ebook img

SDSS J013127.34-032100.1: a candidate blazar with a 11 billion solar mass black hole at $z$=5.18 PDF

0.2 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview SDSS J013127.34-032100.1: a candidate blazar with a 11 billion solar mass black hole at $z$=5.18

Mon.Not.R.Astron.Soc.000,1–6(2012) Printed13March2015 (MNLATEXstylefilev2.2) SDSS J013127.34–032100.1: a candidate blazar with a 11 billion z solar mass black hole at =5.18 G. Ghisellini1, ⋆ G. Tagliaferri1, T. Sbarrato2, N. Gehrels3 1INAF–OsservatorioAstronomicodiBrera,viaE.Bianchi46,I–23807Merate,Italy 5 2Univ.diMilanoBicocca,Dip.diFisicaG.Occhialini,PiazzadellaScienza3,I–20126Milano,Italy 1 3NASA–GoddardSpaceFlightCenter,Greenbelt,Maryland2077,USA 0 2 r 13March2015 a M ABSTRACT 2 Theradio–loudquasarSDSSJ013127.34–032100.1ataredshiftz=5.18isoneofthemostdis- 1 tantradio–loudobjects.Theradiotoopticalfluxratio(i.e.theradio–loudness)ofthesource islarge,makingitapromisingblazarcandidate.Itsoverallspectralenergydistribution,com- ] pletedbytheX–rayfluxandspectralslopederivedthroughTargetofOpportunitySwift/XRT E observations,is interpretedby a non–thermaljet plusan accretiondisc and moleculartorus H model.We estimate thatits blackholemass is(1.1±0.2)×1010M⊙ foranaccretioneffi- h. ciencyη =0.08,scalingroughlylinearlywithη.Althoughthereisafactor ∼> 2ofsystematic p uncertainty,thisblackholemassisthelargestfoundattheseredshifts.We derivea viewing - anglebetween3and5degrees.Thisimpliesthattheremustbeother(hundreds)sourceswith o thesameblackholemassofSDSSJ013127.34–032100.1,butwhosejetsarepointingaway r t fromEarth.Wediscusstheproblemsposedbytheexistenceofsuchlargeblackholemasses s atsuchredshifts,especiallyinjettedquasars.Infact,iftheyareassociatedtorapidlyspinning a [ blackholes,theaccretionefficiencyishigh,implyingaslowerpaceofblackholegrowthwith respecttoradio–quietquasars. 2 v Keywords: quasars:general;quasars:supermassiveblackholes–X–rays:general 9 6 2 7 0 1 INTRODUCTION Uptonowthethreeblazarsknownatz >5areQ0906+6930 . (z = 5.47; Romanietal.2004),B21023+25(z = 5.3;Sbarrato 1 Yi et al. (2014, hereafter Yi14) discovered SDSS J013127.34– etal.2012, 2013), andSDSSJ114657.79+403708.6 (z = 5.005; 0 032100.1 (hereafter SDSS0131–0321) as a radio–loud quasars a Ghisellinietal.2014a).Allthesesourceshaveawellvisibleaccre- 5 aredshift z = 5.18 characterised by alargeradiotooptical flux 1 tiondisc emission in the IR–optical part of the observed spectral ratio (i.e. the so–called radio–loudness) R ∼ 100. Yi14 selected : energydistribution(SED),includingstrongbroademissionlines.A v thesourcethroughoptical–IRselectioncriteriabasedonSDSSand largeradio–loudnessRisagoodindicatorofthealignmentoftheir i WISEphotometricdata(Wuetal.2012),andthenobserveditspec- X jets with the line of sight, that boosts the non–thermal emission troscopicallyintheopticalandtheIR.TheIRspectrumrevealedan becauseofrelativisticbeaming.ValuesR>100,asinthecaseof r absorbedbroadLyαlineandabroadMgIIline,thatallowedtoes- a SDSS0131–0321(Yi14),makethesourceagoodblazarcandidate, timatetheblackholemassoftheobjectsthoughthevirialmethod, yieldingMBH = (2.7−4)×109M⊙.Ifthisweretherealblack tih.ee.abesaomuricnegwahnogsleej1e/tΓis,sweehneruendΓerisatvhieewbuinlkgaLnogrleenθtzvfsamctaolrleorfthtahne holemass,thenthesourcewouldemitabovetheEddingtonlimit. jet.Thisdefinitionissomewhatarbitrary,buthasthemerittodivide Averylargeblackholemassfoundinajettedquasaratsuch inasimplewayblazarsfromtheirparent population,i.e.quasars large redshifts is somewhat puzzling. This is because it is com- monlybelievedthatthejetisassociatedwithrapidlyspinningblack withjetspointingawayfromus.Thedivideatθv = 1/Γimplies that for each blazar there are other 2Γ2 sources of similarintrin- holes, in order to let the Blandford & Znajek (1977) mechanism sicpropertiesbutpointingelsewhere.However,theradio–loudness work. But ifthiswerethecase, theefficiencyof accretionwould alonedoesnotguaranteetheclassificationofthesourceasablazar: be large, implying that less mass is required to emit a given lu- minosity. The black hole would then grow at a slower rate, and R>100couldinfactcorrespondtoasourceseenatθv >1/Γ,but withaparticularlyweakintrinsicopticalluminosity,or,vice–versa, itbecomesproblematictoexplainlargeblackholemassesathigh withaparticularstrongintrinsicradio–luminosity. Toconfirmthe redshifts(seee.g.Ghisellinietal.2013).Thismotivatesourinterest blazar nature of these high–redshift powerful sources we require injettedquasarsathighredshiftswithlargeblackholemasses. alsoastrongandhardX–rayflux,becauseitisanadditionalsigna- tureofasmallviewingangle(duetothespecificemissionmecha- nismthoughtoproducetheX–rayemission,seeDermer1995and ⋆ E–mail:[email protected] (cid:13)c 2012RAS 2 G. Ghiselliniet al. Sbarratoetal.2015).Forthisreason,weaskedandobtainedatar- get of opportunity observation in the X–ray band with the Swift satellite.Inthisletterwediscussthesedatainthebroadercontext oftheentireSED,derivingarobustestimateontheblackholemass andonthepossiblerangeofviewingangles. Inthiswork,weadoptaflatcosmologywithH0 =70kms−1 Mpc−1andΩM =0.3. 2 SDSS0131–0321ASABLAZARCANDIDATE SDSS0131–0321wasselectedbyYi14asahigh–zquasarsonthe basisoftheSloanDigitalSkySurvey(SDSS)andtheWide–Field InfraredSurveyExplorer(WISE)photometricdata.Theopticaland nearinfraredspectroscopyperformedbyYi14showedabroadLyα and a MgII line, at z = 5.18. FromtheFIRST(Faint Images of theRadioSkyatTwenty-cm;Becker,White&Helfand,1995)cat- alogtheradiofluxis33mJyat1.4GHz,correspondingtoaνLν luminosityof1.3×1044ergs−1.Yi14measuredaradioloudness of∼100,byassumingthattheradio–to–opticalspectrumfollowsa Fν ∝ν−0.5powerlaw,andcalculatingthiswaythefluxattherest framefrequencies of5GHzand4400 A˚ (Kellermanetal.1989). Figure1. Optical–UVSEDof0131–0321intherestframe,togetherwith ThesourceisnotdetectedbytheLargeAreaTelescope(LAT)on- modelsofstandard accretion discemission.Thegreystripeindicates the board the Fermi satellite. In high–z and powerful radio sources, νLνpeakluminosityofthedisc,estimatedasLd=10×LBLR(seetext). aradio–loudness equal orlargerof100stronglysuggeststhatwe Weshowthespectrumofthreeaccretiondiscmodelswithdifferentblack seethejetradiationwithasmallviewingangle.ThismakesSDSS holemasses:MBH/M⊙ = 1.4×1010 (reddashed),1.1×1010 (solid 0131–0321agoodblazarcandidate,butinordertoconfirmit,we blueanddarkgreen)and9×109(dashed,lightgreen).Outsidethisrangeof masses,themodelcannotfitsatisfactorilythedata.TheWISElowfrequency needtocheckifitsX–rayemission,producedbythejet,isstrong pointisfittedassumingthat,besidesthetorusemissionenvisaged bythe relativeto theoptical, and if itsslope isharder than the one of a Ghisellini&Tavecchio(2009)model,thereisanother,hotter(T ∼1300K) typicalaccretiondisccorona(i.e.αX <0.8–1). toruscomponent,asfoundinCalderoneetal.(2013). 2.1 Swiftobservations onceduringtheobservationofNovember12,2014foratotalexpo- ToconfirmtheblazarnatureofSDSS0131–0321weaskedtoob- suresof223and512s,respectively.Thesourcewasneverdetected. serve the source with the Swift satellite (Gehrels et al. 2004). In Forthev filterwederivea3σ upperlimitofv ∼ 20.5mag,cor- fact the X–ray spectra of blazars beamed towards us are partic- responding toafluxF < 0.023 mJy, without accounting for the ularly bright and hard, with an energy spectral index αx ∼ 0.5 likelyabsorptionalongthelineofsightduetointerveningmatter. [F(ν) ∝ ν−αx](seee.g.Ghisellinietal.2010, Wuetal.2013). TheobservationswereperformedbetweenOctober23andDecem- 2.2 Theaccretiondiscluminosity ber9,2014(ObsIDs:00033480001–00033480014). DataoftheX–rayTelescope(XRT,Burrowsetal.2005)and Fig.1showstheIR–UVpartoftheSED,thatcanbewelldescribed the UltraViolet Optical Telescope (UVOT, Roming et al. 2005) asthermalemissionfromanaccretiondisc.Thepeakofthisther- weredownloadedfromHEASARCpublicarchive,processedwith malemissionliesredwardof thehydrogen Lyαfrequency (verti- thespecificSwiftsoftwareincludedinthepackageHEASoft v. calocherline),implyingthatitisnotanartefactoftheabsorption 6.13andanalysed.ThecalibrationdatabasewasupdatedonJune, duetointerveningLyαclouds.Thisallowstoderivetheluminosity 2014. We did not consider the data of the Burst Alert Telescope ofthediscratheraccurately:Ld = 4.1×1047 ergs−1.The(rest (BAT,Barthelmyetal.2005),giventheweakX–rayflux. frame)peakfrequencyofthediscemissionisνd,peak∼1.7×1015 FromalltheXRTobservations weextractasinglespectrum Hz.NotethatLdisroughlyhalfofthebolometricluminosityLbol with total exposure of 20.2 ks. The mean count rate was (2.3± estimatedbyYi14onthebasisofthe(restframe)3000A˚ contin- 0.3)×10−3.Giventhelowstatistics,thefitwithapowerlawmodel uumluminosity,usingtheprescriptionsuggestedbyRichardsetal. withGalacticabsorption(NH =3.7×1020 cm−2,Kalberlaetal. (2006):Lbol = 5.18L(3000A˚).AsdiscussedinCalderoneetal. 2005)wasdonebyusingthelikelihoodstatistic(Cash1979). (2013),LbolconsideredbyRichardsetalal.(2006)includestheIR The output parameters of the model were a spectral slope ri–emissionbythetorusandtheX–rayemission,whilethe“pure” Γx = (αx +1) = 1.56±0.38 and an integrated de–absorbed discluminosityisLd ∼0.5Lbol. fluxF0.3−10keV =(1.4±0.5)×10−13ergcm−2s−1.Thevalue TheWISElowfrequencydetectionpointliesin–betweenthe ofthelikelihoodwas43.9for45dof.TheX–raydatadisplayedin contributionof theaccretion discandthetorusemission asmod- theSED(Fig.2)havebeenrebinnedtohaveatleast3σineachbin. elled by Ghisellini & Tavecchio (2009), who considered that the The source was not expected to be detected in any of the torusemitsasasimpleblack–bodyatthetemperatureofTtorus = UVOT filters, therefore the various observations were performed 370K.Inreality,thetorusemissionismorecomplex,withemis- withdifferentfilters(i.e.theobservationswereperformedwiththe sionuptothesublimationdusttemperatureTsubl ∼ 2000K(e.g. set-up “filter of the day”), usually W1 or M2 UV–filters. In four Peterson1997).Calderoneetal.(2012)foundthatcompositeWISE casesalsotheufilterwasused,whilethebandvfilterswereused data of a large sample of quasars were consistent with the sum (cid:13)c 2012RAS,MNRAS000,1–6 SDSSJ0131–0321:11billionsolarmassblackholeat z=5.18 3 of two black–bodies with average temperatures T=308 and 1440 K and similar luminosities. We have added a black–body with T =1300KtothemodelSED,havingaluminositysimilartothe colder black–body of 370K. Thisscenario isprobably stillover- simplified,butcanaccountfortheobserveddata. Fig. 1 shows also that the Two Micron All Sky Survey (2MASS,Skrutskieetal.2006)pointatlog(ν/Hz) ∼ 15.05(rest frame) is above the modelled disc emission. This discrepancy is duetotheMgIIbroademissionline(at2800A˚ restframe),falling intheHbandfilterof2MASS(Cohenetal.2003). The grey stripe in Fig. 1 shows the Ld value inferred from the Lyα and MgII broad lines. We assumed that Ld ∼ 10LBLR (Baldwin&Netzer,1978;Smithetal.,1981),whereLBLR isthe luminosityoftheentirebroadlineregion,thatwederivefollowing thetemplatebyFranciset al.(1991): settingto100thecontribu- tion of the Lyα line, the broad MgII contribution is 34, and the entire LBLR is 555. For the template calculated by Vanden Berk (2001)thecontributionofallbroadlinestoLBLR issimilar,with theexceptionoftheLyαwhosecontributionisabouthalftheone calculatedbyFrancisetal.(1991). We then took the logarithmic average of the values derived separately for the MgII and the Lyα line (see data in Yi14), as- Figure2. SEDofSDSSJ0131–0321togetherwiththreeone–zoneleptonic sumingthatweseeonlyhalfofit(i.e.thenonabsorbedpart).We models,correspondingtoθv=3◦,Γ=13(greenlongdashedline);θv= assumedanuncertaintyof0.2dexonthisestimateofLd. 5◦,Γ = 13(solidblueline)andθv = 5◦,Γ = 10(shortdashedblack line).ParametersinTab.1.Thelowerboundofthegreystripecorrespond totheLATupperlimitsfor5years,5σ. 2.3 Theblackholemass 3 OVERALLSPECTRALENERGYDISTRIBUTION WecansetalowerlimittotheblackholemassofSDSS0131–0321 byassumingthatitsdiscemitsatorbelowtheEddingtonlevel.This The overall SED of SDSS 0131–0321 from radio to X–rays is impliesMBH >3.2×109M⊙.Yi14,usingthevirialmethod(e.g. showninFig.2.Toguidetheeye,thedashedlineintheradiodo- Wandel1997;Petersonetal.2004)appliedtotheMgIIbroadline, mainshow aradiospectrum Fν ∝ ν0. The5yearslimitingsen- derivedMBH =(2.7−4.0)×109,andconcludedthatthesource sitivityofFermi/LATisshownbythelowerboundaryofthegrey isemittingatasuper–Eddingtonrate(theyalsoconsideredLbolas hatched area. The solid and long–dashed lines correspond to the thediscluminosity). one–zone,leptonicmodeldescribedindetailinGhisellini&Tavec- The IR–optical SED of the source shows a peak and has a chio(2009).Themodelassumesmostoftheemissionisproduced low frequency slope consistent with the emission from a simple, atadistanceRdissfromtheblackhole,wherephotonsproducedby Shakura&Sunyaevdisc(1973)model.Fig.2showsthatthenon– theBLRandbythetorusarethemostimportantseedsforthein- thermal,possiblyhighlyvariable,continuumisnotcontributingto verseComptonscatteringprocess,thatdominatesthehighenergy theIR–UVflux.Sincetheaccretiondiscismuchlessvariablethan luminosity.TheregionmoveswithabulkLorentzfactorΓandhas thejetemission,weexpect thattheIR–UVdata,althoughnot si- atangled magneticfieldB.Thedistributionof theemittingelec- multaneous,giveagooddescriptionofthediscemission.Thisde- tronsisderivedthroughacontinuityequation,assumingcontinuos pendsonlyonMBH andthemassaccretionrateM˙.Thelatteris injection,radiativecooling,possiblepairproductionandpairemis- tracedbythetotaldiscluminosityLd =ηM˙c2,whereηistheeffi- sion,andiscalculatedatatimer/cafterthestartoftheinjection, ciency,thatdependsonthelaststableorbit,henceontheblackhole where r = ψRdiss is the size of the source, and ψ (=0.1 rad) is spin(withη = 0.057andη = 0.3appropriateforanonrotating thesemi–apertureangleofthejet,assumedconical.Theaccretion andamaximallyspinningblackhole,respectively;Thorne1974). diskcomponentisaccountedfor,aswelltheinfraredemissionre- HavingalreadymeasuredLd(henceM˙,assumingη∼0.08), processedbyadustytorusandtheX–rayemissionproducedbya theonlyfreeparameterisMBH,whosevaluedeterminesthepeak hotthermalcoronasandwichingtheaccretiondisc. frequencyofthediscemission.ForafixedM˙,alargerMBH im- ThethreemodelsshowninFig.2,whoseparametersarelisted plies a larger disc surface, hence a lower maximum temperature. inTab.1,differmainlyfromthevalueofθvandΓ.Thishighlights ThereforealargerMBHshiftsthepeaktolowerfrequencies.Then howthepredictedSEDchanges,especiallyinthehardX–rayband, thebestagreementwiththedatafixesMBH (e.g.Calderoneetal. byvaryingθvevenbyasmallamount.Thetwoθv =5◦casesindi- 2013).Fig.1showsthediscemissionforthree(slightly)different catethemaximumviewinganglethatcanwellexplaintheexisting values of MBH: 9, 11 and 14 billions solar masses. Outside this data. The θv = 5◦, Γ = 10 and the θv = 3◦ cases correspond rangewedonotsatisfactorilyaccountfortheobserveddata,while toaviewinganglesmallerthan1/Γ,thatwouldallowtoclassify theagreementbetweenthedataandthemodelisrathergoodwithin SDSS0131–0321ablazar.Torefineourpossiblechoicesweneed thismassrange.Weconcludethattheblackholemassiswelldeter- observationsinthehardX–rayband,suchastheonethattheNu- minedandisMBH =(1.1±0.2)×1010M⊙forη=0.08.Weob- clearSpectroscopicTelescopeArraysatellite(NuSTAR,Harrisonet tainMBH =8×109M⊙forη=0.057andMBH =2×1010M⊙ al.2013)canprovide.AsinthecaseofB21023+25(Sbarratoetal. forη=0.15(seealso§4).Thereisthusafactorof ∼> 2ofsystem- 2013),NuSTARcouldrevealaveryhardspectrum,thatcouldmake aticuncertainty. ustochoosethelargeΓandsmallθvsolution.Tab.1reportsalso, (cid:13)c 2012RAS,MNRAS000,1–6 4 G. Ghiselliniet al. Name z Rdiss MBH RBLR Pi′ Ld LLEddd B Γ θv γb γmax Pr PB Pe Pp [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] 0131–0321 5.18 2310 1.1e10 2031 0.02 47.62 0.25 1.6 13 5 70 3e3 46.3 47.2 44.9 47.6 0131–0321 5.18 2310 1.1e10 2031 0.02 47.62 0.25 2.1 10 5 70 3e3 46.0 47.2 44.8 47.4 0131–0321 5.18 2310 1.1e10 2031 9e–3 47.62 0.25 1.1 13 3 300 3e3 46.0 46.9 44.0 46.5 1146+430 5.005 900 5e9 1006 7e–3 47.00 0.15 1.4 13 3 230 3e3 45.9 46.3 44.0 46.5 0906+693 5.47 630 3e9 822 0.02 46.83 0.17 1.8 13 3 100 3e3 46.3 46.2 44.6 47.1 1023+25 5.3 504 2.8e9 920 0.01 46.95 0.25 2.3 13 3 70 4e3 46.0 46.2 44.5 46.9 Table1.ListofparametersadoptedfororderivedfromthemodelfortheSEDof0131–0321,comparedwiththesetofparametersusedfortheothertwo blazarsatz >5.Col.[1]:name;Col.[2]:redshift;Col.[3]:dissipationradiusinunitsof1015cm;Col.[4]:blackholemassinsolarmasses;Col.[5]:size oftheBLRinunitsof1015cm;Col.[6]:powerinjectedintheblobcalculatedinthecomovingframe,inunitsof1045ergs−1;Col.[7]:logarithmofthe accretiondiskluminosity(inergs−1);Col.[8]:LdinunitsofLEdd;Col.[9]:magneticfieldinGauss;Col.[10]:bulkLorentzfactoratRdiss;Col.[11]: viewingangleindegrees;Col.[12]and[13]:breakandmaximumrandomLorentzfactorsoftheinjectedelectrons;Col.[14]–[17]:logarithmofthejetpower (inergs−1)indifferentforms:Col.[14]powerspentbythejettoproducethenon–thermalbeamedradiation;Col.[15]:jetPoyntingflux;Col.[16]:power inbulkmotionofemittingelectrons;Col.[17]:powerinbulkmotionofcoldprotons,assumingoneprotonperemittingelectron.ThetotalX–raycorona luminosityisassumedtobeintherange10–30percentofLd.Itsspectralshapeisassumedtobealways∝ν−1exp(−hν/150keV). 4 DISCUSSIONANDCONCLUSIONS Althoughwecannotdecide(yet)ifSDSS0131–0321canbeclas- sifiedas ablazar ina strict sense (i.e.a source withθv < 1/Γ), wecan nevertheless conclude that θv issmall, and therefore it is very likely that there exist other sources like SDSS 0131–0321 pointinginotherdirections.Assumingtwooppositelydirectedjets, Γ = 13 and θv = 5◦, we can estimate the presence of other 1/(1−cos5◦)=260sourcessharingthesameintrinsicproperties ofSDSS0131–0321 inthesameskyarea(about1/4oftheentire sky)coveredbytheSDSS+FIRSTsurvey.IffutureNuSTARobser- vationsdetectahighhardX–rayflux,thentheΓ = 13,θv = 3◦ solution is preferred, and the total number of sources like SDSS 0131–0321shouldbe2Γ2 =338(Γ/13)2 inthesameskyarea. We believe that the black hole mass we found through the disc–fittingmethodisveryreliable,sincewedoseethepeakofthe accretion disc emission red–ward of the Lyα limit. The only un- certaintyconcernstheuseofasimpleShakuraandSunyaev(1973) model,thatassumesano(oramodestly)spinningblackhole.On theotherhandtheresultingfitisgood,andwestressthatinthecase ofafastlyspinningblackhole,withacorrespondinghighaccretion Figure3.TheSEDofSDSS0131–0321iscomparedtotheSEDsofthe efficiencyη,wewouldderivealargerblackholemass.Thisisbe- otherknownblazarsatz >5.SDSS0131–0321standsoutbyhavingthe cause,foragivenMBH andM˙,aKerrblackholewouldproduce mostpowerfuldisc.TheradioandtheX–raydata,ontheotherhand,have moreoptical–UVflux(withrespecttoanonspinningblackhole), luminositysimilartotheotherblazars.Thefigureshowsalsotheinterpo- thenexceedingtheobserveddatapointsatthepeakoftheoptical– latingmodels,whoseparametersarelistedinTab.1. UVSED.OnemustlowerM˙,butthisleadstounder–representthe IR–opticalpoint,thatcanberecoveredbyincreasingthemass(i.e. increasingthediscsurface,implyingasmallertemperature). for theeaseof thereader, theparameters weused tofittheother 3 known blazars1 at z > 5. The parameters are all very similar, Howcansuchalargemassbeproducedatz = 5.18?Atthis andarealsointhebulkofthedistributionofparametersaccount- redshift the Universe is 1.1 Gyr old. Fig. 4 shows the change of ingformuchlargersampleofblazarsshowingbroademissionlines the black hole mass in time, assuming different efficiencies η. If (Ghisellinietal.2010;2014b,Ghisellini&Tavecchio2015). the black hole is not spinning, and η < 0.1, then it is possible Fig.3showshowtheSEDofSDSS0131–0321compareswith togrowablackholeupto11billionsolarmassesstartingfroma theSED(inνLν vsrestframeν)ofthethreeotherblazarknown 100M⊙seediftheaccretionproceedsattheEddingtonrateallthe atz > 5. The4non–thermal jetSEDsarerathersimilar,butthe time. But if η = 0.3, appropriate for a maximally spinning and accretiondisccomponentofSDSS0131–0321standsout,beinga accretingblackhole(Thorne1974),thenthegrowthisslower,and factor∼4moreluminous. an Eddington limited accretion cannot produce a 1.1×1010M⊙ blackholeatz=5,unlesstheseedis108M⊙atz=20. Thisposestheproblem:jettedsourcesarebelievedtobeasso- 1 Forthejetpowers,wehereconsiderthesumofpowerofeachofthetwo ciatedwithfastlyspinningblackholes,thereforewithhighlyeffi- jets,whileintheoriginalpapersdiscussingthesesources,thepowerofonly cientaccretors.IftheaccretionisEddingtonlimited,jettedsources onejetwasreported. shouldhaveblackholeslighterthanradio–quietquasarswithnot– (cid:13)c 2012RAS,MNRAS000,1–6 SDSSJ0131–0321:11billionsolarmassblackholeat z=5.18 5 spinningblackholes.Thesolutiontothispuzzlecanbethat,when ajetispresent,thennotallthegravitationalenergyoftheinfalling matteristransformedintoheatandthenradiation,assuggestedby Jolley&Kunzic(2008)andGhisellinietal.(2010).Inthiscasethe totalaccretionefficiencycanbeη = 0.3,butonlyafractionofit (ηd)goestoheatthedisc,whiletherest(η−ηd)goestoamplifythe magneticfieldnecessarytolaunchthejet(bytappingtherotational energyoftheblackhole).ThediscluminositybecomesEddington limitedforagreateraccretionrate(makingtheblackholegrowing faster).ThisisshowninFig.4asthecaseη =0.3,ηd =0.1,that requires a seed of 104M⊙ at z = 20; and by the case η = 0.3, ηd = 0.06,thatcanreach11billionM⊙ startingfroma100M⊙ seedatz∼11. Inthisscenario,thejetisrequiredifverylargemassesmust bereachedatlargeredshifts,togetherwithavastreservoirofmass that can be accreted. In this respect, the recent finding of Punsly (2014),namelythatradio–loudobjectshaveadeficitofUVemis- sionwithrespecttoradio–quietquasarofsimilardiscluminosity, isveryintriguing,pointingtothepossibilitythattheinnerpartof theaccretiondiscaroundaKerrblackholeisproducingmuchless luminosity than expected, because the produced energy does not gointoheatingthedisc,butinotherforms,suchasamplifyingthe Figure 4. The black hole mass as a function of time in system charac- magnetic field of the inner disc, a necessary ingredient to let the terisedbyanEddingtonlimitedaccretion rate,andbydifferentvalues of Blandford&Znajekprocessworkefficiently. the efficiency η (see also Fig. 3 in Trakhtenbrot et al. 2011) Values of η = 0.06 and η = 0.3 correspond to no spinning Schwarzschild and maximallyspinningKerrblackholes,respectively. Allcasescorresponds toMBH = 1.1×1010M⊙atz = 5.18,themassofSDSS0131–0321. ACKNOWLEDGEMENTS Thisfigureshowsthatonlyiftheaccretiondiscefficiencyηd issmallwe cangrowalargemassblackholeintherequiredtimestartingfromarea- Thispublication makes useof data products fromtheWide–field sonableseed.Ontheotherhand,thismaynotimplyanonrotatingblack Infrared Survey Explorer, which is a joint project of the Univer- hole. sity of California, Los Angeles, and the Jet Propulsion Labora- tory/Caltech,fundedbyNASA.Italsomakesuseofdataproducts JolleyE.J.D&KuncicZ.,2008,MNRAS,386,989 fromtheTwo Micron AllSkySurvey, which isajoint project of KalberlaP.M.W.,BurtonW.B.,HartmannD.,ArnalE.M.,BajajaE.,Morras the University of Massachusetts and the Infrared Processing and R.&Po¨ppelW.G.,2005,A&A,440,775 Analysis Center/Caltech, funded by NASA and the National Sci- KellermannK.I.,SramekR.,SchmidtM.etal.,1989,AJ,98,1195 ence Foundation. Part of this work is based on archival data and McGreerI.D.,HelfandD.J.&WhiteR.L.,2009,AJ,138,1925 on–lineserviceprovidedbytheASIScienceDataCenter(ASDC). PetersonB.M.,1997,AnIntroductiontoActiveGalacticNucleiPublisher: Cambridge,NewYork,CambridgeUniv.Press PetersonB.M.,FerrareseL.,GilbertK.M.etal.,2004,ApJ,613,682 PunslyB.,2014,ApJ,797,L33 REFERENCES RichardsG.T.,LacyM.,Storrie–LombardiL.J.etal.,2006,ApJS,166,470 RomaniR.W.,Sowards–EmmerdD.,Greenhill L.&Michelson P.,2004, BaldwinJ.A.&NetzerH.,1978,ApJ,226,1 ApJ,610,L9 BeckerR.H.,WhiteR.L.&HelfandD.J.,1995,ApJ,450,559 RomingP.,KennedyT.,MasonK.etal.,2005,SpaceSci.Rev.120,95 BlandfordR.D&ZnajekR.L.,1977,MNRAS,179,433 SbarratoT.,GhiselliniG.,NardiniM.,etal.,2012,MNRAS,426,L91 CalderoneG.,SbarratoT.&GhiselliniG.,2013,MNRAS,431,210 SbarratoT.,TagliaferriG.,GhiselliniG.etal.,2013,ApJ,777,147 Calderone G.,Ghisellini G.,ColpiM.&Dotti, M.,2013,MNRAS,425, SbarratoT.,GhiselliniG.,TagliaferriG.,FoschiniL.,NardiniM.,Tavecchio L41 F.&GehrelsN.,2015,MNRAS,446,2483 CashW.,1979,ApJ,228,939 ShakuraN.I.&SunjaevR.A.,1973,A&A,24,337 CohenM.,WheatonWm.A.&MegeathS.T.,2003,AJ,126,1090 SkrutskieM.F.,CutriR.M.,StieningR.etal.,2006,AJ,131,1163 DermerC.D.,1995,ApJ,446,L63 SmithM.G.,CarswellR.F.,WhelanJ.A.Jetal.,1981,MNRAS,195,437 FrancisP.J.,HewettP.C.,FoltzC.B.,ChaffeeF.H.,WeymannR.J.&Morris ThorneK.S.,1974,ApJ,191,507 S.L.,1991,ApJ,373,465 TrakhtenbrotB.,NetzerH.,LiraP.&ShemmerO.,2011,ApJ,730,7 GehrelsN.,ChincariniG.,GiommiP.etal.,2004,ApJ,611,1005 VandenBerkD.E.,RichardsG.T.,BauerA.etal.,2001,AJ,122,549 GhiselliniG.&TavecchioF.,2009,MNRAS,397,985 Volonteri M.,Haardt F.,Ghisellini G. &Della Ceca R.,2011, MNRAS, Ghisellini G., Tavecchio F., Foschini L., Ghirlanda G., Maraschi L. & 416,216 CelottiA.,2010,MNRAS,402,497 YiW.–M.,WangF.,WuX.–B.etal.,2014,ApJ,795,L29(Yi14) GhiselliniG.,HaardtF.,DellaCecaR.,VolonteriM.&SbarratoT.,2013, WandelA.,1997,ApJ,490,L131 MNRAS,428,1449 WuJ.,BrandtW.N.,MillerB.P.,GarmireG.P.,SchneiderD.P.&Vignali Ghisellini G., Sbarrato T., Tagliaferri G., Foschini L., Tavecchio F., C.,2013,ApJ,763,109 GhirlandaG.,BraitoV.&GehrelsN.,2014a,MNRAS,440,L111 WuX.–B.,HaoG.,JiaZ.etal.,2012,AJ,144,49 GhiselliniG.,TavecchioF.,MaraschiL.,CelottiA.&SbarratoT.,2014b, Nature,515,376 GhiselliniG.&TavecchioF.,2015,MNRAS,448,1060 HarrisonF.A.,CraigW.W.,ChristensenF.E.etal.,2013,ApJ,770,103 (cid:13)c 2012RAS,MNRAS000,1–6

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.