson”, CMS Physics 10-3 AnalysisSummary,HIG-11-012(2011). -1 -0.8 -0.6 -0.4 -0.2 0 0.2 4. CMS Collaboration, “The CMS experiment at the BDT Output CERNLHC”,JINST 3(2008)S08004. 5. Byron P. Roe, Hai-Jun Yang, Ji Zhu, Yong Liu, Ion Fig.2.DistributionsofBDToutputfordata(pointswitherrors) and all backgrounds, from top to bottom: W(→ µν)H, W(→ Stancu,GordonMcGregor,“BoostedDecisionTreesas eν)H,Z(→µµ)H,Z(→ee)HandZ(→νν)H. ConferenceTitle,tobefilled an Alternative to Artificial Neural Networks for Parti- cleIdentification”,Nucl.Instrum.Meth.A543(2005)577- 584. 6. CMS Collaboration,“Search for standard model Higgs boson in pp collisions at ps = 7 TeV”, CMS Physics AnalysisSummary,HIG-11-011(2011).

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.