Scientific Method ‘Barry Gower’s book introduces students to the philosophy of science in a way I heartily applaud: scientific method, logic and probability are given centre-stage and are developed historically—through examination of the views of some of the greats: Galileo, Bacon, Newton, Bayes, Poincaré, …, and in close connection with developments in science itself. Theses and arguments are presented with great clarity and sound judgement.’ John Worral, LSE The results, conclusions and claims of science are often taken to be reliable because they arise from the use of a distinctive method. Yet today, there is widespread scepticism as to whether we can validly talk of method in modern science. This outstanding new survey explains how this controversy has developed since the seventeenth century and explores its philosophical basis. Scientific Method (cid:127) introduces readers to controversies concerning method in the natural sciences (cid:127) provides an historical context to these issues (cid:127) shows that questions of method have played a vital role in the work of scientists (cid:127) challenges the current view that scientific method is a philosophical fiction. Questions of scientific method are discussed through key figures such as Galileo, Bacon, Newton, Bayes, Darwin, Poincaré, Duhem, Popper and Carnap. The concluding chapter contains stimulating discussions of attacks on the idea of scientific method by key figures such as Kuhn, Lakatos, and Feyerabend. Essential reading for students of history and the philosophy of science, Scientific Method will also appeal to anyone with an interest in what philosophers say about science. Barry Gower teaches Philosophy of Science at Durham University. Scientific Method An historical and philosophical introduction Barry Gower London and New York First published 1997 by Routledge 11 New Fetter Lane, London EC4P 4EE This edition published in the Taylor & Francis e-Library, 2002. Simultaneously published in the USA and Canada by Routledge 29 West 35th Street, New York, NY 10001 © 1997 Barry Gower The author has asserted his moral rights in accordance with the Copyright, Designs and Patents Act 1988 All rights reserved. No part of this book may be reprinted or reproduced or utilized in any form or by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying and recording, or in any information storage or retrieval system, without permission in writing from the publishers. British Library Cataloguing in Publication Data A catalogue record for this book is available from the British Library. Library of Congress Cataloguing in Publication Data Gower, Barry. Scientific method: an historical and philosophical introduction/Barry Gower. p. cm. Includes bibliographical references and index. 1. Science-Methodology. 2. Science-Methodology-Philosophy. 3. Science-Methodology-History. I. Title. Q175.G685 1996 502.8–dc20 96–7865 CIP ISBN 0-415-12281-3 (hbk) ISBN 0-415-12282-1 (pbk) ISBN 0-203-04612-9 Master e-book ISBN ISBN 0-203-22250-4 (Glassbook Format) Contents Preface vi 1 Introduction 1 2 Galileo Galilei: New methods for a new science 21 3 Francis Bacon: Why experiments matter 40 4 Isaac Newton: Rules for reasoning scientifically 63 5 The Bernoullis and Thomas Bayes: Probability and scientific method 83 6 John Herschel, John Stuart Mill and William Whewell: The uses of hypotheses 109 7 Henri Poincaré and Pierre Duhem: Conventions and scientific reasoning 130 8 John Venn and Charles Peirce: Probabilities as frequencies 152 9 John Maynard Keynes and Frank Ramsey: Probability logic 170 10 Hans Reichenbach and Karl Popper: The (in) dispensability of induction 189 11 Rudolf Carnap: Scientific method as Bayesian reasoning 212 12 Conclusion: Experimental interventions and social constructions 236 Bibliography 262 Index 272 Preface Those of my friends and colleagues who knew that I was writing a book about scientific method often expressed their surprise. Why, they said, should anyone wish to revive such a long-expired steed? People do not now believe in scientific method. Perhaps they should, for their dismissal is based more on specious rhetoric than on solid argument; but still, my friends told me, writers who would be read must address a real, rather than an ideal, world. My answer has been that the real world has a history, and to state the truth about it we must take account of that history. Scientific method—the logic of science—has occupied the attention of some of the greatest scientific and philosophical thinkers. If we dismiss what engaged their attention, then we had better be sure that we know why it engaged their attention. They were, no doubt, subject to prevailing cultural influences and attitudes of which they may have been unaware. But so are we, and if we can, with the help of history, exercise a degree of self-reflection, we may wish to circumscribe the influences which try to prevail over our thinking. Setting aside the radical scepticism of some philosophers, we can know something about the past, including something about how our predecessors have considered scientific method. But for our predecessors the future, including that future of theirs in which we live, is unknown. We should take advantage of that difference. We willingly assert that our predecessors would not have believed some of what their contemporaries urged them to believe about scientific method if they had known what we know about it; we should just as willingly assert that we would not believe some of what our contemporaries urge us to believe about scientific method if we knew what our predecessors had known about it. Not unexpectedly, few friends have been persuaded. Many, though, have not only tolerated my persistence, but encouraged and helped me to promote my unfashionable view. This is my opportunity to thank them. But I must also record my intellectual debt to Bob MacGowan and Rom Harre who introduced me to the philosophy of science, and to Preface vii David Knight with whom I have been teaching the history and philosophy of science for almost thirty years. For helpful comments and criticism of various chapters of this book I thank Vernon Armitage, Donald Gillies, Stathis Psillos, Geoffrey Scarre and Michael Sharratt. I have not always taken the advice they gave me, so, for that reason as well as others, the faults that remain are my faults. Thanks, too, to the Research Committee of Durham University and to my colleagues in the Philosophy Department for a period of leave in 1994 enabling me to begin work on the book. Chapters, or parts of chapters, have been read to audiences in Belfast, Dublin, London, Florence and Virginia, as well as in Durham, and I am grateful for the advice I have received on those occasions. For less direct but nevertheless invaluable help I thank Robin Hendry, Roger MacAdam, Holger Maehle, David Mossley, Kathleen Natrass and Wendy Short. But the greatest encouragement has come from my students at Durham University, and therefore my most heartfelt thanks go to them. I have been very lucky in having the opportunity to introduce philosophy to students of the natural sciences. Their response, their questions, their suggestions and their critical judgement have been very much in my mind as I wrote. Such success as I have had in identifying, articulating and addressing the philosophical questions which are the subject of this book is due in large part to their aid. In this book’s concluding chapter I have adapted material which appeared in ‘Method in methodology’, Methodology and Science 18 (1985): 30–47, and in ‘Chalmers on method’, British Journal for the Philosophy of Science 39 (1988): 59–65. I am grateful to the editors of those journals for permission to recycle the required paragraphs. Barry Gower January 1996 1 Introduction We have increasingly powerful reasons for acquiring some understanding of the natural sciences. Their influence on the technologies that shape our lives has already been immense, and undoubtedly will continue to grow. In peace and in war, in work and in leisure, in health and in sickness, in each of the different stages of life, we cannot escape that influence. This book is being written with the aid of an electronic computer of a type which, as little as twenty years ago, was unavailable and unimagined by most people. You could well be reading it in circumstances equally unanticipated. On the surface at least, the most prominent differences between our lives and those of earlier generations are differences which have come about as a result of discoveries, investigations, explorations and inventions in the natural sciences. If we compare our modes of transport or communication with those available to previous generations, or compare our education with theirs, we cannot help but be struck with the consequences, for good or for ill, of scientific knowledge. On the credit side, that knowledge, but not that knowledge alone, has resulted in such benefits as the elimination of drudgery and repetitive work for some people, the eradication and control of some life-threatening diseases, and increases in crop productivity. For the sake of these and other benefits we have welcomed science. But we also fear science because, on the debit side, scientific knowledge, though not scientific knowledge alone, is responsible for such harms as the damage suffered by our environment, and has led to questionable experimental practices which need the control of so-called ‘ethics committees’. Without the scientist’s knowledge of theories, of laws, of techniques and, in general, of what is possible and what is not, the circumstances in which we live our lives would undoubtedly be different. At a deeper level, too, we feel the effects of the growth of natural science and its technological consequences. Many people feel uneasy about, and some are alienated by, the impersonality of science, and even more so by what they perceive as its inhumanity; the future societies
Description: