ebook img

Sea-level response to melting of Antarctic ice shelves on multi-centennial time scales with the fast PDF

52 Pages·2017·3.14 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Sea-level response to melting of Antarctic ice shelves on multi-centennial time scales with the fast

TheCryosphereDiscuss.,doi:10.5194/tc-2017-8,2017 ManuscriptunderreviewforjournalTheCryosphere Published:30January2017 c Author(s)2017.CC-BY3.0License. (cid:13) Sea-level response to melting of Antarctic ice shelves on multi-centennial time scales with the fast Elementary Thermomechanical Ice Sheet model (f.ETISh v1.0) FrankPattyn1 1LaboratoiredeGlaciologie,DepartmentofGeosciences,EnvironmentandSociety,UniversitélibredeBruxelles,Av.F.D. Roosevelt50,B–1050Brussels,Belgium Correspondenceto:FrankPattyn([email protected]) Abstract.ThemagnitudeoftheAntarcticicesheet’scontributiontoglobalsea-levelriseisdominatedbythepotentialofits marinesectorstobecomeunstableandcollapseasaresponsetoocean(andatmospheric)forcing.ThispaperpresentsAntarctic sea-levelresponsetosuddenatmosphericandoceanicforcingsonmulti-centennialtimescaleswiththenewlydevelopedfast Elementary Thermomechanical Ice Sheet (f.ETISh) model. The f.ETISh model is a vertically integrated hybrid ice sheet/ice 5 shelfmodelwithanapproximateimplementationoficesheetthermomechanics,makingthemodeltwo-dimensional.Itsmarine boundary isrepresented bytwodifferentfluxconditions,coherent withpower-law basalslidingandCoulomb basalfriction. Themodelhasbeencomparedtoaseriesofexistingbenchmarks. ModelledAntarcticicesheetresponsetoforcingisdominatedbysub-iceshelfmeltandthesensitivityishighlydependent onbasalconditionsatthegroundingline.Coulombfrictioninthegrounding-linetransitionzoneleadstosignificantlyhigher 10 masslossinbothWestandEastAntarcticaoncentennialtimescales,leadingto2msealevelriseafter500yearforamoderate melt scenario of 20 m a 1 under freely-floating ice shelves, up to 6 m for a 50 m a 1 scenario. The higher sensitivity is − − attributedtohigherdrivingstressesupstreamfromthegroundingline. RemovingtheiceshelvesaltogetherresultsinadisintegrationoftheWestAntarcticicesheetand(partially)marinebasinsin EastAntarctica.After500years,thisleadstoa4.5manda12.2msealevelriseforthepower-lawbasalslidingandCoulomb 15 frictionconditionsatthegroundingline,respectively.ThelattervalueagreeswithsimulationsbyDeContoandPollard(2016) overasimilarperiod(butwithdifferentforcingandincludingprocessesofhydrofracturingandclifffailure). The chosen parametrizations make model resultslargely independent ofspatialresolution, sothatf.ETISh can potentially beintegratedinlarge-scaleEarthsystemmodels. 1 Introduction 20 Projecting future sea-level rise requires ice sheet models capable of exhibiting complex behaviour at the contact of the ice sheet with the atmosphere, subglacial environment and the ocean. The majority of these interactions demonstrate non-linear behaviourduetofeedbacks,leadingtoself-amplifyingicemasschange.Forinstance,surfacemassbalanceinteractswithice sheetsthroughapowerfulmelt–elevationfeedback,invokingnon-linearresponseasafunctionofequilibriumlinealtitude,such 1 TheCryosphereDiscuss.,doi:10.5194/tc-2017-8,2017 ManuscriptunderreviewforjournalTheCryosphere Published:30January2017 c Author(s)2017.CC-BY3.0License. (cid:13) asapositivefeedbackonablationthatcanbeexpectedastheice-sheetsurfacebecomeslower(LevermannandWinkelmann, 2016).ThisfeedbackisalsothemainreasonforthethresholdbehaviouroftheGreenlandicesheetonmulti-millennialtime scales (e.g., Ridleyetal., 2010). Typical for these self-amplifying effects is that they work both ways: the melt–elevation feedbackequallyallowsforicesheetstogrowrapidlyonceagiventhresholdinpositiveaccumulationisreached,resultingin 5 hysteresis(Weertman,1976). Another powerful feedback relates to the contact of ice sheets (especially marine ice sheets with substantial parts of the bedrock lying below sea level) with the ocean. Mercer (1978) and Thomas (1979) identified marine ice sheet instability for ice sheets where the bedrock dips deeper inland from the grounding line (retrograde bed slopes), so that increased (atmo- spheric/oceanic) melting leads to recession of the grounding line. This would result in the glacier becoming grounded in 10 deeperwaterwithgreatericethickness.Sinceicethicknessatthegroundinglineisakeyfactorincontrollingicefluxacross thegroundingline,thickericegroundedindeeperwaterwouldresultinfloatation,increasedicedischarge,andfurtherretreat withinapositivefeedbackloop.Earlynumericalicesheetmodelsfailedtoreproducethisfeedbackduetothelackofphysical complexity (e.g., neutral equilibrium; Hindmarsh, 1993) and the poor spatial resolution to resolve the process of grounding line migration (VieliandPayne, 2005; Pattynetal., 2006). A major breakthrough was provided by an analysis of grounding 15 line dynamics based on boundary layer theory (Schoof, 2007a, b, 2011), mathematically confirming the earlier findings by Weertman(1974)andThomas(1979),i.e.thatgroundinglinepositionsareunstableonretrogradebedrockslopesinabsence of(iceshelf)buttressing.Schoof(2007a)showedthatnumericalice-sheetmodelsneedtoevaluatemembranestressesacross thegroundingline,henceresolvingthemonasufficientlyfinegridoflessthanakilometre,whichwasfurtherconfirmedby twoicesheetmodelintercomparisons(Pattynetal.,2012,2013).SincethenseveralmarineicesheetmodelsoftheAntarctic 20 icesheethaveseenthelight,withvaryingwaysoftreatingthegroundingline,i.e.byincreasinglocallyspatialresolutionatthe groundingline(Favieretal.,2014;Cornfordetal.,2015),bymakinguseoflocalinterpolationstrategiesatthegroundingline (Feldmannetal., 2014; FeldmannandLevermann, 2015; Golledgeetal., 2015; Winkelmannetal., 2015) or by parametriz- ing grounding line flux based on boundary layer theory (PollardandDeConto, 2009; Pollardetal., 2015; Ritzetal., 2015; DeContoandPollard,2016). 25 Otherfeedbacksrelateicesheetdynamicstobasalslidingthroughthermo-viscousinstabilities,whichmayleadtolimit-cycle behaviourinicesheets(Payne,1995;Pattyn,1996)aswellasicestreamdevelopmentinabsenceofstrongbasaltopographic control(PayneandDongelmans,1997;Payneetal.,2000;Hindmarshetal.,2009).Moreelaboratesubglacialwaterflowmod- elshavesincebeendeveloped,exhibitingsimilarfeedbackmechanismsinicedischarge(Schoof,2010).Formarineportions of ice sheets, the major subglacial constraint is governed by till deformation and observations have led to new insights in 30 subglacial till deformation based on Coulomb friction controlled by subglacial water pressure (Tulaczyketal., 2000a, b). In contactwiththeocean,subglacialwaterpressuremaythereforestemfromthedepthofthebedbelowsealevel,whichledto newcharacterizationsofgroundinglinedynamics(Tsaietal.,2015). Inthispaper,Ipresentanewicesheetmodelthatreducesthethree-dimensionalnatureoficesheetflowtoatwo-dimensional problem,whilekeepingtheessential(orelementary)characteristicsoficesheetthermomechanicsandicestreamflow.Further- 35 more,anumberofnon-linearnumericalproblemshavebeenlinearisedinordertoincreasebothnumericalstabilityandimprove 2 TheCryosphereDiscuss.,doi:10.5194/tc-2017-8,2017 ManuscriptunderreviewforjournalTheCryosphere Published:30January2017 c Author(s)2017.CC-BY3.0License. (cid:13) z a air h z=hs ice sea level z=b z=hb y ocean bedrock x Figure1.GeneralCartesiangeometryofthef.ETIShmodel. computational speed, while making sure that the processes modelled are preserved to the level of accuracy needed. Finally, processescontrollinggroundinglinemotionareadaptedinsuchawaythattheycanberepresentedatcoarserresolutions.This way,themodelcanmoreeasilybeintegratedwithincomputational-demandingEarth-systemmodels.Anovelgrounding-line algorithmbasedonthezeroeffectivepressureconditionsreigningatthecontactwiththeoceanhasbeenimplemented,which 5 leads to a more sensitive grounding-line response, without necessarily taking into account other mechanisms of accelerating massloss,suchasice-clifffailureandhydro-fracturing(Pollardetal.,2015;DeContoandPollard,2016). Istartbygivingadetailedoverviewofthemodelanditscomponents.TheinitialisationprocedurefortheAntarcticicesheet isthengiven,andfinally,thesensitivityoftheAntarcticicesheettosuddenatmosphericandoceanwarmingispresentedon centennialtimescales.Theappendicesfurtherdescriberesultsofknownbenchmarksforgroundediceflow(Huybrechtsetal., 10 1996;Payneetal.,2000),floatingiceshelves(MacAyealetal.,1996;RommelaereandRitz,1996),andmarineicesheetdy- namics(Pattynetal.,2012). 2 Modeldescription The model consists of diagnostic equations for ice velocities, and three prognostic equations for the temporal evolution of icethickness,icetemperature,andbedrockdeformationbeneaththeice.Prescribedboundaryfieldsareequilibriumbedrock 15 topography, basal sliding coefficients, geothermal heat flux, and sea level. Present-day mean surface air temperatures and precipitation are derived from data assimilation within climate models. Ablation can be determined from a Positive Degree- Daymodel.AlistofmodelsymbolsisprovidedinTables1–3.AgeneraloverviewoftheCartesiangeometryusedisgivenin Fig.1. 3 TheCryosphereDiscuss.,doi:10.5194/tc-2017-8,2017 ManuscriptunderreviewforjournalTheCryosphere Published:30January2017 c Author(s)2017.CC-BY3.0License. (cid:13) Symbol Description Units Value a˙ Surfacemassbalance(SMB) ma−1 A Glen’sflowlawfactor Pa−na−1 Ab,A′b Basalslidingfactorinpower-lawsliding Pa−mma−1 Afroz Basalslidingfactorforfrozenconditions Pa−mma−1 10−10 b Bedrockelevation m b Buttressingfactor 0–1 f cp Specificheatofice Jkg−1K−1 2009 cpo Specificheatofseawater Jkg−1K−1 3974 Cr Calvingrate ma−1 Cs FrictioncoefficientinSchoof(2007a) Pam−ms sms (A′b/spy)−ms c Tillcohesion Pa 0 0 d Diffusioncoefficientofgroundedicesheetflow m2a−1 D Flexuralrigidityoflithosphere Nm 1025 E AdjustmentfactorinArrheniusequation 0.035–1 f F Adjustmentfactorforsub-shelfmeltrates 1–8 melt f Fractionalareaofshelfgridcellincontactwithbed 0–1 g f Scalingtermforstrainheating s g Gravitationalacceleration ms−2 9.81 G Geothermalheatflux Wm−2 h Icethickness m h Bottomoficesheet/iceshelf m b h Subgridicethicknessoniceshelfedge m e h Icethicknessineffectiveviscosity m f h Interpolatedicethicknessatgroundingline m g h Maximumneighbouringicethickness m max h Icesheetsurface m s h Watercolumnthicknessundericeshelf m w K Thermalconductivity Jm−1s−1K−1 2.1 L Latentheatoffusion Jkg−1 3.35 105 × L Flexurallengthscaleofthelithosphere w m Exponentinbasalslidinglaw 2 m BasalslidingexponentinSchoof(2007a) 1/m s M Basalmeltingrateundericeshelves ma−1 n Glen’sflowlawexponent 3 n ,n Outwardpointingnormalvectorsinxandy x y P Precipitationrate(accumulation) ma−1 Table1.Modelsymbols,unitsandnominalvalues 4 TheCryosphereDiscuss.,doi:10.5194/tc-2017-8,2017 ManuscriptunderreviewforjournalTheCryosphere Published:30January2017 c Author(s)2017.CC-BY3.0License. (cid:13) Symbol Description Units Value p Subglacialwaterpressure Pa w P Pointloadonbedrock w q ExponentinCoulombfrictionlaw 0–1 q Bedrockload Pa b qg Icefluxatthegroundingline m2a−1 Q NumericalcoefficientinTsaietal.(2015) 0.61 o r Scalingfactorinslidinglaw 0–1 R Gasconstant Jkg−1mol−1 8.314 S Surfacemeltrate ma−1 S Oceansalinity psu 35 o spy Secondsperyear sa−1 31,556,926 T Meanicecolumntemperature K Teq Steady-statetemperature K T Oceanfreezingtemperature K 271.03 fo T Pressuremeltingtemperature K m Toc Oceantemperature ◦C Tr Temperatureatwhichbasalslidingstarts ◦C T Surfacetemperature K s T⋆ Homologoustemperature K ∆T Backgroundtemperatureforcing ◦C δT Scalingfactorinmassbalanceforcing ◦C 10 u Horizontalicevelocitiesinxdirection ma−1 ub Basalvelocityinxdirection ma−1 ug Velocityatthegroundingline(Schoof,2007a;Tsaietal.,2015) ma−1 u0 LimitvelocityinCoulombfrictionlaw ma−1 100 v Horizontalicevelocitiesinydirection ma−1 vb Basalvelocityinydirection ma−1 v Verticalmeanhorizontalvelocity ma−1 vb Horizontalbasalvelocity ma−1 vd Horizontaldeformationalvelocity ma−1 w Lithosphericdeflection b w Weightingfactorincalvinglaw 0–1 c w Responsetopointloadonbedrock p x,y Orthogonalhorizontalcoordinates m z Verticalelevation,increasingupwardsfromreferenceplane m z Sealevelelevation m 0 sl Table2.Modelsymbols,unitsandnominalvalues(continued) 5 TheCryosphereDiscuss.,doi:10.5194/tc-2017-8,2017 ManuscriptunderreviewforjournalTheCryosphere Published:30January2017 c Author(s)2017.CC-BY3.0License. (cid:13) Symbol Description Units Value β2 Basalfrictioncoefficient β InverseofPécletnumber 0 γ Atmosphericlapserate ◦Cm−1 0.008 γT Thermalexchangevelocity ms−1K−1 5 10−7 × ∆ Gridcellsize,equalinxandydirections m ε˙xx,ε˙yy Normalstrainrateinxandydirection a−1 ε˙0 Minimumstrainrateineffectiveviscosity a−1 10−20 η Effectiveviscosity Paa κ Thermaldiffusivity m2s−1 1.1487 10−6 × λ Scalingfactorinporewaterpressure p ρb Bedrockdensity kgm−3 3370 ρi Icedensity kgm−3 910 ρw Seawaterdensity kgm−3 1028 ω Scaledverticalvelocity φ Tillfrictionangle deg φ minimumtillfrictionangle deg 8–12 min φ maximumtillfrictionangle deg 30 max σ Standarddeviationofbedrockvariability b Θ Buttressingatgroundingline [0,1] θ Icetemperature K θ Basaltemperature K b θs Basaltemperatureoftheiceshelf K b τ Basaldrag Pa b τ Coulombstress Pa c τ Drivingstress Pa d τ Free-watertensilestress Pa f τ ,τ Longitudinalstressinxandy Pa xx yy τ Relaxationtimefortemperature a t τ Relaxationtimeforlithosphericresponse a 3000 w ζ Scaledverticalcoordinate [0,1] Table3.Modelsymbols,unitsandnominalvalues(continued) 6 TheCryosphereDiscuss.,doi:10.5194/tc-2017-8,2017 ManuscriptunderreviewforjournalTheCryosphere Published:30January2017 c Author(s)2017.CC-BY3.0License. (cid:13) Forthecoupledicesheet/iceshelfsystemthesurfaceelevationh isdefinedas s ρ h =max b+h, 1 i h+z , (1) s sl −ρ (cid:20) (cid:18) w(cid:19) (cid:21) wherehistheicethickness,bisthebedrockelevation,z isthesea-levelheightwithrespecttothechosendatum,ρ and sl i ρ aretheiceandseawaterdensity,respectively.Itfollowsthatthebottomoftheicesheetequalsh =h h,andthath =b w b s b − 5 holdsforthegroundedicesheet. 2.1 Icevelocities 2.1.1 Approximations Theicesheet/iceshelfmodelhasseveralmodesofoperation,dependingontheboundaryconditionsthatareapplied.Themost elementaryflowregimeofthegroundedicesheetisaccordingtotheShallow-Iceapproximation(SIA; Hutter,1983),extended 10 witheitheraWeertman-type(orpower-law)functionoralinear/plasticCoulombfrictionlawforbasalsliding.Iceshelfflow is governed by the Shallow-Shelf approximation (SSA; Morland, 1987; MacAyeal, 1989), defined by zero basal drag and extendedbyawater-pressureconditionattheseawardedge.Thetransitionbetweenbothsystemsisgivenbyaflux-condition at the grounding line (PollardandDeConto, 2009, 2012a), either derived from boundary layer theory based on SSA (SGL; Schoof,2007a)orgivenbyaflux-conditionbasedonCoulombfrictionatthegroundingline(TGL;Tsaietal.,2015). 15 Asecondmodeofoperationisthehybridmode,inwhichtheflowregimeofthegroundedicesheetisgovernedbyacombi- nationofSIA,responsibleforice-deformationalflow,andSSAforbasalsliding(BuelerandBrown,2009;Martinetal.,2011; Winkelmannetal., 2011). The hybrid model can be used in combination with power-law sliding or linear/plastic Coulomb frictionunderneaththeicesheet.Allcomponentsoftheflowmodelaredetailedinthesectionsbelow. 2.1.2 Shallow-IceApproximation(SIA) 20 TheShallow-Iceapproximation(SIA; Hutter,1983)iscommonlyusedinicesheetmodelling.Thisapproximationisvalidfor icesheetsofsmallaspectratiosh L,whereListhehorizontallengthscaleoftheicesheetdomain,andfurthercharacterized ≪ byalowcurvatureandlowslidingvelocities.Theapproximationis,however,notvalidneargroundinglinesnorforiceshelf flow,forwhichotherapproximationsareapplied(seebelow).AccordingtoSIA,theverticalmeanhorizontalvelocityinanice sheetisgivenby 2A 25 v =v + hτn, (2) SIA b n+2 d where τ = ρ gh h is the driving stress, A is the flow parameter in Glen’s flow law (with n=3), v =(u ,v ) is the d i s b b b − ∇ basalslidingvelocityandv =(u,v)istheverticalmeanhorizontalvelocityaccordingtoSIA.TheflowparameterAisa SIA functionoficetemperature(seeSect.2.4).ThemainadvantageofSIAisthatthevelocityiscompletelydeterminedfromthe localice-sheetgeometry. 7 TheCryosphereDiscuss.,doi:10.5194/tc-2017-8,2017 ManuscriptunderreviewforjournalTheCryosphere Published:30January2017 c Author(s)2017.CC-BY3.0License. (cid:13) 2.1.3 HybridShallow-Shelf/Shallow-Iceapproximation(HySSA) TheflowvelocityinaniceshelforanicestreamcharacterizedbylowdragisderivedfromtheStokesequations(Stokes,1845) byneglectingverticalsheartermsandbyintegratingtheforcebalanceoverthevertical.Theresultingequationsare(Morland, 1987;MacAyeal,1989): ∂ ∂u ∂v ∂ ∂u ∂v 5 2 2ηh +ηh + ηh +ηh τ ∂x ∂x ∂y ∂y ∂y ∂x − bx (cid:18) (cid:19) (cid:18) (cid:19) = τ , (3) − dx ∂ ∂v ∂u ∂ ∂v ∂u 2 2ηh +ηh + ηh +ηh τ ∂y ∂y ∂x ∂x ∂x ∂y − by (cid:18) (cid:19) (cid:18) (cid:19) = τ , (4) − dy where A 1/n ∂u 2 ∂v 2 ∂u∂v − 10 η = + + + 2 ∂x ∂y ∂x∂y "(cid:18) (cid:19) (cid:18) (cid:19) 1 ∂u ∂v 2 (1−n)/2n + +ε˙ 2 , (5) 0 4 ∂y ∂x (cid:18) (cid:19) # andwhereτ =ρ gh(∂h /∂x)(similarforτ ).ε˙ =10 20isasmallfactortokeepηfinite,hencetopreventsingularities dx i s dy 0 − when velocity gradients are zero. For the ice shelf, τ =0, while for the grounded ice sheet the basal drag is a function of b the friction at the base. The SSA stress-equilibrium equations (3) and (4) require boundary conditions to be specified along 15 the contour which defines the boundary to the ice-shelf domain, which is taken as the edge of the computational domain, irrespective of whether or not calving is considered. Dynamic conditions (specification of stress) are applied at this seaward edge,sothatthevertically-integratedpressurebalancethenreads ∂u ∂v 1 ∂u ∂v 2ηh 2 + n + + n x y ∂x ∂y 2 ∂y ∂x (cid:20)(cid:18) (cid:19) (cid:18) (cid:19) (cid:21) 1 ρ =n ρ gh2 1 i , (6) x i 2 −ρ (cid:18) w(cid:19) ∂v ∂u 1 ∂u ∂v 20 2ηh 2 + n + + n y x ∂y ∂x 2 ∂y ∂x (cid:20)(cid:18) (cid:19) (cid:18) (cid:19) (cid:21) 1 ρ =n ρ gh2 1 i , (7) y i 2 −ρ (cid:18) w(cid:19) wheren ,n aretheoutward-pointingnormalvectorsinthexandydirection,respectively. x y The ice shelf velocity field is needed for determining the effect of buttressing in the grounding line flux conditions (see below), as well as for the thickness evolution of the ice shelf. For the purpose of buttressing, velocity gradients downstream 8 TheCryosphereDiscuss.,doi:10.5194/tc-2017-8,2017 ManuscriptunderreviewforjournalTheCryosphere Published:30January2017 c Author(s)2017.CC-BY3.0License. (cid:13) from the grounding line are used to determine the longitudinal stretching rate, which is compared to the stretching rate of a freely-floatingiceshelftodetermineaso-calledbuttressingfactor.Thisdoesnotrequireafullsolutionofthenon-linearsystem oficeshelfequations,andvelocitygradientscanbeapproximatedfromalinearisedsolutionoftheiceshelfequations.This isdonebysimplifyingtheeffectiveviscosityEq.(5)oftheiceshelf,whilekeepingtheessentialstrain-enhancedeffectinthe 5 effectiveviscosity.Fortheflow-linecase,theonlynon-zerostrainrateisthestretchingrateinthedirectionoftheflowsothat ∂u ε˙ = =Aτn, (8) xx ∂x f where 1 ρ τ = ρ gh 1 i . (9) f i f 2 −ρ (cid:18) w(cid:19) whereh isdefinedby f 10 h =max[min(h,1000),100] (10) f inordertolimitthevariabilityoftheeffectiveviscosity,especiallyinareaswithhighlyvaryingbasaltopography.Inserting Eq.(8)inEq.(5)thenresultsin η= τf1−n. (11) 2A Thisway,theeffectiveviscositybecomesindependentofthevelocitycomponents,whichsignificantlyincreasesthecalcu- 15 lation efficiency. Despite this approximation, the general behaviour of the flow field is only slightly affected, as is shown in AppendixD. Both SIA and SSA velocities are combined to obtain the velocity field of the grounded ice sheet according to the hybrid model (HySSA; BuelerandBrown, 2009). While BuelerandBrown (2009) use a weighing function to ensure a continuous solutionofthevelocityfromtheinterioroftheicesheetacrossthegroundinglinetotheiceshelf,Winkelmannetal.(2011) 20 havedemonstratedthatasimpleadditionstillguaranteesasmoothtransition.Thusbasalvelocitiesforthegroundedicesheet areSSAvelocitiesv =v and b SSA v=v +v (12) SIA SSA forthevelocityfieldinthegroundedicesheet. 9 TheCryosphereDiscuss.,doi:10.5194/tc-2017-8,2017 ManuscriptunderreviewforjournalTheCryosphere Published:30January2017 c Author(s)2017.CC-BY3.0License. (cid:13) 2.1.4 Power-lawbasalsliding BasalslidingisintroducedasaWeertmanslidinglaw,i.e., vb=A′b|τb|m−1τb, (13) whereτ isthebasalshearstress(τ τ forSIA),A isabasalslidingfactor,andmisthebasalslidinglawexponent.The b b∼ d ′b 5 basalslidingfactorA′b istemperaturedependentandallowsforslidingwithinabasaltemperaturerangebetween-3and0◦C. Itfurthertakesintoaccountsub-gridslidingacrossmountainousterrain(Pollardetal.,2015): A =(1 r)A +rA , (14) ′b − froz b where r=max[0,min[1,(T⋆ T )/( T )]], A is the sliding coefficient in case of frozen bedrock (chosen to be very r r froz − − small but different from zero to avoid singularities in the basal friction calculation), T⋆ is the temperature corrected for the 10 dependenceonpressure(seeSect.2.4.4)andT =min[ 3 0.2σ ],whereσ isthestandarddeviationofbedrockelevation r b b − − withinthegridcell(Pollardetal.,2015).BasalslidingfactorsA areeitherconsideredconstantinspace/timeorarespatially b varyingandobtainedthroughoptimizationmethods(seeSect.4.1).Basalvelocitiesinthehybridmodelaredefinedthrougha frictionpowerlaw,where τb=β2vb=Ab′−1/m|vb|1/m−1vb. (15) 15 Since Eq. (15) introduces another dependency on v in Eq. (3) and Eq. (4), the friction coefficients β2 are approximated by combining v with Eq. (13). Furthermore, as for 80% of the Antarctic ice sheet, driving stresses are almost completely b | | balancedbybasalshearstress(Morlighemetal.,2013),τ τ ,sothat b d ≈ β2=Ab′−1/m|vb|1/m−1≈ |τdA|1−m. (16) ′b 2.1.5 Coulombfrictionlaw 20 Basal friction within the HySSA equations can also be calculated based on a model for plastic till (Tulaczyketal., 2000a). Severalvariationsofabasaltillmodelcanbefoundintheliterature(Schoof,2006;Gagliardinietal.,2007;BuelerandBrown, 2009;Winkelmannetal.,2011).Deformationofsaturatedtilliswellmodelledbyaplastic(Coulombfriction)ornearlyplastic rheology(Trufferetal.,2000;Tulaczyketal.,2000a;Schoof,2006).Itsyieldstressτ satisfiestheMohr–Coulombrelation: c τ =c +tanφ(ρ gh p ), (17) c 0 i w − 10

Description:
as a positive feedback on ablation that can be expected as the ice-sheet . Ablation can be determined from a Positive Degree- (A′b/spy)−ms c0.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.