ebook img

Schnelle dynamische Radiographie an einem thermischen Hochfluss-Neutronenstrahl. Fast dynamic radiography at a high-flux thermal neutron beam PDF

56 Pages·5.191 MB·German
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Schnelle dynamische Radiographie an einem thermischen Hochfluss-Neutronenstrahl. Fast dynamic radiography at a high-flux thermal neutron beam

Fakult¨at fu¨r Physik und Astronomie Ruprecht-Karls-Universit¨at Heidelberg Diplomarbeit im Studiengang Physik vorgelegt von Arnd E. Gildemeister aus Bad Schwalbach 2003 Fast dynamic radiography at a high-flux thermal neutron beam Schnelle dynamische Radiographie an einem thermischen Hochfluss-Neutronenstrahl Die Diplomarbeit wurde von Arnd E. Gildemeister ausgefu¨hrt am Physikalischen Institut Heidelberg unter der Betreuung von Herrn Privatdozent Dr. Hartmut Abele. Fast dynamic radiography at a high-flux ther- mal neutron beam Wereportonfirstdynamicradiographieswithmillisecondtimeresolution measured at the new neutron radiography and tomography facility Neu- trograph at the Institut Laue-Langevin (ILL) in Grenoble (France). We visualized the fuel jet from a diesel direct injection nozzle and recorded dynamic radiographies of a running combustion engine and an externally drivencarengine. Furthermeasurementsincludedtwo-phaseflowofpen- tane in a thin heated steel pipe, water penetration in building materials, and water transport into a lecithin lamellar phase. We put Neutrograph into operation at the ILL beamline H9. It provides the high thermal flux of2.9 109 n cm−2 s−1 andthesufficientlylowdivergenceof6mradthat × permit fast dynamic radiography with sub-millimeter resolution. The properties of Neutrograph are discussed, especially those of the detector. Schnelle dynamische Radiographie an einem thermischen Hochfluss-Neutronenstrahl Wir berichten u¨ber erste dynamische Radiographien mit einer Zeitauf- l¨osung im Millisekunden-Bereich, aufgenommen an der neuen Neutronen Radiographie- und Tomographieanlage Neutrograph am Institut Laue- Langevin(ILL)inGrenoble(Frankreich). WirkonntendenSpru¨stoßeiner Diesel-Direkteinspritzdu¨se sichtbar machen und haben dynamische Ra- diographien eines laufenden Verbrennungsmotors und eines geschleppten Automotorsaufgenommen. WeiterhinhabenwirunteranderemdieZwei- phasenstr¨omung von Pentan in einem du¨nnen erhitzten Stahlr¨ohrchen, das Eindringen von Wasser in Baumaterialien, sowie den Wassertrans- port in eine laminare Phase aus Lezithin untersucht. Neutrograph haben wir am StrahlH9des ILLinBetriebgenommen. Dieserbietet denhohen thermischen Fluß von 2.9 109 n cm−2 s−1 und die hinreichend niedrige × Divergenz von 6 mrad, die schnelle dynamische Radiographie mit einer sub-Millimeter Aufl¨osung erlauben. Die Eigenschaften von Neutrograph und insbesondere des Detektors werden dargestellt. Contents 1 Introduction 4 2 Basics of Neutron Radiography 5 2.1 Measuring Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 Tomography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.3 Comparison with other Methods . . . . . . . . . . . . . . . . . . . . . 6 3 Beam and Detector 8 3.1 The Beam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3.2 The Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3.2.1 The Scintillator . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3.2.2 The Camera . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.2.3 The Detector Housing . . . . . . . . . . . . . . . . . . . . . . . 12 3.3 The Casemate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.3.1 Radiation Protection . . . . . . . . . . . . . . . . . . . . . . . . 13 3.3.2 Safety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 4 Error Analysis 17 4.1 Systematic Errors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4.1.1 Scintillator Degradation . . . . . . . . . . . . . . . . . . . . . . 17 4.1.2 Intensity Fluctuations . . . . . . . . . . . . . . . . . . . . . . . 20 4.2 Statistical Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 4.3 Contrast . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 4.4 Spatial Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 4.5 Time Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 4.6 Image Intensifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 4.7 Data Treatment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 5 Measurements 31 5.1 Combustion Engines . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 5.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 5.1.2 Injection Nozzle . . . . . . . . . . . . . . . . . . . . . . . . . . 32 5.1.3 Running Engine . . . . . . . . . . . . . . . . . . . . . . . . . . 32 5.1.4 Car Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 5.2 Further Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 5.2.1 Two-Phase Flow . . . . . . . . . . . . . . . . . . . . . . . . . . 40 5.2.2 Building Materials . . . . . . . . . . . . . . . . . . . . . . . . . 40 5.2.3 Myelin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 2 CONTENTS 3 6 Outlook 44 A Derivations 45 Bibliography 47 Acknowledgements 50 Declaration 51 Instructions for the CD 52 Chapter 1 Introduction We put the new neutron radiography brightness by up to 28% within 90 min, andtomographyfacilityNeutrographinto and systematic beam intensity fluctua- full operation in 2003. It is located at tions of up to 1.5% in the range of sec- the beamline H9 of the Institut Laue- onds. Statisticalerrorsareessentiallyde- Langevin’s research reactor in Grenoble terminedbythenumberofneutronsused (France). With its unprecedented ther- forameasurementandcanbelowerthan mal flux of 2.9 109 n cm−2 s−1 at the 0.1%. The spatial resolution is typically × moderate divergence of 6 mrad (L/D between 0.2mmand0.6mm. Time reso- ≈ 150) it opens a wide range of new oppor- lutiondependsonthetypeofexperiment; tunities in neutron radiography. it can be as low as 100 µs. The high flux allows the study of dy- Ourmeasurementsfocussedonthevi- namic processes in the millisecond range sualization of fuel inside combustion en- and even below if stroboscopic methods gines. The fuel jet of an injection noz- can be used. Applications include the vi- zle could be visualized. Dynamic radio- sualizationofthegasolinedistributionin- graphies of a running model-sized com- side combustion engines, two-phase flow bustion engine were recorded but vibra- in fuel cells, and water transport. tionssofarpreventedthevisualizationof Neutronradiographymeasurestheat- the fuel. First measurements with a car tenuation of a neutron beam due to ab- engine were done. We also did measure- sorption and scattering in the sample. It mentstogetherwithagrowingnumberof yields information on the nuclear compo- externalusers. Theseincludedtwo-phase sition of the sample and in this respect it flow in a small steel tube, water pen- differs greatly from the more common X- etration in building materials, and wa- ray radiography, which is sensitive to the ter transport into a biochemical sample. atomic composition. This is discussed in Measurements are described in Chapter Chapter 2. 5. We record radiographies with a de- tector that consists mainly of a neutron scintillator andaChargeCoupledDevice (CCD) camera. It was optimized to fully exploit the high flux. The properties of the beam and the detector are discussed in Chapter 3. Chapter 4 provides a detailed error analysis. Principal sources of systematic errorsarethedegradationofthescintilla- torsinthehighflux,whichcanreducethe 4 Chapter 2 Basics of Neutron Radiography 2.1 Measuring Principle neutrons. Weassume a parallel beam ge- ometry; the small divergence limits the Neutron radiography images samples by spatial resolution (cf. Section 4.4). measuring their attenuation of a neutron Onecalculatestheattenuationfroma beam with a two-dimensional position- measurement of I with the sample in the sensitive detector that determines the beam and an “open beam” measurement transmitted neutron flux in a plane per- of I without the sample. As the beam is 0 pendicular to the beam. not homogeneous, I is a function of the 0 Asneutronscarrynoelectricalcharge position in the image. they interact predominantly with the nu- The attenuation coefficient µ is given clei as they pass through matter. The by short-ranged strong interaction leads to µ=σ ρNA (2.3) both absorption and scattering of the t M neutrons. Electromagnetic interaction with the material’s total cross section σ t withtheneutron’smagneticmomentonly for neutrons, its density ρ, Avogadro’s plays a minor role in radiography. The number N = 6.022 1023mol−1, and the A beam attenuation at a given position in molar mass M. For samples consisting the image is described well by of several materials this must again be rewritten as I =I e−µ∆x (2.1) 0 ρ (~x)N i A µ(~x)= σ . (2.4) whereI andI aretheincidentandtrans- t,i M 0 i i mitted beam intensities, ∆x is the thick- X ness of the sample and µ is the attenua- The total cross section is tion coefficient, a material property that σ =σ +k σ (2.5) will be discussed in more detail below. t s n a For samples consisting of more than one with the scattering cross section σ , material µ will be a function of space s the absorption cross section σ , and and 2.1 must be rewritten as a the neutron-energy dependent factor k . n Scatteringoccursbothcoherently,includ- I =I exp µ(~x)ds , (2.2) 0 − ing Bragg scattering, small angle scat- (cid:18) ZS (cid:19) tering at grain boundaries, and thermal the path S being a straight line through diffuse scattering for light elements, and thesampleinthedirectionoftheincident incoherently. For neutron wavelengths 5 6 CHAPTER 2. BASICS OF NEUTRON RADIOGRAPHY greater than the Bragg cutoff the total Neutrons penetrate matter more eas- cross section sharply drops for many ma- ily than charged particles as the strong terials. force is very short-ranged compared At thermal neutron energies and be- to the long-range Coulomb interaction. low, the absorption cross section of most While it takes 45 cm of aluminum to at- materials shows a reciprocal dependence tenuateabeamofthermalneutronsto1% on the neutron velocity. As absorption the range of 10 MeV electrons is 2.2 cm cross sections found in tables are usually [LB90] and that of 10 MeV protons only validforthermalneutronswithavelocity 630 µm [Bal96]. of v =2200 ms−1 the factor Photons are also uncharged and X- 0 rays penetrate matter well. Interac- v 0 k = (2.6) tion occurs mainly with the atoms’ elec- n v tron shell [Sie55] and the cross sections has to be used for neutrons with a ve- roughlyfollow apowerlawinthenuclear locityv [Hug57]. Thisapproximativefor- charge Z. This is very different for neu- mulaisvalidformostmaterials. Anoted trons,wherethecrosssectiondependson exceptionistheresonanceinGadolinium. the nuclear structure and even two iso- topes of the same element may have to- tallydifferentcrosssections(cf. Fig.2.1). 2.2 Tomography Thismeansthateventhickerlayersof metals may be relatively transparent to Computer tomography allows a measure- neutrons while being opaque for X-rays ment of the attenuation in three dimen- and that neutrons may be sensitive to sions. To do so, radiographies of the small differences in nuclear mass where sample are recorded under different an- X-rays cannot resolve the difference. For gles by rotating the sample in the beam. example, neutrons are highly sensitive to These radiographies are two-dimensional hydrogen, which is practically invisible projections of the three-dimensional at- forX-rays. Table2.1showscrosssections tenuation of the sample. The inverse for the interaction of neutrons with some Radon transform allows to reconstruct isotopes. the three-dimensional structure from the The major drawback of neutron ra- projections[Rad17]. Various methods diography is the low availability of high have been developed for the computa- fluxsources. Atthemomentonlynuclear tionally intense reconstruction. Details reactors and spallation sources are capa- on computer tomography, its artifacts ble of producing the flux necessary for and limitations have been described else- dynamic radiography. Portable sources, where, e.g. [Kak88]. Specifics on neu- based on spontaneous fission in 252Cf, trontomographycanbefoundin[Sch99], cannotusuallyprovidethenecessaryflux. [Sch01], and [Fer03]. Caremustbeusedtoavoidstrongactiva- tion of samples through neutron capture, especially for a high flux. 2.3 Comparison with other Methods Electrons, protons, or X-rays are also used for radiography. The best choice of radiation depends both on the sample and practical considerations. Neutrons areoftenwell-suitedforthicksamplesbut their availability is low.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.